51
|
Skourti-Stathaki K, Proudfoot N, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011; 42:794-805. [PMID: 21700224 PMCID: PMC3145960 DOI: 10.1016/j.molcel.2011.04.026] [Citation(s) in RCA: 618] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/10/2011] [Accepted: 04/18/2011] [Indexed: 11/30/2022]
Abstract
We present a molecular dissection of pause site-dependent transcriptional termination for mammalian RNA polymerase II (Pol II)-transcribed genes. We show that nascent transcripts form RNA/DNA hybrid structures (R-loops) behind elongating Pol II and are especially prevalent over G-rich pause sites positioned downstream of gene poly(A) signals. Senataxin, a helicase protein associated with AOA2/ALS4 neurodegenerative disorders, acts to resolve these R-loop structures and by so doing allows access of the 5'-3' exonuclease Xrn2 at 3' cleavage poly(A) sites. This affords 3' transcript degradation and consequent Pol II termination. In effect, R-loops formed over G-rich pause sites, followed by their resolution by senataxin, are key steps in the termination process.
Collapse
Affiliation(s)
| | - Nicholas J. Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
52
|
Zheng J, Xing D, Wu X, Shen Y, Kroll DM, Ji G, Li QQ. Ratio-based analysis of differential mRNA processing and expression of a polyadenylation factor mutant pcfs4 using arabidopsis tiling microarray. PLoS One 2011; 6:e14719. [PMID: 21364912 PMCID: PMC3045369 DOI: 10.1371/journal.pone.0014719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
Background Alternative polyadenylation as a mechanism in gene expression regulation has been widely recognized in recent years. Arabidopsis polyadenylation factor PCFS4 was shown to function in leaf development and in flowering time control. The function of PCFS4 in controlling flowering time was correlated with the alternative polyadenylation of FCA, a flowering time regulator. However, genetic evidence suggested additional targets of PCFS4 that may mediate its function in both flowering time and leaf development. Methodology/Principal Findings To identify further targets, we investigated the whole transcriptome of a PCFS4 mutant using Affymetrix Arabidopsis genomic tiling 1.0R array and developed a data analysis pipeline, termed RADPRE (Ratio-based Analysis of Differential mRNA Processing and Expression). In RADPRE, ratios of normalized probe intensities between wild type Columbia and a pcfs4 mutant were first generated. By doing so, one of the major problems of tiling array data—variations caused by differential probe affinity—was significantly alleviated. With the probe ratios as inputs, a hierarchy of statistical tests was carried out to identify differentially processed genes (DPG) and differentially expressed genes (DEG). The false discovery rate (FDR) of this analysis was estimated by using the balanced random combinations of Col/pcfs4 and pcfs4/Col ratios as inputs. Gene Ontology (GO) analysis of the DPGs and DEGs revealed potential new roles of PCFS4 in stress responses besides flowering time regulation. Conclusion/Significance We identified 68 DPGs and 114 DEGs with FDR at 1% and 2%, respectively. Most of the 68 DPGs were subjected to alternative polyadenylation, splicing or transcription initiation. Quantitative PCR analysis of a set of DPGs confirmed that most of these genes were truly differentially processed in pcfs4 mutant plants. The enriched GO term “regulation of flower development” among PCFS4 targets further indicated the efficacy of the RADPRE pipeline. This simple but effective program is available upon request.
Collapse
Affiliation(s)
- Jianti Zheng
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Denghui Xing
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Yingjia Shen
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Diana M. Kroll
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- * E-mail: (QQL); (GJ)
| | - Qingshun Quinn Li
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- Department of Botany, Miami University, Oxford, Ohio, United States of America
- * E-mail: (QQL); (GJ)
| |
Collapse
|
53
|
Poly(A) signals located near the 5' end of genes are silenced by a general mechanism that prevents premature 3'-end processing. Mol Cell Biol 2010; 31:639-51. [PMID: 21135120 DOI: 10.1128/mcb.00919-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poly(A) signals located at the 3' end of eukaryotic genes drive cleavage and polyadenylation at the same end of pre-mRNA. Although these sequences are expected only at the 3' end of genes, we found that strong poly(A) signals are also predicted within the 5' untranslated regions (UTRs) of many Drosophila melanogaster mRNAs. Most of these 5' poly(A) signals have little influence on the processing of the endogenous transcripts, but they are very active when placed at the 3' end of reporter genes. In investigating these unexpected observations, we discovered that both these novel poly(A) signals and standard poly(A) signals become functionally silent when they are positioned close to transcription start sites in either Drosophila or human cells. This indicates that the stage when the poly(A) signal emerges from the polymerase II (Pol II) transcription complex determines whether a putative poly(A) signal is recognized as functional. The data suggest that this mechanism, which probably prevents cryptic poly(A) signals from causing premature transcription termination, depends on low Ser2 phosphorylation of the C-terminal domain of Pol II and inefficient recruitment of processing factors.
