51
|
Abstract
Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection.
Collapse
Affiliation(s)
- Shilpa Sampathi
- WWAMI Medical Education Program, Washington State UniversitySpokane, WA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Weihang Chai
- WWAMI Medical Education Program, Washington State UniversitySpokane, WA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
52
|
Zhao Y, Shay JW, Wright WE. Telomere terminal G/C strand synthesis: measuring telomerase action and C-rich fill-in. Methods Mol Biol 2011; 735:63-75. [PMID: 21461812 PMCID: PMC3528099 DOI: 10.1007/978-1-61779-092-8_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Telomerase is present in most human cancers, and proliferative stem cells including germline cells. Telomerase plays an essential role in tumorigenesis by maintaining/elongating telomeric DNA, and thus preventing the telomere shortening that results in replicative senescence. Understanding telomerase action in vivo has important implication for both cancer and aging, but there are not robust methods for monitoring telomerase action. By combining a series of cell biological and biochemical approaches, and taking advantage of the enzyme DSN that specifically cuts double-stranded DNA and releases the telomeric overhangs, we have developed a method to monitor telomerase action during one cell cycle. Here, we describe this method using HeLa carcinoma cells as an example.
Collapse
|
53
|
Affiliation(s)
- Devanshi Jain
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom;
| | - Julia Promisel Cooper
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom;
| |
Collapse
|
54
|
Tom HIK, Greider CW. A sequence-dependent exonuclease activity from Tetrahymena thermophila. BMC BIOCHEMISTRY 2010; 11:45. [PMID: 21080963 PMCID: PMC2998447 DOI: 10.1186/1471-2091-11-45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 11/16/2010] [Indexed: 01/15/2023]
Abstract
Background Telomere function requires a highly conserved G rich 3'- overhang. This structure is formed by 5'-resection of the C-rich telomere strand. However, while many nucleases have been suggested to play a role in processing, it is not yet clear which nucleases carry out this 5'-resection. Results We used biochemical purification to identify a sequence-dependent exonuclease activity in Tetrahymena thermophila cell extracts. The nuclease activity showed specificity for 5'-ends containing AA or AC sequences, unlike Exo1, which showed sequence-independent cleavage. The Tetrahymena nuclease was active on both phosphorylated and unphosphorylated substrates whereas Exo1 requires a 5'-phosphate for cleavage. Conclusions The specificities of the enzyme indicate that this novel Tetrahymena exonuclease is distinct from Exo1 and has properties required for 3'-overhang formations at telomeres.
Collapse
Affiliation(s)
- Hui-I Kao Tom
- Department of Molecular Biology and Genetics, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
55
|
Gong Y, de Lange T. A Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol Cell 2010; 40:377-87. [PMID: 21070964 PMCID: PMC3111920 DOI: 10.1016/j.molcel.2010.10.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/13/2010] [Accepted: 08/18/2010] [Indexed: 01/22/2023]
Abstract
We previously proposed that POT1 prevents ATR signaling at telomeres by excluding RPA from the single-stranded TTAGGG repeats. Here, we use a Shld1-stabilized degron-POT1a fusion (DD-POT1a) to study the telomeric ATR kinase response. In the absence of Shld1, DD-POT1a degradation resulted in rapid and reversible activation of the ATR pathway in G1 and S/G2. ATR signaling was abrogated by shRNAs to ATR and TopBP1, but shRNAs to the ATM kinase or DNA-PKcs did not affect the telomere damage response. Importantly, ATR signaling in G1 and S/G2 was reduced by shRNAs to RPA. In S/G2, RPA was readily detectable at dysfunctional telomeres, and both POT1a and POT1b were required to exclude RPA and prevent ATR activation. In G1, the accumulation of RPA at dysfunctional telomeres was strikingly less, and POT1a was sufficient to repress ATR signaling. These results support an RPA exclusion model for the repression of ATR signaling at telomeres.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
56
|
Abstract
Proteins that specifically bind the single-stranded overhang at the ends of telomeres have been identified in a wide range of eukaryotes and play pivotal roles in chromosome end protection and telomere length regulation. Here we summarize recent findings regarding the functions of POT1 proteins in vertebrates and discuss the functional evolution of POT1 proteins following gene duplication in protozoa, plants, nematodes and mice.
