51
|
Abstract
Chromosome segregation relies on forces generated by spindle microtubules that are translated into chromosome movement through interactions with kinetochores, highly conserved macromolecular machines that assemble on a specialized centromeric chromatin structure. Kinetochores not only have to stably attach to growing and shrinking microtubules, but they also need to recruit spindle assembly checkpoint proteins to halt cell cycle progression when there are attachment defects. Even the simplest kinetochore in budding yeast contains more than 50 unique components that are present in multiple copies, totaling more than 250 proteins in a single kinetochore. The complex nature of kinetochores makes it challenging to elucidate the contributions of individual components to its various functions. In addition, it is difficult to manipulate forces in vivo to understand how they regulate kinetochore-microtubule attachments and the checkpoint. To address these issues, we developed a technique to purify kinetochores from budding yeast that can be used to analyze kinetochore functions and composition as well as to reconstitute kinetochore-microtubule attachments in vitro.
Collapse
|
52
|
Shrestha RL, Ahn GS, Staples MI, Sathyan KM, Karpova TS, Foltz DR, Basrai MA. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells. Oncotarget 2018; 8:46781-46800. [PMID: 28596481 PMCID: PMC5564523 DOI: 10.18632/oncotarget.18108] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability.
Collapse
Affiliation(s)
| | - Grace S Ahn
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Kizhakke M Sathyan
- Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
53
|
Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. Budding yeast CENP-A Cse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 2018; 17:11-23. [PMID: 28980861 DOI: 10.1080/15384101.2017.1380129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Shugoshin is an evolutionarily conserved protein, which is involved in tension sensing on mitotic chromosomes, kinetochore biorientation, and protection of centromeric (CEN) cohesin for faithful chromosome segregation. Interaction of the C-terminus of Sgo1 with phosphorylated histone H2A regulates its association with CEN and pericentromeric (peri-CEN) chromatin, whereas mutations in histone H3 selectively compromise the association of Sgo1 with peri-CEN but not CEN chromatin. Given that histone H3 is absent from CEN and is replaced by a histone H3 variant CENP-ACse4, we investigated if CENP-ACse4 interacts with Sgo1 and promotes its association with the CEN chromatin. In this study, we found that Sgo1 interacts with CENP-ACse4 in vivo and in vitro. The N-terminus coiled-coil domain of Sgo1 without the C-terminus (sgo1-NT) is sufficient for its interaction with CENP-ACse4, association with CEN but not the peri-CEN, and this CEN association is cell cycle dependent with maximum enrichment in mitosis. In agreement with the role of CENP-ACse4 in CEN maintenance of Sgo1, depletion of CENP-ACse4 results in the loss of Sgo1 and sgo1-NT from the CEN chromatin. The N-terminus of Sgo1 is required for genome stability as a mutant lacking the N-terminus (sgo1-CT) exhibits increased chromosome missegregation when compared to a sgo1-NT mutant. In summary, our results define a novel role for the N-terminus of Sgo1 in CENP-ACse4 mediated recruitment of Sgo1 to CEN chromatin for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Kriti S Thapa
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Panyue Chen
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Suyu Wang
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Tony R Hazbun
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Munira A Basrai
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
54
|
Das A, Smoak EM, Linares-Saldana R, Lampson MA, Black BE. Centromere inheritance through the germline. Chromosoma 2017; 126:595-604. [PMID: 28791511 DOI: 10.1007/s00412-017-0640-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
Abstract
The centromere directs chromosome segregation and genetic inheritance but is not itself heritable in a canonical, DNA-based manner. In most species, centromeres are epigenetically defined by the presence of a histone H3 variant centromere protein A (CENP-A), independent of underlying DNA sequence. Therefore, centromere inheritance depends on maintaining the CENP-A nucleosome mark across generations. Experiments in cycling somatic cells have led to a model in which centromere identity is maintained by a cell cycle-coupled CENP-A chromatin assembly pathway. However, the processes of animal gametogenesis pose unique challenges to centromere inheritance because of the extended cell cycle arrest and the massive genome reorganization in the female and male germline, respectively. Here, we review our current understanding of germline centromere inheritance and highlight outstanding questions.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evan M Smoak
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ricardo Linares-Saldana
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
55
|
Warren C, Shechter D. Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. J Mol Biol 2017; 429:2401-2426. [PMID: 28610839 DOI: 10.1016/j.jmb.2017.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/21/2023]
Abstract