Collapse
|
54
|
The SR protein B52/SRp55 is required for DNA topoisomerase I recruitment to chromatin, mRNA release and transcription shutdown. PLoS Genet 2010; 6:e1001124. [PMID: 20862310 PMCID: PMC2940736 DOI: 10.1371/journal.pgen.1001124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression. DNA Topoisomerase I (Topo I) is a very well known enzyme capable of removing DNA topological constrains during transcription. In mammals, Topo I also harbours an intrinsic protein kinase activity required to achieve specific phosphorylation of factors in charge of maturating the transcript and exporting it from the transcription site in the nucleus to the cytoplasm. In this report, we have used Drosophila genetics to describe the surprising finding that Topo I is not directly recruited to active transcription sites by DNA but rather by an indirect interaction with its protein target of phosphorylation which in turn is bound to nascent transcripts at gene loci. Furthermore, we demonstrate that the delivery of Topo I to an activated heat shock gene is essential for efficient release of the mRNA from its transcription site and functions to turn off transcription of the gene. This study brings a new model for the long unanswered question of how genes are turned off and provides evidence that Topo I is at the heart of the mechanism by which DNA and RNA processes are coordinately regulated during development to avoid genomic instability.
Collapse
|
55
|
Abstract
The ubiquitously expressed uridine-rich snRNAs (small nuclear RNAs) are essential for the removal of introns, proper expression of histone mRNA and biosynthesis of ribosomal RNA. Much is known about their assembly into snRNP (small nuclear ribonucleoprotein) particles and their ultimate function in the expression of other genes; however, in comparison, less is known about the biosynthesis of these critical non-coding RNAs. The sequence elements necessary for 3' end formation of snRNAs have been identified and, intriguingly, the processing of snRNAs is uniquely dependent on the snRNA promoter, indicating that co-transcriptional processing is important. However, the trans-acting RNA-processing factors that mediate snRNA processing remained elusive, hindering overall progress. Recently, the factors involved in this process were biochemically purified, and designated the Integrator complex. Since their initial discovery, Integrator proteins have been implicated not only in the production of snRNA, but also in other cellular processes that may be independent of snRNA biogenesis. In the present study, we discuss snRNA biosynthesis and the roles of Integrator proteins. We compare models of 3' end formation for different classes of RNA polymerase II transcripts and formulate/propose a model of Integrator function in snRNA biogenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, U.S.A., and Graduate School of Biomedical Sciences, University of Texas at Houston, Houston TX 77030, U.S.A
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, U.S.A., and Graduate School of Biomedical Sciences, University of Texas at Houston, Houston TX 77030, U.S.A
| |
Collapse
|
56
|
Hockert JA, Yeh HJ, MacDonald CC. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation. J Biol Chem 2009; 285:695-704. [PMID: 19887456 DOI: 10.1074/jbc.m109.061705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Because polyadenylation is essential for cell growth, in vivo examination of polyadenylation protein function has been difficult. Here we describe a new in vivo assay that allows structure-function assays on CstF-64, a protein that binds to pre-mRNAs downstream of the cleavage site for accurate and efficient polyadenylation. In this assay (the stem-loop luciferase assay for polyadenylation, SLAP), expression of a luciferase pre-mRNA with a modified downstream sequence element was made dependent upon co-expression of an MS2-CstF-64 fusion protein. We show here that SLAP accurately reflects CstF-64-dependent polyadenylation, confirming the validity of this assay. Using SLAP, we determined that CstF-64 domains involved in RNA binding, interaction with CstF-77 (the "Hinge" domain), and coupling to transcription are critical for polyadenylation. Further, we showed that the Hinge domain is necessary for CstF-64 interaction with CstF-77 and consequent nuclear localization, suggesting that nuclear import of a preformed CstF complex is an essential step in polyadenylation.