Collapse
Affiliation(s)
- Peter Baumann
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, KS 66160, U.S.A
| | - Carolyn Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
57
|
Dai X, Huang C, Bhusari A, Sampathi S, Schubert K, Chai W. Molecular steps of G-overhang generation at human telomeres and its function in chromosome end protection. EMBO J 2010; 29:2788-801. [PMID: 20639858 PMCID: PMC2924643 DOI: 10.1038/emboj.2010.156] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/21/2010] [Indexed: 11/09/2022] Open
Abstract
Telomeric G-overhangs are required for the formation of the protective telomere structure and telomerase action. However, the mechanism controlling G-overhang generation at human telomeres is poorly understood. Here, we show that G-overhangs can undergo cell cycle-regulated changes independent of telomerase activity. G-overhangs at lagging telomeres are lengthened in S phase and then shortened in late S/G2 because of C-strand fill-in, whereas the sizes of G-overhangs at leading telomeres remain stable throughout S phase and are lengthened in G2/M. The final nucleotides at measurable C-strands are precisely defined throughout the cell cycle, indicating that C-strand resection is strictly regulated. We demonstrate that C-strand fill-in is mediated by DNA polymerase alpha (polalpha) and controlled by cyclin-dependent kinase 1 (CDK1). Inhibition of CDK1 leads to accumulation of lengthened G-overhangs and induces telomeric DNA damage response. Furthermore, depletion of hStn1 results in elongation of G-overhangs and an increase in telomeric DNA damage. Our results suggest that G-overhang generation at human telomeres is regulated by multiple tightly controlled processes and C-strand fill-in is under the control of polalpha and CDK1.
Collapse
Affiliation(s)
- Xueyu Dai
- WWAMI Medical Education Program, Washington State University, Spokane, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Chenhui Huang
- WWAMI Medical Education Program, Washington State University, Spokane, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Amruta Bhusari
- Department of Biology, Texas Woman's University, Denton, TX, USA
| | - Shilpa Sampathi
- WWAMI Medical Education Program, Washington State University, Spokane, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Kathryn Schubert
- WWAMI Medical Education Program, Washington State University, Spokane, WA, USA
| | - Weihang Chai
- WWAMI Medical Education Program, Washington State University, Spokane, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
58
|
Cattell E, Sengerová B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: from yeast to man. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:635-645. [PMID: 20175117 DOI: 10.1002/em.20556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient interstrand crosslink (ICL) repair in yeast depends on the Pso2/Snm1 protein. Pso2 is a member of the highly conserved metallo-beta-lactamase structural family of nucleases. Mammalian cells possess three SNM1/Pso2 related proteins, SNM1A, SNM1B/Apollo, and SNM1C/Artemis. Evidence that SNM1A and SNM1B contribute to ICL repair is mounting, whereas Artemis appears to primarily contribute to non-ICL repair pathways, particularly some double-strand break repair events. Yeast Pso2 and all three mammalian SNM1-family proteins have been shown to possess nuclease activity. Here, we review the biochemical, genetic, and cellular evidence for the SNM1 family as DNA repair factors, focusing on ICL repair.
Collapse
Affiliation(s)
- Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
59
|
Cdc13 and Telomerase Bind through Different Mechanisms at the Lagging- and Leading-Strand Telomeres. Mol Cell 2010; 38:842-52. [DOI: 10.1016/j.molcel.2010.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/20/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022]
|
60
|
Subramanian L, Nakamura TM. To fuse or not to fuse: how do checkpoint and DNA repair proteins maintain telomeres? FRONT BIOSCI-LANDMRK 2010; 15:1105-18. [PMID: 20515744 PMCID: PMC2880829 DOI: 10.2741/3664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA damage checkpoint and DNA repair mechanisms play critical roles in the stable maintenance of genetic information. Various forms of DNA damage that arise inside cells due to common errors in normal cellular processes, such as DNA replication, or due to exposure to various DNA damaging agents, must be quickly detected and repaired by checkpoint signaling and repair factors. Telomeres, the natural ends of linear chromosomes, share many features with undesired "broken" DNA, and are recognized and processed by various DNA damage checkpoint and DNA repair proteins. However, their modes of action at telomeres must be altered from their actions at other DNA damage sites to avoid telomere fusions and permanent cell cycle arrest. Interestingly, accumulating evidence indicates that DNA damage checkpoint and DNA repair proteins are essential for telomere maintenance. In this article, we review our current knowledge on various mechanisms by which DNA damage checkpoint and DNA repair proteins are modulated at telomeres and how they might contribute to telomere maintenance in eukaryotes.