Chromatin is the complex of eukaryotic DNA and proteins required for the efficient compaction of the nearly 2-meter-long human genome into a roughly 10-micron-diameter cell nucleus. The fundamental repeating unit of chromatin is the nucleosome: 147bp of DNA wrapped about an octamer of histone proteins. Nucleosomes are stable enough to organize the genome yet must be dynamically displaced and reassembled to allow access to the underlying DNA for transcription, replication, and DNA damage repair. Histone chaperones are a non-catalytic group of proteins that are central to the processes of nucleosome assembly and disassembly and thus the fluidity of the ever-changing chromatin landscape. Histone chaperones are responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating their deposition onto DNA, and aiding in their eviction from DNA. Although most histone chaperones perform these common functions, recent structural studies of many different histone chaperones reveal that there are few commonalities in their folds. Importantly, sequence-based predictions show that histone chaperones are highly enriched in intrinsically disordered regions (IDRs) and acidic stretches. In this review, we focus on the molecular mechanisms underpinning histone binding, selectivity, and regulation of these highly dynamic protein regions. We highlight new evidence suggesting that IDRs are often critical for histone chaperone function and play key roles in chromatin assembly and disassembly pathways.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
56
|
Chen CC, Mellone BG. Chromatin assembly: Journey to the CENter of the chromosome. J Cell Biol 2017; 214:13-24. [PMID: 27377247 PMCID: PMC4932374 DOI: 10.1083/jcb.201605005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022] Open
Abstract
All eukaryotic genomes are packaged into basic units of DNA wrapped around histone proteins called nucleosomes. The ability of histones to specify a variety of epigenetic states at defined chromatin domains is essential for cell survival. The most distinctive type of chromatin is found at centromeres, which are marked by the centromere-specific histone H3 variant CENP-A. Many of the factors that regulate CENP-A chromatin have been identified; however, our understanding of the mechanisms of centromeric nucleosome assembly, maintenance, and reorganization remains limited. This review discusses recent insights into these processes and draws parallels between centromeric and noncentromeric chromatin assembly mechanisms.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269 Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
57
|
Friesen M, Camahort R, Lee YK, Xia F, Gerszten RE, Rhee EP, Deo RC, Cowan CA. Activation of IRF1 in Human Adipocytes Leads to Phenotypes Associated with Metabolic Disease. Stem Cell Reports 2017; 8:1164-1173. [PMID: 28416283 PMCID: PMC5425619 DOI: 10.1016/j.stemcr.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 12/23/2022] Open
Abstract
The striking rise of obesity-related metabolic disorders has focused attention on adipocytes as critical mediators of disease phenotypes. To better understand the role played by excess adipose in metabolic dysfunction it is crucial to decipher the transcriptional underpinnings of the low-grade adipose inflammation characteristic of diseases such as type 2 diabetes. Through employing a comparative transcriptomics approach, we identified IRF1 as differentially regulated between primary and in vitro-derived genetically matched adipocytes. This suggests a role as a mediator of adipocyte inflammatory phenotypes, similar to its function in other tissues. Utilizing adipose-derived mesenchymal progenitors we subsequently demonstrated that expression of IRF1 in adipocytes indeed contributes to upregulation of inflammatory processes, both in vitro and in vivo. This highlights IRF1's relevance to obesity-related inflammation and the resultant metabolic dysregulation.
Collapse
Affiliation(s)
- Max Friesen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Raymond Camahort
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Youn-Kyoung Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fang Xia
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert E Gerszten
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene P Rhee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rahul C Deo
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chad A Cowan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
58
|
Zheng H, Wu H, Pan X, Jin W, Li X. Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea mays L.) Under Low Nitrogen Supply. PLANT & CELL PHYSIOLOGY 2017; 58:342-353. [PMID: 28007967 DOI: 10.1093/pcp/pcw195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Pollen germination is an essential step towards successful pollination during maize reproduction. How low niutrogen (N) affects pollen germination remains an interesting biological question to be addressed. We found that only low N resulted in a significantly lower germination rate of pollen grains after 4 weeks of low N, phosphorus or potassium treatment in maize production. Importantly, cytological analysis showed 7-fold more micronuclei in male meiocytes under the low N treatment than in the control, indicating that the lower germination rate of pollen grains was partially due to numerous chromosome loss events resulting from preceding meiosis. The appearance of 10 bivalents in the control and low N cells at diakinesis suggested that chromosome pairing and recombination in meiosis I was not affected by low N. Further gene expression analysis revealed dramatic down-regulation of Nuclear Division Cycle 80 (Ndc80) and Regulator of Chromosome Condensation 1 (Rcc1-1) expression and up-regulation of Cell Division Cycle 20 (Cdc20-1) expression, although no significant difference in the expression level of kinetochore foundation proteins Centromeric Histone H3 (Cenh3) and Centromere Protein C (Cenpc) and cohesion regulators Recombination 8 (Rec8) and Shugoshin (Sgo1) was observed. Aberrant modulation of three key meiotic regulators presumably resulted in a high likelihood of erroneous chromosome segregation, as testified by pronounced lagging chromosomes at anaphase I or cell cycle disruption at meiosis II. Thus, we proposed a cytogenetic mechanism whereby low N affects male meiosis and causes a higher chromosome loss frequency and eventually a lower germination rate of pollen grains in a staple crop plant.