Collapse
Affiliation(s)
- J Andrew Hockert
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | |
Collapse
|
57
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
58
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
59
|
Rigo F, Martinson HG. Polyadenylation releases mRNA from RNA polymerase II in a process that is licensed by splicing. RNA (NEW YORK, N.Y.) 2009; 15:823-36. [PMID: 19304926 PMCID: PMC2673064 DOI: 10.1261/rna.1409209] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When transcription is coupled to pre-mRNA processing in HeLa nuclear extracts nascent transcripts become attached to RNA polymerase II during assembly of the cleavage/polyadenylation apparatus (CPA), and are not released even after cleavage at the poly(A) site. Here we show that these cleaved transcripts are anchored to the polymerase at their 3' ends by the CPA or, when introns are present, by the larger 3'-terminal exon definition complex (EDC), which consists of splicing factors complexed with the CPA. Poly(A) addition releases the RNA from the polymerase when the RNA is anchored only by the CPA. When anchored by the EDC, poly(A) addition remains a requirement, but it triggers release only after being licensed by splicing. The process by which RNA must first be attached to the polymerase by the EDC, and then can only be released following dual inputs from splicing and polyadenylation, provides an obvious opportunity for surveillance as the RNA enters the transport pathway.
Collapse
Affiliation(s)
- Frank Rigo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
60
|
Ardehali MB, Yao J, Adelman K, Fuda NJ, Petesch SJ, Webb WW, Lis JT. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 2009; 28:1067-77. [PMID: 19279664 PMCID: PMC2683705 DOI: 10.1038/emboj.2009.56] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/06/2009] [Indexed: 12/20/2022] Open
Abstract
Several eukaryotic transcription factors have been shown to modulate the elongation rate of RNA polymerase II (Pol II) on naked or chromatin-reconstituted templates in vitro. However, none of the tested factors have been shown to directly affect the elongation rate of Pol II in vivo. We performed a directed RNAi knock-down (KD) screen targeting 141 candidate transcription factors and identified multiple factors, including Spt6, that alter the induced Hsp70 transcript levels in Drosophila S2 cells. Spt6 is known to interact with both nucleosome structure and Pol II, and it has properties consistent with having a role in elongation. Here, ChIP assays of the first wave of Pol II after heat shock in S2 cells show that KD of Spt6 reduces the rate of Pol II elongation. Also, fluorescence recovery after photobleaching assays of GFP-Pol II in salivary gland cells show that this Spt6-dependent effect on elongation rate persists during steady-state-induced transcription, reducing the elongation rate from approximately 1100 to 500 bp/min. Furthermore, RNAi depletion of Spt6 reveals its broad requirement during different stages of development.
Collapse
Affiliation(s)
- M Behfar Ardehali
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jie Yao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Karen Adelman
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Watt W Webb
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
61
|
West S, Proudfoot NJ. Transcriptional termination enhances protein expression in human cells. Mol Cell 2009; 33:354-64. [PMID: 19217409 PMCID: PMC2706331 DOI: 10.1016/j.molcel.2009.01.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/21/2008] [Accepted: 01/09/2009] [Indexed: 11/19/2022]
Abstract
Transcriptional termination of mammalian RNA polymerase II (Pol II) requires a poly(A) (pA) signal and, often, a downstream terminator sequence. Termination is triggered following recognition of the pA signal by Pol II and subsequent pre-mRNA cleavage, which occurs either at the pA site or in transcripts from terminator elements. Although this process has been extensively studied, it is generally considered inconsequential to the level of gene expression. However, our results demonstrate that termination acts as a driving force for optimal gene expression. We show that this effect is general but most dramatic where weak or noncanonical pA signals are present. We establish that termination of Pol II increases the efficiency of pre-mRNA processing that is completed posttranscriptionally. As such, transcripts escape from nuclear surveillance.