Collapse
Affiliation(s)
- Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
61
|
Moser BA, Nakamura TM. Protection and replication of telomeres in fission yeast. Biochem Cell Biol 2010; 87:747-58. [PMID: 19898524 DOI: 10.1139/o09-037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomeres, the natural ends of linear chromosomes, must be protected and completely replicated to guarantee genomic stability in eukaryotic cells. However, the protected state of telomeres is not compatible with recruitment of telomerase, an enzyme responsible for extending telomeric G-rich repeats during S-phase; thus, telomeres must undergo switches from a protected state to an accessible state during the cell cycle. In this minireview, we will summarize recent advances in our understanding of proteins involved in the protection and replication of telomeres, and the way these factors are dynamically recruited to telomeres during the cell cycle. We will focus mainly on recent results from fission yeast Schizosaccharomyces pombe, and compare them with results from budding yeast Saccharomyces cerevisiae and mammalian cell studies. In addition, a model for the way in which fission yeast cells replicate telomeres will be presented.
Collapse
Affiliation(s)
- Bettina A Moser
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Ave. MC669, Chicago, IL 60607, USA
| | | |
Collapse
|
62
|
Calado RT, Regal JA, Kajigaya S, Young NS. Erosion of telomeric single-stranded overhang in patients with aplastic anaemia carrying telomerase complex mutations. Eur J Clin Invest 2009; 39:1025-32. [PMID: 19674077 PMCID: PMC6738339 DOI: 10.1111/j.1365-2362.2009.02209.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Loss-of-function mutations in telomerase complex genes reduce telomerase activity and shorten overall telomere length in leucocytes, and they can clinically manifest as bone marrow failure (aplastic anaemia and dyskeratosis congenita) and familial pulmonary fibrosis. Telomeres are constituted of double-stranded tandem TTAGGG repeats followed by a 3' G-rich single-stranded overhang, a crucial telomeric structural component responsible for the t-loop formation. MATERIALS AND METHODS We investigated the length of telomeric overhangs in 25 healthy individuals from 0 to 76 years of age, 16 patients with aplastic anaemia, and 13 immediate relatives using a non-denaturing in-gel method and the telomere-oligonucleotide ligation assay. RESULTS Telomeric overhang lengths were constant from birth to eighth decade of life in healthy subjects, in contrast to overall telomere length, which shortened with ageing. Most patients with marrow failure and a telomerase gene mutation showed marked erosion of telomeric overhang associated with critically short telomeres; in other aplastic patients with normal genotypes, normal overall telomere lengths and who responded to immunosuppressive therapy, telomeric overhangs were maintained. CONCLUSIONS Telomeric overhang erosion does not participate in physiological ageing but support a role for eroded telomeric overhangs and abnormal telomere structure in pathological shortening of telomeres, especially caused by loss-of-function telomerase mutations. Disrupted telomere structure caused by short telomeric overhangs may contribute to the mechanisms of abnormal haematopoietic compartment senescence and chromosomal instability in human bone marrow failure.