Collapse
Affiliation(s)
- Hongyan Zheng
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Huamao Wu
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoying Pan
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Weiwei Jin
- The National Maize Center, and Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
59
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
60
|
Reddy BA, Jeronimo C, Robert F. Recent Perspectives on the Roles of Histone Chaperones in Transcription Regulation. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40610-017-0049-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
61
|
Centromeres Drive a Hard Bargain. Trends Genet 2017; 33:101-117. [PMID: 28069312 DOI: 10.1016/j.tig.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022]
Abstract
Centromeres are essential chromosomal structures that mediate the accurate distribution of genetic material during meiotic and mitotic cell divisions. In most organisms, centromeres are epigenetically specified and propagated by nucleosomes containing the centromere-specific H3 variant, centromere protein A (CENP-A). Although centromeres perform a critical and conserved function, CENP-A and the underlying centromeric DNA are rapidly evolving. This paradox has been explained by the centromere drive hypothesis, which proposes that CENP-A is undergoing an evolutionary tug-of-war with selfish centromeric DNA. Here, we review our current understanding of CENP-A evolution in relation to centromere drive and discuss classical and recent advances, including new evidence implicating CENP-A chaperones in this conflict.
Collapse
|
62
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
63
|
Zasadzińska E, Foltz DR. Orchestrating the Specific Assembly of Centromeric Nucleosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:165-192. [PMID: 28840237 DOI: 10.1007/978-3-319-58592-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
64
|
Co-evolving CENP-A and CAL1 Domains Mediate Centromeric CENP-A Deposition across Drosophila Species. Dev Cell 2016; 37:136-47. [PMID: 27093083 DOI: 10.1016/j.devcel.2016.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022]
Abstract
Centromeres mediate the conserved process of chromosome segregation, yet centromeric DNA and the centromeric histone, CENP-A, are rapidly evolving. The rapid evolution of Drosophila CENP-A loop 1 (L1) is thought to modulate the DNA-binding preferences of CENP-A to counteract centromere drive, the preferential transmission of chromosomes with expanded centromeric satellites. Consistent with this model, CENP-A from Drosophila bipectinata (bip) cannot localize to Drosophila melanogaster (mel) centromeres. We show that this result is due to the inability of the mel CENP-A chaperone, CAL1, to deposit bip CENP-A into chromatin. Co-expression of bip CENP-A and bip CAL1 in mel cells restores centromeric localization, and similar findings apply to other Drosophila species. We identify two co-evolving regions, CENP-A L1 and the CAL1 N terminus, as critical for lineage-specific CENP-A incorporation. Collectively, our data show that the rapid evolution of L1 modulates CAL1-mediated CENP-A assembly, suggesting an alternative mechanism for the suppression of centromere drive.
Collapse
|
65
|
Licensing of Centromeric Chromatin Assembly through the Mis18α-Mis18β Heterotetramer. Mol Cell 2016; 61:774-787. [PMID: 26942680 DOI: 10.1016/j.molcel.2016.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/31/2015] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-β C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18β form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-β heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-β heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.
Collapse
|
66
|
Mishra PK, Ciftci-Yilmaz S, Reynolds D, Au WC, Boeckmann L, Dittman LE, Jowhar Z, Pachpor T, Yeh E, Baker RE, Hoyt MA, D'Amours D, Bloom K, Basrai MA. Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Mol Biol Cell 2016; 27:2286-300. [PMID: 27226485 PMCID: PMC4945145 DOI: 10.1091/mbc.e16-01-0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sultan Ciftci-Yilmaz
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Reynolds
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lauren E Dittman
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ziad Jowhar
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tejaswini Pachpor
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - M Andrew Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Damien D'Amours
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
67
|
Drinnenberg IA, Henikoff S, Malik HS. Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus? Trends Cell Biol 2016; 26:498-510. [PMID: 26877204 PMCID: PMC4914419 DOI: 10.1016/j.tcb.2016.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Current address: Chromatin Dynamics Unit, UMR2664, Institut Curie, Paris, France.