Collapse
Affiliation(s)
- Steven West
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nicholas J. Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
62
|
Garas M, Dichtl B, Keller W. The role of the putative 3' end processing endonuclease Ysh1p in mRNA and snoRNA synthesis. RNA (NEW YORK, N.Y.) 2008; 14:2671-84. [PMID: 18971324 PMCID: PMC2590971 DOI: 10.1261/rna.1293008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pre-mRNA 3' end formation is tightly linked to upstream and downstream events of eukaryotic mRNA synthesis. The two-step reaction involves endonucleolytic cleavage of the primary transcript followed by poly(A) addition to the upstream cleavage product. To further characterize the putative 3' end processing endonuclease Ysh1p/Brr5p, we isolated and analyzed a number of new temperature- and cold-sensitive mutant alleles. We show that Ysh1p plays a crucial role in 3' end formation and in RNA polymerase II (RNAP II) transcription termination on mRNA genes. In addition, we observed a range of additional functional deficiencies in ysh1 mutant strains, which were partially allele-specific. Interestingly, snoRNA 3' end formation and RNAP II termination were defective on specific snoRNAs in the cold-sensitive ysh1-12 strain. Moreover, we observed the accumulation of several mRNAs including the NRD1 transcript in this mutant. We provide evidence that NRD1 autoregulation is associated with endonucleolytic cleavage and that this process may involve Ysh1p. In addition, the ysh1-12 strain displayed defects in RNA splicing indicating that a functional link may exist between intron removal and 3' end formation in yeast. These observations suggest that Ysh1p has multiple roles in RNA synthesis and processing.
Collapse
Affiliation(s)
- Monika Garas
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
63
|
Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319-31. [PMID: 18427828 DOI: 10.1007/s00412-008-0158-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5'-end capping, splicing, 3'-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Collapse
|
64
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
65
|
Ryan K, Bauer DLV. Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3' end formation. Int J Biochem Cell Biol 2008; 40:2384-96. [PMID: 18468939 PMCID: PMC2548416 DOI: 10.1016/j.biocel.2008.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
In eukaryotes, a pre-messenger RNA (pre-mRNA) must undergo several processing reactions before it is exported to the cytoplasm for translation. One of these reactions, endonucleolytic 3' cleavage at the polyadenylation site, prepares the pre-mRNA for addition of the poly(A) tail and defines the 3' untranslated region (UTR), which typically contains important gene expression regulatory sequences. While the protein factors responsible for the endonucleolytic cleavage have been largely identified, the means by which their action is limited to the 3' end of the transcription unit and coordinated with other co-transcriptional events remains unclear. In this review, we summarize and review recent findings revealing that the mammalian 3' cleavage factors undergo extensive post-translational modification. These modifications include: arginine methylation, lysine sumoylation, lysine acetylation, and the phosphorylation of serine, threonine and tyrosine residues. Every cleavage factor, though not every subunit, is affected. Human Fip1 and the 59 kDa subunit of cleavage factor I emerge as the most frequently modified core cleavage factor subunits. We outline and compare the various proteomic methods that have uncovered these modifications, and review emerging hypotheses concerning their function. The roles of these covalent but reversible modifications in other systems suggest that 3' end formation in mammals relies upon post-translational modification for proper function and regulation.
Collapse
Affiliation(s)
- Kevin Ryan
- Department of Chemistry and Biochemistry, City College, and Graduate School, City University of New York, 160 Convent Avenue, New York, NY 10031, United States.
| | | |
Collapse
|
66
|
West S, Proudfoot NJ. Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Res 2008; 36:905-14. [PMID: 18086705 PMCID: PMC2241900 DOI: 10.1093/nar/gkm1112] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/22/2007] [Accepted: 11/28/2007] [Indexed: 11/13/2022] Open
Abstract
The poly(A) (pA) signal possesses a dual function in 3' end processing of pre-mRNA and in transcriptional termination of RNA polymerase II (Pol II) for most eukaryotic protein-coding genes. A key protein factor in yeast and Drosophila Pol II transcriptional termination is the 3'-end processing factor, Pcf11. In vitro studies suggest that Pcf11 is capable of promoting the dissociation of Pol II elongation complexes from DNA. Moreover, several mutant alleles of yeast Pcf11 effect termination in vivo. However, functions of human Pcf11 (hPcf11) in Pol II termination have not been explored. Here we show that depletion of hPcf11 from HeLa cells reduces termination efficiency. Furthermore, we provide evidence that hPcf11 is required for the efficient degradation of the 3' product of pA site cleavage. Finally, we show that these functions of hPcf11 require an intact pA signal.
Collapse
|
67
|
Glover-Cutter K, Kim S, Espinosa J, Bentley DL. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 2008; 15:71-8. [PMID: 18157150 PMCID: PMC2836588 DOI: 10.1038/nsmb1352] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/21/2007] [Indexed: 01/09/2023]
Abstract
We investigated co-transcriptional recruitment of pre-mRNA processing factors to human genes. Capping factors associate with paused RNA polymerase II (pol II) at the 5' ends of quiescent genes. They also track throughout actively transcribed genes and accumulate with paused polymerase in the 3' flanking region. The 3' processing factors cleavage stimulation factor and cleavage polyadenylation specificity factor are maximally recruited 0.5-1.5 kilobases downstream of poly(A) sites where they coincide with capping factors, Spt5, and Ser2-hyperphosphorylated, paused pol II. 3' end processing factors also localize at transcription start sites, and this early recruitment is enhanced after polymerase arrest with the elongation factor DRB. These results suggest that promoters may help specify recruitment of 3' end processing factors. We propose a dual-pausing model wherein elongation arrests near the transcription start site and in the 3' flank to allow co-transcriptional processing by factors recruited to the pol II ternary complex.