Collapse
Affiliation(s)
- R T Calado
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA.
| | | | | | | |
Collapse
|
63
|
Meier B, Barber LJ, Liu Y, Shtessel L, Boulton SJ, Gartner A, Ahmed S. The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J 2009; 28:3549-63. [PMID: 19779462 DOI: 10.1038/emboj.2009.278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 08/24/2009] [Indexed: 12/26/2022] Open
Abstract
The telomerase reverse transcriptase adds de novo DNA repeats to chromosome termini. Here we define Caenorhabditis elegans MRT-1 as a novel factor required for telomerase-mediated telomere replication and the DNA-damage response. MRT-1 is composed of an N-terminal domain homologous to the second OB-fold of POT1 telomere-binding proteins and a C-terminal SNM1 family nuclease domain, which confer single-strand DNA-binding and processive 3'-to-5' exonuclease activity, respectively. Furthermore, telomerase activity in vivo depends on a functional MRT-1 OB-fold. We show that MRT-1 acts in the same telomere replication pathway as telomerase and the 9-1-1 DNA-damage response complex. MRT-1 is dispensable for DNA double-strand break repair, but functions with the 9-1-1 complex to promote DNA interstrand cross-link (ICL) repair. Our data reveal MRT-1 as a dual-domain protein required for telomerase function and ICL repair, which raises the possibility that telomeres and ICL lesions may share a common feature that plays a critical role in de novo telomere repeat addition.
Collapse
Affiliation(s)
- Bettina Meier
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Shore D, Bianchi A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 2009; 28:2309-22. [PMID: 19629031 PMCID: PMC2722252 DOI: 10.1038/emboj.2009.195] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/09/2022] Open
Abstract
The conventional DNA polymerase machinery is unable to fully replicate the ends of linear chromosomes. To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utilizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication. This unique, non-DNA templated mode of telomere replication requires a regulatory mechanism to ensure that telomerase acts at telomeres whose TG tracts are too short, but not at those with long tracts, thus maintaining the protective TG repeat 'cap' at an appropriate average length. The prevailing notion in the field is that telomere length regulation is brought about through a negative feedback mechanism that 'counts' TG repeat-bound protein complexes to generate a signal that regulates telomerase action. This review summarizes experiments leading up to this model and then focuses on more recent experiments, primarily from yeast, that begin to suggest how this 'counting' mechanism might work. The emerging picture is that of a complex interplay between the conventional DNA replication machinery, DNA damage response factors, and a specialized set of proteins that help to recruit and regulate the telomerase enzyme.
Collapse
Affiliation(s)
- David Shore
- Department of Molecular Biology and NCCR Program 'Frontiers in Genetics', University of Geneva, Sciences III, Geneva, Switzerland.
| | | |
Collapse
|
65
|
Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, Wright WE. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 2009; 138:463-75. [PMID: 19665970 PMCID: PMC2726829 DOI: 10.1016/j.cell.2009.05.026] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/21/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Telomeres are thought to be maintained by the preferential recruitment of telomerase to the shortest telomeres. The extension of the G-rich telomeric strand by telomerase is also believed to be coordinated with the complementary synthesis of the C strand by the conventional replication machinery. However, we show that under telomere length-maintenance conditions in cancer cells, human telomerase extends most chromosome ends during each S phase and is not preferentially recruited to the shortest telomeres. Telomerase rapidly extends the G-rich strand following telomere replication but fill-in of the C strand is delayed into late S phase. This late C-strand fill-in is not executed by conventional Okazaki fragment synthesis but by a mechanism using a series of small incremental steps. These findings highlight differences between telomerase actions during steady state versus nonequilibrium conditions and reveal steps in the human telomere maintenance pathway that may provide additional targets for the development of anti-telomerase therapeutics.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| | - Agnel J. Sfeir
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| | - Ying Zou
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| | - Christen M. Buseman
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| | - Tracy T. Chow
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| | - Jerry W. Shay
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| | - Woodring E. Wright
- Department of Cell biology, UT Southwestern Medical Center, Dallas, TX, 75390-9039
| |
Collapse
|
66
|
|
67
|
Liew LP, Norbury CJ. Telomere maintenance: all's well that ends well. Arch Toxicol 2009; 83:407-16. [PMID: 19337721 DOI: 10.1007/s00204-009-0423-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
The nucleoprotein structures termed telomeres serve to prevent the mis-identification of eukaryotic chromosome ends as sites of DNA damage, but are also among the genomic regions that pose the most problems during DNA replication. Here, we summarize some of the apparent difficulties encountered by the DNA replication machinery when it approaches the chromosome ends. Eukaryotic cells have evolved diverse mechanisms to overcome these problems, underlining the importance of telomere maintenance for a number of aspects of chromosome function. Of particular interest in this respect are the ways in which telomere-binding proteins and components of the DNA damage response machinery may facilitate replication fork progression through telomeres.
