51
|
Conibear E. Converging views of endocytosis in yeast and mammals. Curr Opin Cell Biol 2010; 22:513-8. [PMID: 20538447 DOI: 10.1016/j.ceb.2010.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Receptor-mediated endocytosis is important for the selective internalization of membrane proteins. In mammals, clathrin, adaptors, and dynamin play prominent roles in regulating cargo selection and vesicle formation. Endocytosis in yeast is generally conserved, but exhibits significant and perplexing differences in the relative importance of clathrin adaptors, dynamin-like proteins, and actin. Recent studies are now reconciling divergent views of endocytic processes in yeast and mammals. The discovery of cargo-specific functions for yeast homologs of mammalian clathrin adaptors has rapidly expanded the number of endocytic adaptors in yeast. Moreover, unifying models have been advanced to explain how dynamin, actin, and membrane-deforming proteins drive membrane scission. While differences remain, discoveries from each system will continue to inform the other.
Collapse
Affiliation(s)
- Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
52
|
Dores MR, Schnell JD, Maldonado-Baez L, Wendland B, Hicke L. The function of yeast epsin and Ede1 ubiquitin-binding domains during receptor internalization. Traffic 2010; 11:151-60. [PMID: 19903324 DOI: 10.1111/j.1600-0854.2009.01003.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of a primary endocytic vesicle is a dynamic process involving the transient organization of adaptor and scaffold proteins at the plasma membrane. Epsins and Eps15-like proteins are ubiquitin-binding proteins that act early in this process. The yeast epsins, Ent1 and Ent2, carry functional ubiquitin-interacting motifs (UIMs), whereas the yeast Eps15-like protein, Ede1, has a C-terminal ubiquitin-associated (UBA) domain. Analysis of mutants lacking early endocytic adaptors reveals that the ubiquitin-binding domains (UBDs) of Ent2 and Ede1 are likely to function primarily to mediate protein-protein interactions between components of the early endocytic machinery. Cells that lack epsin and Ede1 UBDs are able to internalize activated, ubiquitinated receptors. Furthermore, under conditions in which epsin UIMs are important for receptor internalization, receptors internalized via both ubiquitin-dependent and ubiquitin-independent signals require the UIMs, indicating that UIM function is not restricted to ubiquitinated receptors. Epsin UIMs share function with non-UBD protein-protein interaction motifs in Ent2 and Ede1, and the Ede1 UBA domain appears to negatively regulate interactions between endocytic proteins. Together, our results suggest that the ubiquitin-binding domains within the yeast epsin Ent2 and Ede1 are involved in the formation and regulation of the endocytic network.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Campus Drive, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
53
|
León E, Navarro-Avilés G, Santiveri CM, Flores-Flores C, Rico M, González C, Murillo FJ, Elías-Arnanz M, Jiménez MA, Padmanabhan S. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Res 2010; 38:5226-41. [PMID: 20410074 PMCID: PMC2926617 DOI: 10.1093/nar/gkq277] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Direct targeting of critical DNA-binding elements of a repressor by its cognate antirepressor is an effective means to sequester the repressor and remove a transcription initiation block. Structural descriptions for this, though often proposed for bacterial and phage repressor–antirepressor systems, are unavailable. Here, we describe the structural and functional basis of how the Myxococcus xanthus CarS antirepressor recognizes and neutralizes its cognate repressors to turn on a photo-inducible promoter. CarA and CarH repress the carB operon in the dark. CarS, produced in the light, physically interacts with the MerR-type winged-helix DNA-binding domain of these repressors leading to activation of carB. The NMR structure of CarS1, a functional CarS variant, reveals a five-stranded, antiparallel β-sheet fold resembling SH3 domains, protein–protein interaction modules prevalent in eukaryotes but rare in prokaryotes. NMR studies and analysis of site-directed mutants in vivo and in vitro unveil a solvent-exposed hydrophobic pocket lined by acidic residues in CarS, where the CarA DNA recognition helix docks with high affinity in an atypical ligand-recognition mode for SH3 domains. Our findings uncover an unprecedented use of the SH3 domain-like fold for protein–protein recognition whereby an antirepressor mimics operator DNA in sequestering the repressor DNA recognition helix to activate transcription.