Collapse
Affiliation(s)
- Kira Glover-Cutter
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, PO Box 6511, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
68
|
Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, Bäcker V, Kornblihtt A, Marcello A, Bertrand E. The transcriptional cycle of HIV-1 in real-time and live cells. ACTA ACUST UNITED AC 2007; 179:291-304. [PMID: 17954611 PMCID: PMC2064765 DOI: 10.1083/jcb.200706018] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA polymerase II (RNAPII) is a fundamental enzyme, but few studies have analyzed its activity in living cells. Using human immunodeficiency virus (HIV) type 1 reporters, we study real-time messenger RNA (mRNA) biogenesis by photobleaching nascent RNAs and RNAPII at specific transcription sites. Through modeling, the use of mutant polymerases, drugs, and quantitative in situ hybridization, we investigate the kinetics of the HIV-1 transcription cycle. Initiation appears efficient because most polymerases demonstrate stable gene association. We calculate an elongation rate of approximately 1.9 kb/min, and, surprisingly, polymerases remain at transcription sites 2.5 min longer than nascent RNAs. With a total polymerase residency time estimated at 333 s, 114 are assigned to elongation, and 63 are assigned to 3′-end processing and/or transcript release. However, mRNAs were released seconds after polyadenylation onset, and analysis of polymerase density by chromatin immunoprecipitation suggests that they pause or lose processivity after passing the polyA site. The strengths and limitations of this kinetic approach to analyze mRNA biogenesis in living cells are discussed.
Collapse
Affiliation(s)
- Stéphanie Boireau
- Institute of Molecular Genetics of Montpellier, Unité Mixte de Recherche 5535, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- David S Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
70
|
Functional coupling of last-intron splicing and 3'-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol Cell Biol 2007; 28:849-62. [PMID: 17967872 DOI: 10.1128/mcb.01410-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed an in vitro transcription system, using HeLa nuclear extract, that supports not only efficient splicing of a multiexon transcript but also efficient cleavage and polyadenylation. In this system, both last-intron splicing and cleavage/polyadenylation are functionally coupled to transcription via the tether of nascent RNA that extends from the terminal exon to the transcribing polymerase downstream. Communication between the 3' splice site and the poly(A) site across the terminal exon is established within minutes of their transcription, and multiple steps leading up to 3'-end processing of this exon can be distinguished. First, the 3' splice site establishes connections to enhance 3'-end processing, while the nascent 3'-end processing apparatus makes reciprocal functional connections to enhance splicing. Then, commitment to poly(A) site cleavage itself occurs and the connections of the 3'-end processing apparatus to the transcribing polymerase are strengthened. Finally, the chemical steps in the processing of the terminal exon take place, beginning with poly(A) site cleavage, continuing with polyadenylation of the 3' end, and then finishing with splicing of the last intron.