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
68
|
Hildebrand EM, Biggins S. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects. PLoS Genet 2016; 12:e1005930. [PMID: 26982580 PMCID: PMC4794243 DOI: 10.1371/journal.pgen.1005930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. Chromosomes carry the genetic material in cells. When cells divide, each daughter cell must inherit a single copy of each chromosome. The centromere is the locus on each chromosome that ensures the equal distribution of chromosomes during cell division. One essential protein involved in this task is CENP-ACse4, which normally localizes exclusively to centromeres. Here, we investigated where CENP-ACse4 spreads in the genome when parts of its regulatory machinery are removed. We found that CENP-ACse4 becomes mislocalized to promoters, the region upstream of each gene that controls the activity of the gene. Consistent with this, the mislocalization of CENP-ACse4 to promoters leads to problems with gene activity. Our work shows that mislocalization of centromeric proteins can have effects beyond chromosome segregation defects, such as interfering with gene expression on chromosome arms.
Collapse
Affiliation(s)
- Erica M. Hildebrand
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
69
|
Freitag M. The kinetochore interaction network (KIN) of ascomycetes. Mycologia 2016; 108:485-505. [PMID: 26908646 DOI: 10.3852/15-182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023]
Abstract
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many in multiple copies, comprise the KIN or are associated with fungal centromeres and kinetochores. Proteins isolated from immune sera recognized centromeric regions on chromosomes and thus were named centromere proteins (CENPs). CENP-A, sometimes called centromere-specific H3 (CenH3), is incorporated into nucleosomes within or near centromeres. The constitutive centromere-associated network (CCAN) assembles on this specialized chromatin, likely based on specific interactions with and requiring presence of CENP-C. The outer kinetochore comprises the Knl1-Mis12-Ndc80 (KMN) protein complexes that connect CCAN to spindles, accomplished by binding and stabilizing microtubules (MTs) and in the process generating load-bearing assemblies for chromatid segregation. In most fungi the Dam1/DASH complex connects the KMN complexes to MTs. Fungi present a rich resource to investigate mechanistic commonalities but also differences in kinetochore architecture. While ascomycetes have sets of CCAN and KMN proteins that are conserved with those of budding yeast or metazoans, searching other major branches of the fungal kingdom revealed that CCAN proteins are poorly conserved at the primary sequence level. Several conserved binding motifs or domains within KMN complexes have been described recently, and these features of ascomycete KIN proteins are shared with most metazoan proteins. In addition, several ascomycete-specific domains have been identified here.
Collapse
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305
| |
Collapse
|
70
|
Lee BCH, Lin Z, Yuen KWY. RbAp46/48(LIN-53) Is Required for Holocentromere Assembly in Caenorhabditis elegans. Cell Rep 2016; 14:1819-28. [PMID: 26904949 DOI: 10.1016/j.celrep.2016.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
Centromeres, the specialized chromosomal regions for recruiting kinetochores and directing chromosome segregation, are epigenetically marked by a centromeric histone H3 variant, CENP-A. To maintain centromere identity through cell cycles, CENP-A diluted during DNA replication is replenished. The licensing factor M18BP1(KNL-2) is known to recruit CENP-A to holocentromeres. Here, we show that RbAp46/48(LIN-53), a conserved histone chaperone, is required for CENP-A(HCP-3) localization in holocentric Caenorhabditis elegans. Indeed, RbAp46/48(LIN-53) and CENP-A(HCP-3) localizations are interdependent. RbAp46/48(LIN-53) localizes to the centromere during metaphase in a CENP-A(HCP-3)- and M18BP1(KNL-2)-dependent manner, suggesting CENP-A(HCP-3) loading may occur before anaphase. RbAp46/48(LIN-53) does not function at the centromere through histone acetylation, H3K27 trimethylation, or its known chromatin-modifying complexes. RbAp46/48(LIN-53) may function independently to escort CENP-A(HCP-3) for holocentromere assembly but is dispensable for other kinetochore protein recruitment. Nonetheless, depletion of RbAp46/48(LIN-53) leads to anaphase bridges and chromosome missegregation. This study unravels the holocentromere assembly hierarchy and its conservation with monocentromeres.