Collapse
Affiliation(s)
- Esther León
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Havrylov S, Redowicz MJ, Buchman VL. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic 2010; 11:721-31. [PMID: 20331533 DOI: 10.1111/j.1600-0854.2010.01061.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ruk/CIN85 is an adaptor protein. Similar to many other proteins of this type, Ruk/CIN85 is known to take part in multiple cellular processes including signal transduction, vesicle-mediated transport, cytoskeleton remodelling, programmed cell death and viral infection. Recent studies have also revealed the potential importance of Ruk/CIN85 in cancer cell invasiveness. In this review we summarize the various roles of this protein as well as the potential contribution of Ruk/CIN85 to malignancy and the invasiveness of cancer cells. In the last section of the paper we also speculate on the utility of Ruk/CIN85 as a target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Nencki Institute of Experimental Biology, Pasteura 3 Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
55
|
Trempe JF, Chen CXQ, Grenier K, Camacho EM, Kozlov G, McPherson PS, Gehring K, Fon EA. SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol Cell 2010; 36:1034-47. [PMID: 20064468 DOI: 10.1016/j.molcel.2009.11.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/26/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the parkin gene are responsible for a common inherited form of Parkinson's disease (PD). Parkin is a RING-type E3 ubiquitin ligase with an N-terminal ubiquitin-like domain (Ubl). We report here that the parkin Ubl binds SH3 domains from endocytic BAR proteins such as endophilin-A with an affinity comparable to proline-rich domains (PRDs) from well-established SH3 partners. The NMR structure of the Ubl-SH3 complex identifies the PaRK extension, a unique C-terminal motif in the parkin Ubl required for SH3 binding and for parkin-mediated ubiquitination of endophilin-A in vitro. In nerve terminals, conditions that promote phosphorylation enhance the interaction between parkin and endophilin-A and increase the levels of ubiquitinated proteins within PRD-associated synaptic protein complexes in wild-type but not parkin knockout brain. The findings identify a pathway for the recruitment of synaptic substrates to parkin with the potential to explain the defects in synaptic transmission observed in recessive forms of PD.
Collapse
|
56
|
Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009; 10:659-71. [PMID: 19773779 DOI: 10.1038/nrm2767] [Citation(s) in RCA: 674] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin-binding domains (UBDs) are modular elements that bind non-covalently to the protein modifier ubiquitin. Recent atomic-level resolution structures of ubiquitin-UBD complexes have revealed some of the mechanisms that underlie the versatile functions of ubiquitin in vivo. The preferences of UBDs for ubiquitin chains of specific length and linkage are central to these functions. These preferences originate from multimeric interactions, whereby UBDs synergistically bind multiple ubiquitin molecules, and from contacts with regions that link ubiquitin molecules into a polymer. The sequence context of UBDs and the conformational changes that follow their binding to ubiquitin also contribute to ubiquitin signalling. These new structure-based insights provide strategies for controlling cellular processes by targeting ubiquitin-UBD interfaces.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence "Macromolecular Complexes", Goethe University Frankfurt, Germany.
| | | | | |
Collapse
|
57
|
Ortega-Roldan JL, Jensen MR, Brutscher B, Azuaga AI, Blackledge M, van Nuland NAJ. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex. Nucleic Acids Res 2009; 37:e70. [PMID: 19359362 PMCID: PMC2685109 DOI: 10.1093/nar/gkp211] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes.
Collapse
Affiliation(s)
- Jose Luis Ortega-Roldan
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
58
|
Grabbe C, Dikic I. Functional Roles of Ubiquitin-Like Domain (ULD) and Ubiquitin-Binding Domain (UBD) Containing Proteins. Chem Rev 2009; 109:1481-94. [DOI: 10.1021/cr800413p] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Caroline Grabbe
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany, Mediterranean Institute for Life Sciences, 21000 Split, Croatia, and Department of Immunology, School of Medicine, University of Split, Soltanska 2, 21 000 Split, Croatia
| | - Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany, Mediterranean Institute for Life Sciences, 21000 Split, Croatia, and Department of Immunology, School of Medicine, University of Split, Soltanska 2, 21 000 Split, Croatia
| |
Collapse
|
59
|
French ME, Kretzmann BR, Hicke L. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J Biol Chem 2009; 284:12071-9. [PMID: 19252184 DOI: 10.1074/jbc.m901106200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rsp5 is a homologous to E6AP C terminus (HECT) ubiquitin ligase (E3) that controls many different cellular processes in budding yeast. Although Rsp5 targets a number of different substrates for ubiquitination, the mechanisms that regulate Rsp5 activity remain poorly understood. Here we demonstrate that Rsp5 carries a noncovalent ubiquitin-binding site in its catalytic HECT domain. The N-terminal lobe of the HECT domain mediates binding to ubiquitin, and point mutations that disrupt interactions with ubiquitin alter the ability of the Rsp5 HECT domain to assemble polyubiquitin chains in vitro. Point mutations that disrupt ubiquitin binding also result in temperature-sensitive growth defects in yeast, indicating that the Rsp5 ubiquitin-binding site is important for Rsp5 function in vivo. The Nedd4 HECT domain N-lobe also contains ubiquitin-binding activity, suggesting that interactions between the N-lobe and ubiquitin are conserved within the Nedd4 family of ubiquitin ligases. We propose that a subset of HECT E3s are regulated by a conserved ubiquitin-binding site that functions to restrict the length of polyubiquitin chains synthesized by the HECT domain.