Collapse
|
71
|
Zhang Z, Klatt A, Henderson AJ, Gilmour DS. Transcription termination factor Pcf11 limits the processivity of Pol II on an HIV provirus to repress gene expression. Genes Dev 2007; 21:1609-14. [PMID: 17606639 PMCID: PMC1899470 DOI: 10.1101/gad.1542707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many elongation factors in eukaryotes promote gene expression by increasing the processivity of RNA polymerase II (Pol II). However, the stability of RNA Pol II elongation complexes suggests that such complexes are not inherently prone to prematurely terminating transcription, particularly at physiological nucleotide concentrations. We show that the termination factor, Pcf11, causes premature termination on an HIV provirus. The transcription that occurs when Pcf11 is depleted from cells or an extract is no longer sensitive to 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a compound that causes premature termination. Hence, Pcf11 can act as a negative elongation factor to repress RNA Pol II gene expression in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alicia Klatt
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew J. Henderson
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for HIV/AIDS Care and Research, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | - David S. Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-MAIL ; FAX (814) 863-7024
| |
Collapse
|
72
|
Nag A, Narsinh K, Martinson HG. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 2007; 14:662-9. [PMID: 17572685 DOI: 10.1038/nsmb1253] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/24/2007] [Indexed: 11/09/2022]
Abstract
Eukaryotic poly(A) signals direct mRNA 3'-end processing and also pausing and termination of transcription. We show that pausing and termination require the processing factor CPSF, which binds the AAUAAA hexamer of the mammalian poly(A) signal. Pausing does not require the RNA polymerase II C-terminal domain (CTD) or the cleavage stimulation factor, CstF, that binds the CTD. Pull-down experiments show that CPSF binds, principally through its 30-kDa subunit, to the body of the polymerase. CPSF can also bind CstF, but this seems to be mutually exclusive with polymerase binding. We suggest that CPSF, while binding the body of the polymerase, scans for hexamers in the extruding RNA. Any encounter with a hexamer triggers pausing. If the hexamer is part of a functional poly(A) signal, CstF is recruited and binds CPSF, causing it to release the polymerase body and move (with CstF) to the CTD.
Collapse
Affiliation(s)
- Anita Nag
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
73
|
Hirose Y, Ohkuma Y. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem 2007; 141:601-8. [PMID: 17405796 DOI: 10.1093/jb/mvm090] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA polymerase II (Pol II) is the only polymerase to possess heptapeptide repeats in the C-terminal domain (CTD) of its large subunit. During transcription, CTD phopshorylation occurs and is maintained from initiation to termination. To date, among the three known CTD kinases possessing CDK-cyclin pairs, TFIIH is the only one that forms a preinitiation complex. The Mediator complex plays essential roles in transcription initiation and during the transition from initiation to elongation by transmitting signals from transcriptional activators to Pol II. P-TEFb specifically plays a role in transcription elongation. TFIIH and mediator phosphorylate serine 5 (Ser5) of the CTD heptapeptide repeat sequence, whereas P-TEFb phosphorylates serine 2 (Ser2). Recently, it has become clear that CTD phosphorylation is not only essential for transcription, but also as a platform for RNA processing and chromatin regulation. In this review, we discuss the central role of Pol II phosphorylation in these nuclear events.
Collapse
Affiliation(s)
- Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | |
Collapse
|
74
|
Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3'-end processing. J Biol Chem 2006; 282:2101-15. [PMID: 17116658 DOI: 10.1074/jbc.m609981200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Yeast Rna15 and its vertebrate orthologue CstF-64 play critical roles in mRNA 3 '-end processing and in transcription termination downstream of poly(A) sites. These proteins contain N-terminal domains that recognize the poly(A) site, but little is known about their highly conserved C-terminal regions. Here we show by NMR that the C-terminal domains of CstF-64 and Rna15 fold into a three-helix bundle with an uncommon topological arrangement. The structure defines a cluster of evolutionary conserved yet exposed residues we show to be essential for the interaction between Pcf11 and Rna15. Furthermore, we demonstrate that this interaction is critical for the function of Rna15 in 3 '-end processing but dispensable for transcription termination. The C-terminal domain of the Rna15 homologue Pti1 contains critical sequence alterations within this region that are predicted to prevent Pcf11 interaction, providing an explanation for the distinct functions of these two closely related proteins in the 3 '-end formation of RNA polymerase II transcripts. These results define the role of the C-terminal half of Rna15 and provide insight into the network of protein/protein interactions responsible for assembly of the 3 '-end processing apparatus.
Collapse
Affiliation(s)
- Xiangping Qu
- Department of Molecular Microbiology, Tufts University School of Medicine and the Sackler Graduate School of Biomedical Sciences, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 2006; 23:853-64. [PMID: 16973437 DOI: 10.1016/j.molcel.2006.07.029] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/23/2006] [Accepted: 07/28/2006] [Indexed: 11/25/2022]
Abstract
Cryptic unstable transcripts (CUTs) are widely distributed in the genome of S. cerevisiae. These RNAs generally derive from nonannotated regions of the genome and are degraded rapidly and efficiently by the nuclear exosome via a pathway that involves degradative polyadenylation by a new poly(A) polymerase borne by the TRAMP complex. What is the share of significant information that is encrypted in CUTs and what distinguishes a CUT from other Pol II transcripts are unclear to date. Here we report the dissection of the molecular mechanism that leads to degradation of a model CUT, NEL025c. We show that the Nrd1p-Nab3p-dependent pathway, involved in transcription termination of sno/snRNAs, is required, albeit not sufficient, for efficient degradation of NEL025c RNAs and at least a subset of other CUTs. Our results suggest an important role for the Nrd1p-Nab3p pathway in the control of gene expression throughout the genome.