Collapse
Affiliation(s)
- Bernard Chi Hang Lee
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
71
|
Herrero E, Thorpe PH. Synergistic Control of Kinetochore Protein Levels by Psh1 and Ubr2. PLoS Genet 2016; 12:e1005855. [PMID: 26891228 PMCID: PMC4758618 DOI: 10.1371/journal.pgen.1005855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/19/2016] [Indexed: 12/02/2022] Open
Abstract
The accurate segregation of chromosomes during cell division is achieved by attachment of chromosomes to the mitotic spindle via the kinetochore, a large multi-protein complex that assembles on centromeres. The budding yeast kinetochore comprises more than 60 different proteins. Although the structure and function of many of these proteins has been investigated, we have little understanding of the steady state regulation of kinetochores. The primary model of kinetochore homeostasis suggests that kinetochores assemble hierarchically from the centromeric DNA via the inclusion of a centromere-specific histone into chromatin. We tested this model by trying to perturb kinetochore protein levels by overexpressing an outer kinetochore gene, MTW1. This increase in protein failed to change protein recruitment, consistent with the hierarchical assembly model. However, we find that deletion of Psh1, a key ubiquitin ligase that is known to restrict inner kinetochore protein loading, does not increase levels of outer kinetochore proteins, thus breaking the normal kinetochore stoichiometry. This perturbation leads to chromosome segregation defects, which can be partially suppressed by mutation of Ubr2, a second ubiquitin ligase that normally restricts protein levels at the outer kinetochore. Together these data show that Psh1 and Ubr2 synergistically control the amount of proteins at the kinetochore.
Collapse
Affiliation(s)
- Eva Herrero
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter H. Thorpe
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
72
|
Simon L, Voisin M, Tatout C, Probst AV. Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:1049. [PMID: 26648952 PMCID: PMC4663263 DOI: 10.3389/fpls.2015.01049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/09/2015] [Indexed: 05/23/2023]
Abstract
The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.
Collapse
Affiliation(s)
| | - Maxime Voisin
- †These authors have contributed equally to this work.
| | | | | |
Collapse
|
73
|
Mattiroli F, D'Arcy S, Luger K. The right place at the right time: chaperoning core histone variants. EMBO Rep 2015; 16:1454-66. [PMID: 26459557 DOI: 10.15252/embr.201540840] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Sheena D'Arcy
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
74
|
An S, Kim H, Cho US. Mis16 Independently Recognizes Histone H4 and the CENP-ACnp1-Specific Chaperone Scm3sp. J Mol Biol 2015; 427:3230-3240. [PMID: 26343758 DOI: 10.1016/j.jmb.2015.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/14/2022]
Abstract
CENP-A is a centromere-specific histone H3 variant that is required for kinetochore assembly and accurate chromosome segregation. For it to function properly, CENP-A must be specifically localized to centromeres. In fission yeast, Scm3sp and the Mis18 complex, composed of Mis16, Eic1, and Mis18, function as a CENP-A(Cnp1)-specific chaperone and a recruiting factor, respectively, and together ensure accurate delivery of CENP-A(Cnp1) to centromeres. Although how Scm3sp specifically recognizes CENP-A(Cnp1) has been revealed recently, the recruiting mechanism of CENP-A(Cnp1) via the Mis18 complex remains unknown. In this study, we have determined crystal structures of Schizosaccharomyces japonicus Mis16 alone and in complex with the helix 1 of histone H4 (H4α1). Crystal structures followed by mutant analysis and affinity pull-downs have revealed that Mis16 recognizes both H4α1 and Scm3sp independently within the CENP-A(Cnp1)/H4:Scm3sp complex. This observation suggests that Mis16 gains CENP-A(Cnp1) specificity by recognizing both Scm3sp and histone H4. Our studies provide insights into the molecular mechanisms underlying specific recruitment of CENP-A(Cnp1)/H4:Scm3sp into centromeres.