Collapse
Affiliation(s)
- Li Phing Liew
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
68
|
Moser BA, Subramanian L, Chang YT, Noguchi C, Noguchi E, Nakamura TM. Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 2009; 28:810-20. [PMID: 19214192 PMCID: PMC2670859 DOI: 10.1038/emboj.2009.31] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle-dependent recruitment of telomere-specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S-phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase epsilon (Polepsilon) arrived at telomeres earlier than the lagging strand DNA polymerases alpha (Polalpha) and delta (Poldelta). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polepsilon, whereas S-phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polalpha. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.
Collapse
Affiliation(s)
- Bettina A Moser
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ya-Ting Chang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Toru M Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
69
|
Opresko PL, Sowd G, Wang H. The Werner syndrome helicase/exonuclease processes mobile D-loops through branch migration and degradation. PLoS One 2009; 4:e4825. [PMID: 19283071 PMCID: PMC2653227 DOI: 10.1371/journal.pone.0004825] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/16/2009] [Indexed: 11/18/2022] Open
Abstract
RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates.
Collapse
Affiliation(s)
- Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America.
| | | | | |
Collapse
|
70
|
Sampathi S, Bhusari A, Shen B, Chai W. Human flap endonuclease I is in complex with telomerase and is required for telomerase-mediated telomere maintenance. J Biol Chem 2009; 284:3682-90. [PMID: 19068479 PMCID: PMC2635043 DOI: 10.1074/jbc.m805362200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 12/08/2008] [Indexed: 11/06/2022] Open
Abstract
Studies from budding yeast and ciliates have suggested that telomerase extension of telomeres requires the conventional DNA replication machinery, yet little is known about how DNA replication proteins regulate telomerase action in higher eukaryotic cells. Here we investigate the role of one of the DNA replication factors, flap endonuclease I (FEN1), in regulating telomerase activity in mammalian cells. FEN1 is a nuclease that plays an important role in DNA replication, repair, and recombination. We show that FEN1 is in complex with telomerase in vivo via telomeric DNA. We further demonstrate that FEN1 deficiency in mouse embryonic fibroblasts leads to an increase in telomere end-to-end fusions. In cancer cells, FEN1 deficiency induces gradual shortening of telomeres but does not alter the single-stranded G-overhangs. This is, to our knowledge, the first evidence that FEN1 and telomerase physically co-exist as a complex and that FEN1 can regulate telomerase activity at telomeres in mammalian cells.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Washington, Wyoming, Alaska, Montana, Idaho Medical Education Program, Washington State University, Spokane, Washington 99210, USA
| | | | | | | |
Collapse
|
71
|
Abstract
The genomes of prokaryotes and eukaryotic organelles are usually circular as are most plasmids and viral genomes. In contrast, the nuclear genomes of eukaryotes are organized on linear chromosomes, which require mechanisms to protect and replicate DNA ends. Eukaryotes navigate these problems with the advent of telomeres, protective nucleoprotein complexes at the ends of linear chromosomes, and telomerase, the enzyme that maintains the DNA in these structures. Mammalian telomeres contain a specific protein complex, shelterin, that functions to protect chromosome ends from all aspects of the DNA damage response and regulates telomere maintenance by telomerase. Recent experiments, discussed here, have revealed how shelterin represses the ATM and ATR kinase signaling pathways and hides chromosome ends from nonhomologous end joining and homology-directed repair.