Collapse
Affiliation(s)
- Marilyne Thiebaut
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91190 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
76
|
Coupling of transcription termination to RNAi. J Theor Biol 2006; 245:278-89. [PMID: 17157879 DOI: 10.1016/j.jtbi.2006.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 10/21/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
In metazoans, the mechanisms of transcriptional termination by RNA polymerase II (Pol II) and accelerated decay of messenger RNA (mRNA) following transcription shutdown are linked by sharing the same sequence elements and mRNA elongation, processing and termination factors. This begs the question, how could one process have two opposite outcomes, making or degrading mRNA? An integrated "allosteric-GENEi-torpedo" model that could explain this paradox predicts participation of two novel factors: (1) An allosteric factor, regulated by a physiological repressor, binds to a unique sequence element of a gene near the site of cleavage and polyadenylation, poly(A) site, and acts on the homologous site on the nascent transcript to cause its cleavage. The conformational changes of this factor determine the fate of nascent RNA, either to get cleaved and processed to mature mRNA for directing protein synthesis, or not to get cleaved and become template for double-stranded (ds) RNA synthesis. (2) A general transcription termination factor, recruited by transcribing Pol II at the poly(A) site, allostrically alters and induces Pol II to switch template from DNA to nascent RNA several hundred nucleotides downstream of the poly(A) site. The template switch disengages Pol II from DNA and effectively terminates transcription. The Pol II with newly acquired RNA-dependent RNA polymerase activity retraces its path, back along the nascent RNA, so generating dsRNA. The extent to which it can retrace this path is determined by the factors influencing the cleavage of the pre-mRNA at the site of polyA addition. If cleavage and polyadenylation occur, the retracing is cut short, the 3' RNA is degraded by an exonuclease and the polymerase is liberated to reinitiate transcription. If the cleavage is inhibited, then a full-length dsRNA can be produced. This can then be subject to cleavage by "Dicer", which generates fragments of approximately 22bp that guide degradation of the cognate mRNA via the RNA interference (RNAi) pathway. This model complements the current "allosteric-torpedo" model of transcription termination, and could explain the apparent paradox of the divergent results of a common biological process.
Collapse
|
77
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
78
|
Aida M, Chen Y, Nakajima K, Yamaguchi Y, Wada T, Handa H. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol Cell Biol 2006; 26:6094-104. [PMID: 16880520 PMCID: PMC1592793 DOI: 10.1128/mcb.02366-05] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that DSIF- and NELF-mediated transcriptional pausing has a dual function in regulating immediate-early expression of the human junB gene. Before induction by interleukin-6, RNAPII, DSIF, and NELF accumulate in the promoter-proximal region of junB, mainly at around position +50 from the transcription initiation site. After induction, the association of these proteins with the promoter-proximal region continues whereas RNAPII and DSIF are also found in the downstream regions. Depletion of a subunit of NELF by RNA interference enhances the junB mRNA level both before and after induction, indicating that DSIF- and NELF-mediated pausing contributes to the negative regulation of junB expression, not only by inducing RNAPII pausing before induction but also by attenuating transcription after induction. These regulatory mechanisms appear to be conserved in other immediate-early genes as well.
Collapse
Affiliation(s)
- Masatoshi Aida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Nag A, Narsinh K, Kazerouninia A, Martinson HG. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA (NEW YORK, N.Y.) 2006; 12:1534-44. [PMID: 16775304 PMCID: PMC1524889 DOI: 10.1261/rna.103206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In vivo the poly(A) signal not only directs 3'-end processing but also controls the rate and extent of transcription. Thus, upon crossing the poly(A) signal RNA polymerase II first pauses and then terminates. We show that the G/U-rich region of the poly(A) signal, although required for termination in vivo, is not required for poly(A)-dependent pausing either in vivo or in vitro. Consistent with this, neither CstF, which recognizes the G/U-rich element, nor the polymerase CTD, which binds CstF, is required for pausing. The only part of the poly(A) signal required to direct the polymerase to pause is the AAUAAA hexamer. The effect of the hexamer on the polymerase is long lasting--in many situations polymerases over 1 kb downstream of the hexamer continue to exhibit delayed progress down the template in vivo. The hexamer is the first part of the poly(A) signal to emerge from the polymerase and may play a role independent of the rest of the poly(A) signal in paving the way for subsequent events such as 3'-end processing and termination of transcription.