Collapse
Affiliation(s)
- Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA.
| |
Collapse
|
75
|
Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S, Bettini E, Rosin L, Przewloka MR, Glover DM, O'Neill RJ, Mellone BG. Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription. Dev Cell 2015; 34:73-84. [PMID: 26151904 PMCID: PMC4495351 DOI: 10.1016/j.devcel.2015.05.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/09/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
Abstract
Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarion Bowers
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, P.O. Box 521, 6701 Szeged, Hungary
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Emily Bettini
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Leah Rosin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
76
|
Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A 2015; 112:8656-60. [PMID: 26124146 DOI: 10.1073/pnas.1506351112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells.
Collapse
|
77
|
Steiner FA, Henikoff S. Diversity in the organization of centromeric chromatin. Curr Opin Genet Dev 2015; 31:28-35. [PMID: 25956076 DOI: 10.1016/j.gde.2015.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
Abstract
Centromeric chromatin is distinguished primarily by nucleosomes containing the histone variant cenH3, which organizes the kinetochore that links the chromosome to the spindle apparatus. Whereas budding yeast have simple 'point' centromeres with single cenH3 nucleosomes, and fission yeast have 'regional' centromeres without obvious sequence specificity, the centromeres of most organisms are embedded in highly repetitive 'satellite' DNA. Recent studies have revealed a remarkable diversity in centromere chromatin organization among different lineages, including some that have lost cenH3 altogether. We review recent progress in understanding point, regional and satellite centromeres, as well as less well-studied centromere types, such as holocentromeres. We also discuss the formation of neocentromeres, the role of pericentric heterochromatin, and the structure and composition of the cenH3 nucleosome.
Collapse
Affiliation(s)
- Florian A Steiner
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
78
|
Mishra PK, Guo J, Dittman LE, Haase J, Yeh E, Bloom K, Basrai MA. Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Mol Biol Cell 2015; 26:2067-79. [PMID: 25833709 PMCID: PMC4472017 DOI: 10.1091/mbc.e14-08-1335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/27/2015] [Indexed: 11/25/2022] Open
Abstract
A novel Pat1-dependent mechanism is identified for the protection of kinetochore-associated Cse4 from ubiquitination in order to ensure faithful chromosome segregation and genomic stability. Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiasheng Guo
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Lauren E Dittman
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
79
|
Agarwal M, Mehta G, Ghosh SK. Role of Ctf3 and COMA subcomplexes in meiosis: Implication in maintaining Cse4 at the centromere and numeric spindle poles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:671-84. [PMID: 25562757 DOI: 10.1016/j.bbamcr.2014.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
During mitosis and meiosis, kinetochore, a conserved multi-protein complex, connects microtubule with the centromere and promotes segregation of the chromosomes. In budding yeast, central kinetochore complex named Ctf19 has been implicated in various functions and is believed to be made up of three biochemically distinct subcomplexes: COMA, Ctf3 and Iml3-Chl4. In this study, we aimed to identify whether Ctf3 and COMA subcomplexes have any unshared function at the kinetochore. Our data suggests that both these subcomplexes may work as a single functional unit without any unique functions, which we tested. Analysis of severity of the defects in the mutants suggests that COMA is epistatic to Ctf3 subcomplex. Interestingly, we noticed that these subcomplexes affect the organization of mitotic and meiotic kinetochores with subtle differences and they promote maintenance of Cse4 at the centromeres specifically during meiosis which is similar to the role of Mis6 (Ctf3 homolog) in fission yeast during mitosis. Interestingly, analysis of ctf3Δ and ctf19Δ mutants revealed a novel role of Ctf19 complex in regulation of SPB cohesion and duplication in meiosis.
Collapse
Affiliation(s)
- Meenakshi Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 40076, India
| | - Gunjan Mehta
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 40076, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 40076, India.