Collapse
Affiliation(s)
- Wilhelm Palm
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
72
|
A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 2008; 3:e3364. [PMID: 18846223 PMCID: PMC2561060 DOI: 10.1371/journal.pone.0003364] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words)
Collapse
|
73
|
Bianchi A, Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell 2008; 31:153-65. [PMID: 18657499 DOI: 10.1016/j.molcel.2008.06.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Indexed: 10/21/2022]
Abstract
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and NCCR Frontiers in Genetics Program, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Geneva, Switzerland
| | | |
Collapse
|
74
|
Pilch DS, Barbieri CM, Rzuczek SG, Lavoie EJ, Rice JE. Targeting human telomeric G-quadruplex DNA with oxazole-containing macrocyclic compounds. Biochimie 2008; 90:1233-49. [PMID: 18439430 PMCID: PMC2587169 DOI: 10.1016/j.biochi.2008.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Oxazole-containing macrocycles, which include the natural product telomestatin, represent a promising class of anticancer agents that target G-quadruplex DNA. Two synthetic hexaoxazole-containing macrocyclic compounds (HXDV and HXLV-AC) have been characterized with regard to their cytotoxic activities versus human cancer cells, as well as the mode, thermodynamics, and specificity with which they bind to the intramolecular (3+1) G-quadruplex structural motif formed in the presence of K+ ions by human telomeric DNA. Both compounds exhibit cytotoxic activities versus human lymphoblast (RPMI 8402) and oral carcinoma (KB3-1) cells, with associated IC50 values ranging from 0.4 to 0.9microM. The compounds bind solely to the quadruplex nucleic acid form, but not to the duplex or triplex form. Binding to the quadruplex is associated with a stoichiometry of two ligand molecules per DNA molecule, with one ligand molecule binding to each end of the host quadruplex via a nonintercalative "terminal capping" mode of interaction. For both compounds, quadruplex binding is primarily entropy driven, while also being associated with a negative change in heat capacity. These thermodynamic properties reflect contributions from favorable ligand-induced alterations in the loop configurational entropies of the quadruplex, but not from changes in net hydration. The stoichiometry and mode of binding revealed by our studies have profound implications with regard to the number of ligand molecules that can potentially bind the 3-overhang region of human telomeric DNA.
Collapse
Affiliation(s)
- Daniel S Pilch
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.
| | | | | | | | | |
Collapse
|
75
|
Abstract
Dysfunctional telomeres elicit the canonical DNA damage response, which includes the activation of the ATM or ATR kinase signaling pathways and end processing by nonhomologous end joining (NHEJ) or homologous recombination (HR). The cellular response to DNA double-strand breaks has been proposed to involve chromatin remodeling and nucleosome eviction, but whether dysfunctional telomeres undergo chromatin reorganization is not known. Here, we report on the nucleosomal organization of telomeres that have become deprotected through the deletion of the shelterin components TRF2 or POT1. We found no evidence of changes in the nucleosomal organization of the telomeric chromatin or nucleosome eviction near the telomere terminus. An unaltered chromatin structure was observed at telomeres lacking TRF2, which activate the ATM kinase and are a substrate for NHEJ. Similarly, telomeres lacking POT1a and POT1b, which activate the ATR kinase, showed no overt nucleosome eviction. Finally, telomeres lacking TRF2 and Ku70, which are processed by HR, appeared to maintain their original nucleosomal organization. We conclude that ATM signaling, ATR signaling, NHEJ, and HR at deprotected telomeres can take place in the absence of overt nucleosome eviction.
Collapse
|
76
|
Moorhouse AD, Haider S, Gunaratnam M, Munnur D, Neidle S, Moses JE. Targeting telomerase and telomeres: a click chemistry approach towards highly selective G-quadruplex ligands. MOLECULAR BIOSYSTEMS 2008; 4:629-42. [PMID: 18493662 DOI: 10.1039/b801822g] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Maintenance of telomeres--specialized complexes that protect the ends of chromosomes, is undertaken by the enzyme complex telomerase, which is a key factor that is activated in more than 80% of cancer cells, but is absent in most normal cells. Targeting telomere maintenance mechanisms could potentially halt tumour growth across a broad spectrum of cancer types, with little cytotoxic effect outside cancer cells. Here, we describe in detail a new class of G-quadruplex binding ligands synthesized using a click chemistry approach. These ligands comprise a 1,3-di(1,2,3-triazol-4-yl)benzene pharmacophore, and display high levels of selectivity for interaction with G-quadruplex DNA vs. duplex DNA. The ability of these ligands to inhibit the enzymatic activity of telomerase correlates with their ability to stabilize quadruplex DNA, and with estimates of affinity calculated by molecular modeling.