Collapse
Affiliation(s)
- Michael E French
- Department of Biochemistry, Molecular Biology & Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
60
|
Roberts-Galbraith RH, Chen JS, Wang J, Gould KL. The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. ACTA ACUST UNITED AC 2009; 184:113-27. [PMID: 19139265 PMCID: PMC2615086 DOI: 10.1083/jcb.200806044] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in many cellular processes by bridging the plasma membrane and cytoskeleton. Their F-BAR domains bind and curve membranes, whereas other domains, typically SH3 domains, are expected to provide cytoskeletal links. We tested this prevailing model of functional division in the founding member of the family, Cdc15, which is essential for cytokinesis in S. pombe, and in the related PCH protein, Imp2. We find that the distinct functions of Imp2 and Cdc15 are SH3 domain independent. However, the Cdc15 and Imp2 SH3 domains share an essential role in recruiting proteins to the contractile ring, including Pxl1 and Fic1. Together, Pxl1 and Fic1, a previously uncharacterized C2 domain protein, add structural integrity to the contractile ring and prevent it from fragmenting during division. Our data indicate that the F-BAR proteins Cdc15 and Imp2 contribute to a single biological process with both distinct and overlapping functions.
Collapse
|
61
|
Kang J, Kang S, Kwon HN, He W, Park S. Distinct interactions between ubiquitin and the SH3 domains involved in immune signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1335-41. [DOI: 10.1016/j.bbapap.2008.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/07/2008] [Accepted: 04/26/2008] [Indexed: 11/16/2022]
|
62
|
Bezsonova I, Bruce MC, Wiesner S, Lin H, Rotin D, Forman-Kay JD. Interactions between the Three CIN85 SH3 Domains and Ubiquitin: Implications for CIN85 Ubiquitination. Biochemistry 2008; 47:8937-49. [DOI: 10.1021/bi800439t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Irina Bezsonova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - M. Christine Bruce
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Silke Wiesner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Hong Lin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Daniela Rotin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Julie D. Forman-Kay
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
63
|
Bair CL, Oppenheim A, Trostel A, Prag G, Adhya S. A phage display system designed to detect and study protein-protein interactions. Mol Microbiol 2008; 67:719-28. [PMID: 18179417 DOI: 10.1111/j.1365-2958.2007.06077.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysing protein-protein interactions is critical in proteomics and drug discovery. The usage of 2-Hybrid (2lambda) systems is limited to an in vivo environment. We describe a bacteriophage 2-Hybrid system for studying protein interactions in vitro. Bait and prey are displayed as fusions to the surface of phage lambda that are marked with different selectable drug-resistant markers. An interaction of phages in vitro through displayed proteins allows bacterial infection by two phages resulting in double drug-resistant bacterial colonies at very low multiplicity of infections. We demonstrate interaction of the protein sorting signal Ubiquitin with the Vps9-CUE, a Ubiquitin binding domain, and by the interaction of (Gly-Glu)(4) and (Gly-Arg)(4) peptides. Interruptions of the phage interactions by non-fused (free) bait or prey molecules show how robust and unique our approach is. We also demonstrate the use of Ubiquitin and CUE display phages to find binding partners in a lambda-display library. The unique usefulness to 2lambda is also described.
Collapse
Affiliation(s)
- Catherine L Bair
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
64
|
Kumar KGS, Barriere H, Carbone CJ, Liu J, Swaminathan G, Xu P, Li Y, Baker DP, Peng J, Lukacs GL, Fuchs SY. Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. ACTA ACUST UNITED AC 2007; 179:935-50. [PMID: 18056411 PMCID: PMC2099190 DOI: 10.1083/jcb.200706034] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Animal Biology and 2Mari Lowe Center for Comparative Oncology Research, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
He Y, Hicke L, Radhakrishnan I. Structural basis for ubiquitin recognition by SH3 domains. J Mol Biol 2007; 373:190-6. [PMID: 17765920 PMCID: PMC2034316 DOI: 10.1016/j.jmb.2007.07.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/19/2007] [Accepted: 07/30/2007] [Indexed: 02/02/2023]
Abstract
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.
Collapse
Affiliation(s)
- Yuan He
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
66
|
Ferraro E, Peluso D, Via A, Ausiello G, Helmer-Citterich M. SH3-Hunter: discovery of SH3 domain interaction sites in proteins. Nucleic Acids Res 2007; 35:W451-4. [PMID: 17485474 PMCID: PMC1933191 DOI: 10.1093/nar/gkm296] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/06/2007] [Accepted: 04/12/2007] [Indexed: 11/15/2022] Open
Abstract
SH3-Hunter (http://cbm.bio.uniroma2.it/SH3-Hunter/) is a web server for the recognition of putative SH3 domain interaction sites on protein sequences. Given an input query consisting of one or more protein sequences, the server identifies peptides containing poly-proline binding motifs and associates them to a list of SH3 domains, in order to compose peptide-domain pairs. The server can accept a list of peptides and allows users to upload an input file in a proper format. An accurate selection of SH3 domains is available and users can also submit their own SH3 domain sequence. SH3-Hunter evaluates which peptide-domain pair represents a possible interaction pair and produces as output a list of significant interaction sites for each query protein. Each proposed interaction site is associated to a propensity score and sensitivity and precision levels for the prediction. The server prediction capability is based on a neural network model integrating high-throughput pep-spot data with structural information extracted from known SH3-peptide complexes.
Collapse
Affiliation(s)
- Enrico Ferraro
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
| | | | | | | | | |
Collapse
|
67
|
Research highlights. Nat Chem Biol 2007. [DOI: 10.1038/nchembio0307-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|