| |
Collapse
|
80
|
Ho KH, Tsuchiya D, Oliger AC, Lacefield S. Localization and function of budding yeast CENP-A depends upon kinetochore protein interactions and is independent of canonical centromere sequence. Cell Rep 2014; 9:2027-33. [PMID: 25533342 DOI: 10.1016/j.celrep.2014.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/20/2014] [Accepted: 11/22/2014] [Indexed: 11/24/2022] Open
Abstract
In many eukaryotes, the centromere is epigenetically specified and not strictly defined by sequence. In contrast, budding yeast has a specific 125 bp sequence required for kinetochore function. Despite the difference in centromere specification, budding yeast and multicellular eukaryotic centromeres contain a highly conserved histone H3 variant, CENP-A. The localization of budding yeast CENP-A, Cse4, requires the centromere DNA binding components, which are not conserved in multicellular eukaryotes. Here, we report that Cse4 localizes and functions at a synthetic kinetochore assembly site that lacks centromere sequence. The outer kinetochore Dam1-DASH and inner kinetochore CBF3 complexes are required for Cse4 localization to that site. Furthermore, the natural kinetochore also requires the outer kinetochore proteins for full Cse4 localization. Our results suggest that Cse4 localization at a functional kinetochore does not require the recognition of a specific DNA sequence by the CBF3 complex; rather, its localization depends on stable interactions among kinetochore proteins.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Dai Tsuchiya
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Audrey C Oliger
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
81
|
Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 2014; 7:a015818. [PMID: 25414369 DOI: 10.1101/cshperspect.a015818] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
82
|
Abstract
Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
83
|
Deyter GMR, Biggins S. The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A. Genes Dev 2014; 28:1815-26. [PMID: 25128498 PMCID: PMC4197964 DOI: 10.1101/gad.243113.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centromere identity and its epigenetic maintenance require the incorporation of the histone H3 variant CENP-A at centromeres. CENP-A mislocalization may disrupt chromatin-based processes and chromosome segregation. Here, Deyter and Biggins identify a role for the conserved chromatin-modifying complex FACT in preventing CENP-ACse4 mislocalization to euchromatin by mediating its proteolysis. The budding yeast Spt16 subunit of the FACT complex binds to Psh1, an E3 ubiquitin ligase that targets CENP-ACse4 for degradation. A Psh1 mutant that cannot associate with FACT has a reduced interaction with CENP-ACse4 in vivo. Centromere identity and its epigenetic maintenance require the incorporation of a histone H3 variant called CENP-A at centromeres. CENP-A mislocalization to ectopic sites may disrupt chromatin-based processes and chromosome segregation, so it is important to uncover the mechanisms by which this variant is exclusively localized to centromeres. Here, we identify a role for the conserved chromatin-modifying complex FACT (facilitates chromatin transcription/transactions) in preventing budding yeast CENP-ACse4 mislocalization to euchromatin by mediating its proteolysis. The Spt16 subunit of the FACT complex binds to Psh1 (Pob3/Spt16/histone), an E3 ubiquitin ligase that targets CENP-ACse4 for degradation. The interaction between Psh1 and Spt16 is critical for both CENP-ACse4 ubiquitylation and its exclusion from euchromatin. We found that Psh1 cannot efficiently ubiquitylate CENP-ACse4 nucleosomes in vitro, suggesting that additional factors must facilitate CENP-ACse4 removal from chromatin in vivo. Consistent with this, a Psh1 mutant that cannot associate with FACT has a reduced interaction with CENP-ACse4 in vivo. Together, our data identify a previously unknown mechanism to maintain centromere identity and genomic stability through the FACT-mediated degradation of ectopically localized CENP-ACse4.
Collapse
Affiliation(s)
- Gary M R Deyter
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
84
|
Hewawasam GS, Mattingly M, Venkatesh S, Zhang Y, Florens L, Workman JL, Gerton JL. Phosphorylation by casein kinase 2 facilitates Psh1 protein-assisted degradation of Cse4 protein. J Biol Chem 2014; 289:29297-309. [PMID: 25183013 PMCID: PMC4200280 DOI: 10.1074/jbc.m114.580589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cse4 is the centromeric histone H3 variant in budding yeast. Psh1 is an E3 ubiquitin ligase that controls Cse4 levels through proteolysis. Here we report that Psh1 is phosphorylated by the Cka2 subunit of casein kinase 2 (CK2) to promote its E3 activity for Cse4. Deletion of CKA2 significantly stabilized Cse4. Consistent with phosphorylation promoting the activity of Psh1, Cse4 was stabilized in a Psh1 phosphodepleted mutant strain in which the major phosphorylation sites were changed to alanines. Phosphorylation of Psh1 did not control Psh1-Cse4 or Psh1-Ubc3(E2) interactions. Although Cse4 was highly stabilized in a cka2Δ strain, mislocalization of Cse4 was mild, suggesting that Cse4 misincorporation was prevented by the intact Psh1-Cse4 association. Supporting this idea, Psh1 was also stabilized in a cka2Δ strain. Collectively our data suggest that phosphorylation is crucial in Psh1-assisted control of Cse4 levels and that the Psh1-Cse4 association itself functions to prevent Cse4 misincorporation.