Collapse
Affiliation(s)
- Adam D Moorhouse
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK
| | | | | | | | | | | |
Collapse
|
77
|
Raices M, Verdun RE, Compton SA, Haggblom CI, Griffith JD, Dillin A, Karlseder J. C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 2008; 132:745-57. [PMID: 18329362 DOI: 10.1016/j.cell.2007.12.039] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/21/2007] [Accepted: 12/15/2007] [Indexed: 11/18/2022]
Abstract
Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in C. elegans, chromosome termini possess 3' G-strand overhangs as well as 5' C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that C. elegans telomere homeostasis relies on a novel mechanism that involves 5' and 3' single-stranded termini.
Collapse
Affiliation(s)
- Marcela Raices
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road., La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
The ends of eukaryotic chromosomes have long been defined as structures that must avoid being detected as DNA breaks. They are protected from checkpoints, homologous recombination, end-to-end fusions, or other events that normally promote repair of intrachromosomal DNA breaks. This differentiation is thought to be the consequence of a unique organization of chromosomal ends into specialized nucleoprotein complexes called telomeres. However, it is becoming increasingly clear that proteins governing the DNA damage response are intimately involved in the regulation of telomeres, which undergo processing and structural changes that elicit a transient DNA damage response. This suggests that functional telomeres can be recognized as DNA breaks during a temporally limited window, indicating that the difference between a break and a telomere is less defined than previously assumed.
Collapse
Affiliation(s)
- Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy.
| |
Collapse
|
79
|
Zhao Y, Hoshiyama H, Shay JW, Wright WE. Quantitative telomeric overhang determination using a double-strand specific nuclease. Nucleic Acids Res 2008; 36:e14. [PMID: 18073199 PMCID: PMC2241892 DOI: 10.1093/nar/gkm1063] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/20/2022] Open
Abstract
Telomeres terminate in 3' overhangs that function in end protection and the formation of t-loops. Determining the steps and factors involved in overhang processing is compromised by the inability to easily and accurately determine overhang size in the presence of many kilobases of double-stranded telomeric DNA. We here describe the use of a double-strand specific nuclease (DSN) that entirely digests double-stranded DNA including telomeres, leaving the overhangs intact so that they can be measured.
Collapse
Affiliation(s)
| | | | | | - Woodring E. Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
80
|
Baird DM. Telomere dynamics in human cells. Biochimie 2008; 90:116-21. [DOI: 10.1016/j.biochi.2007.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/02/2007] [Indexed: 01/18/2023]
|
81
|
Abstract
The replication of the ends of linear chromosomes, or telomeres, poses unique problems, which must be solved to maintain genome integrity and to allow cell division to occur. Here, we describe and compare the timing and specific mechanisms that are required to initiate, control and coordinate synthesis of the leading and lagging strands at telomeres in yeasts, ciliates and mammals. Overall, it emerges that telomere replication relies on a strong synergy between the conventional replication machinery, telomere protection systems, DNA-damage-response pathways and chromosomal organization.
Collapse
Affiliation(s)
- Eric Gilson
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5239, IFR 128, Centre National de la Recherche Scientifique, University Lyon 1, Faculty of Medicine Lyon-Sud, Hospices Civils de Lyon, Ecole Normale Supérieure de Lyon,France.
| | | |
Collapse
|
82
|
De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL. Targeting telomeres and telomerase. Biochimie 2007; 90:131-55. [PMID: 17822826 DOI: 10.1016/j.biochi.2007.07.011] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/16/2007] [Indexed: 01/06/2023]
Abstract
Telomeres and telomerase represent, at least in theory, an extremely attractive target for cancer therapy. The objective of this review is to present the latest view on the mechanism(s) of action of telomerase inhibitors, with an emphasis on a specific class of telomere ligands called G-quadruplex ligands, and to discuss their potential use in oncology.
Collapse
Affiliation(s)
- Anne De Cian
- INSERM, U565, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 43 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
During the evolution of linear genomes, it became essential to protect the natural chromosome ends to prevent triggering of the DNA-damage repair machinery and enzymatic attack. Telomeres - tightly regulated complexes consisting of repetitive G-rich DNA and specialized proteins - accomplish this task. Telomeres not only conceal linear chromosome ends from detection and inappropriate repair but also provide a buffer to counteract replication-associated shortening. Lessons from many model organisms have taught us about the complications of maintaining these specialized structures. Here, we discuss how telomeres interact and cooperate with the DNA replication and DNA-damage repair machineries.