Collapse
Affiliation(s)
- Anita Nag
- Department of Chemistry and Biochemistry, University of California at Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
80
|
Hershkovits G, Bangio H, Cohen R, Katcoff DJ. Recruitment of mRNA cleavage/polyadenylation machinery by the yeast chromatin protein Sin1p/Spt2p. Proc Natl Acad Sci U S A 2006; 103:9808-13. [PMID: 16788068 PMCID: PMC1502535 DOI: 10.1073/pnas.0602014103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yeast chromatin protein Sin1p/Spt2p has long been studied, but the understanding of its function has remained elusive. The protein has sequence similarity to HMG1, specifically binds crossing DNA structures, and serves as a negative transcriptional regulator of a small family of genes that are activated by the SWI/SNF chromatin-remodeling complex. Recently, it has been implicated in maintaining the integrity of chromatin during transcription elongation. Here we present experiments whose results indicate that Sin1p/Spt2 is required for, and is directly involved in, the efficient recruitment of the mRNA cleavage/polyadenylation complex. This conclusion is based on the following findings: Sin1p/Spt2 frequently binds specifically downstream of many ORFs but almost always upstream of the first polyadenylation site. It directly interacts with Fir1p, a component of the cleavage/polyadenylation complex. Disruption of Sin1p/Spt2p results in foreshortened poly(A) tracts on mRNA. It is synthetically lethal with Cdc73p, which is involved in the recruitment of the complex. This report shows that a chromatin component is involved in 3' end processing of RNA.
Collapse
Affiliation(s)
- Gitit Hershkovits
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Haim Bangio
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ronit Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Don J. Katcoff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Gromak N, West S, Proudfoot NJ. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 2006; 26:3986-96. [PMID: 16648491 PMCID: PMC1488997 DOI: 10.1128/mcb.26.10.3986-3996.2006] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/04/2006] [Accepted: 03/02/2006] [Indexed: 11/20/2022] Open
Abstract
Polymerase II (Pol II) transcriptional termination depends on two independent genetic elements: poly(A) signals and downstream terminator sequences. The latter may either promote cotranscriptional RNA cleavage or pause elongating Pol II. We demonstrate that the previously characterized MAZ4 pause element promotes Pol II termination downstream of a poly(A) signal, dependent on both the proximity of the pause site and poly(A) signal and the strength of the poly(A) signal. The 5'-->3' exonuclease Xrn2 facilitates this pause-dependent termination by degrading the 3' product of poly(A) site cleavage. The human beta-actin gene also possesses poly(A) site proximal pause sequences, which like MAZ4 are G rich and promote transcriptional termination. Xrn2 depletion causes an increase in both steady-state RNA and Pol II levels downstream of the beta-actin poly(A) site. Taken together, we provide new insights into the mechanism of pause site-mediated termination and establish a general role for the 5'-->3' exonuclease Xrn2 in Pol II termination.
Collapse
Affiliation(s)
- Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
82
|
Arigo JT, Carroll KL, Ames JM, Corden JL. Regulation of Yeast NRD1 Expression by Premature Transcription Termination. Mol Cell 2006; 21:641-51. [PMID: 16507362 DOI: 10.1016/j.molcel.2006.02.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/05/2005] [Accepted: 02/03/2006] [Indexed: 11/22/2022]
Abstract
The yeast RNA binding proteins Nrd1 and Nab3 are required for termination of nonpolyadenylated transcripts from RNA polymerase (Pol) II-transcribed snRNA and snoRNA genes. In this paper, we show that NRD1 expression is regulated by Nrd1- and Nab3-directed premature termination. Sequences recognized by these proteins are present in NRD1 mRNA and are required for regulated expression. Chromatin immunoprecipitation and transcription run-on experiments show that, in wild-type cells, Pol II occupancy is high at the 5' end of the NRD1 gene and decreases at the 3' end. Mutation of Nrd1 and Nab3 binding sites within the NRD1 mRNA leads to a relative increase in Pol II occupancy of downstream sequences. We further show that NRD1 autoregulation involves components of the exosome and a newly discovered exosome-activating complex. Together, these results show that NRD1 is a eukaryotic cellular gene regulated through premature transcription termination.
Collapse
Affiliation(s)
- John T Arigo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|