Collapse
Affiliation(s)
- Ramiro E Verdun
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037-1099, USA
| | | |
Collapse
|
84
|
Lenain C, Bauwens S, Amiard S, Brunori M, Giraud-Panis MJ, Gilson E. The Apollo 5′ Exonuclease Functions Together with TRF2 to Protect Telomeres from DNA Repair. Curr Biol 2006; 16:1303-10. [PMID: 16730175 DOI: 10.1016/j.cub.2006.05.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.
Collapse
Affiliation(s)
- Christelle Lenain
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Unité mixte de recerche 5161, Institut Fédératif de Recherche 128, 46 Allée d'Italie, F-69364 Lyon, France
| | | | | | | | | | | |
Collapse
|
85
|
Hug N, Lingner J. Telomere length homeostasis. Chromosoma 2006; 115:413-25. [PMID: 16741708 DOI: 10.1007/s00412-006-0067-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 11/26/2022]
Abstract
The physical ends of chromosomes, known as telomeres, protect chromosome ends from nucleolytic degradation and DNA repair activities. Conventional DNA replication enzymes lack the ability to fully replicate telomere ends. In addition, nucleolytic activities contribute to telomere erosion. Short telomeres trigger DNA damage checkpoints, which mediate cellular senescence. Telomere length homeostasis requires telomerase, a cellular reverse transcriptase, which uses an internal RNA moiety as a template for the synthesis of telomere repeats. Telomerase elongates the 3' ends of chromosomes, whereas the complementary strand is filled in by conventional DNA polymerases. In humans, telomerase is ubiquitously expressed only during the first weeks of embryogenesis, and is subsequently downregulated in most cell types. Correct telomere length setting is crucial for long-term survival. The telomere length reserve must be sufficient to avoid premature cellular senescence and the acceleration of age-related disease. On the other side, telomere shortening suppresses tumor formation through limiting the replicative potential of cells. In recent years, novel insight into the regulation of telomerase at chromosome ends has increased our understanding on how telomere length homeostasis in telomerase-positive cells is achieved. Factors that recruit telomerase to telomeres in a cell cycle-dependent manner have been identified in Saccharomyces cerevisiae. In humans, telomerase assembles with telomeres during S phase of the cell cycle. Presumably through mediating formation of alternative telomere structures, telomere-binding proteins regulate telomerase activity in cis to favor preferential elongation of the shortest telomeres. Phosphoinositide 3-kinase related kinases are also required for telomerase activation at chromosome ends, at least in budding and fission yeast. In vivo analysis of telomere elongation kinetics shows that telomerase does not act on every telomere in each cell cycle but that it exhibits an increasing preference for telomeres as their lengths decline. This suggests a model in which telomeres switch between extendible and nonextendible states in a length-dependent manner. In this review we expand this model to incorporate the finding that telomerase levels also limit telomere length and we propose a second switch between a non-telomerase-associated "extendible" and a telomerase-associated "extending" state.
Collapse
Affiliation(s)
- Nele Hug
- Swiss Institute for Experimental Cancer Research (ISREC) and National Center of Competence in Research Frontiers in Genetics, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | | |
Collapse
|
86
|
Bertuch AA, Lundblad V. The maintenance and masking of chromosome termini. Curr Opin Cell Biol 2006; 18:247-53. [PMID: 16682180 DOI: 10.1016/j.ceb.2006.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 04/10/2006] [Indexed: 11/26/2022]
Abstract
Telomeres, the natural termini of eukaryotic chromosomes, have been the subject of intense interest during the last decade because of the roles that these chromosome termini perform in both cancer and aging. As we become more cognizant of the consequences of telomere dysfunction on several aspects of human health, significant attention is focused on understanding at a molecular level how the many telomere-associated factors perform their activities.
Collapse
Affiliation(s)
- Alison A Bertuch
- Department of Pediatrics, Hematology/Oncology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|