Collapse
Affiliation(s)
- Geetha S Hewawasam
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Mark Mattingly
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | | | - Ying Zhang
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Laurence Florens
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Jerry L Workman
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Jennifer L Gerton
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110 and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
85
|
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 2014; 3:e02203. [PMID: 24844245 PMCID: PMC4067749 DOI: 10.7554/elife.02203] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.DOI: http://dx.doi.org/10.7554/eLife.02203.001.
Collapse
Affiliation(s)
- Jan Wisniewski
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Bassam Hajj
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jiji Chen
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaku Mizuguchi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Maxime Dahan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Carl Wu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
86
|
DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere. Protein Cell 2014; 5:411-9. [PMID: 24691906 PMCID: PMC4026425 DOI: 10.1007/s13238-014-0049-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/30/2023] Open
Abstract
Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.
Collapse
|
87
|
Dechassa ML, Wyns K, Luger K. Scm3 deposits a (Cse4-H4)2 tetramer onto DNA through a Cse4-H4 dimer intermediate. Nucleic Acids Res 2014; 42:5532-42. [PMID: 24623811 PMCID: PMC4027189 DOI: 10.1093/nar/gku205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The assembly of centromeric nucleosomes is mediated by histone variant-specific chaperones. In budding yeast, the centromere-specific histone H3 variant is Cse4, and the histone chaperone Scm3 functions as a Cse4-specific nucleosome assembly factor. Here, we show that Scm3 exhibits specificity for Cse4-H4, but also interacts with major-type H3-H4 and H2A-H2B. Previously published structures of the Scm3 histone complex demonstrate that Scm3 binds only one copy of Cse4-H4. Consistent with this, we show that Scm3 deposits Cse4-H4 through a dimer intermediate onto deoxyribonucleic acid (DNA) to form a (Cse4-H4)2-DNA complex (tetrasome). Scm3-bound Cse4-H4 does not form a tetramer in the absence of DNA. Moreover, we demonstrate that Cse4 and H3 are structurally compatible to be incorporated in the same nucleosome to form heterotypic particles. Our data shed light on the mechanism of Scm3-mediated nucleosome assembly at the centromere.
Collapse
Affiliation(s)
- Mekonnen Lemma Dechassa
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | - Katharina Wyns
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
88
|
A network of players in H3 histone variant deposition and maintenance at centromeres. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:241-50. [DOI: 10.1016/j.bbagrm.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
89
|
Hamiche A, Shuaib M. Chaperoning the histone H3 family. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:230-237. [PMID: 24459725 DOI: 10.1016/j.bbagrm.2011.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chromatin is a highly dynamic nucleoprotein structure, which orchestrates all nuclear process from DNA replication to DNA repair, fromtranscription to recombination. The proper in vivo assembly of nucleosome, the basic repeating unit of chromatin, requires the deposition of two H3-H4 dimer pairs followed by the addition of two dimers of H2A and H2B. Histone chaperones are responsible for delivery of histones to the site of chromatin assembly and histone deposition onto DNA, histone exchange and removal. Distinct factors have been found associated with different histone H3 variants, which facilitate their deposition. Unraveling the mechanism of histone depositionby specific chaperones is of key importance to epigenetic regulation. In this review, we focus on histoneH3 variants and their deposition mechanisms. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
90
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
91
|
Wang J, Liu X, Dou Z, Chen L, Jiang H, Fu C, Fu G, Liu D, Zhang J, Zhu T, Fang J, Zang J, Cheng J, Teng M, Ding X, Yao X. Mitotic regulator Mis18β interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein (HJURP). J Biol Chem 2014; 289:8326-36. [PMID: 24519934 DOI: 10.1074/jbc.m113.529958] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437-460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction.
Collapse
Affiliation(s)
- Jianyu Wang
- From the Hefei National Laboratory of Physical Sciences at Microscale, University of Science and Technology of China School of Life Science, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C, Heun P, Luger K, Mellone BG. CAL1 is the Drosophila CENP-A assembly factor. ACTA ACUST UNITED AC 2014; 204:313-29. [PMID: 24469636 PMCID: PMC3912524 DOI: 10.1083/jcb.201305036] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Representing a unique family of histone assembly factors, CAL1 assembles the histone H3 variant CENP-A on centromeric DNA in Drosophila. Centromeres are specified epigenetically by the incorporation of the histone H3 variant CENP-A. In humans, amphibians, and fungi, CENP-A is deposited at centromeres by the HJURP/Scm3 family of assembly factors, but homologues of these chaperones are absent from a number of major eukaryotic lineages such as insects, fish, nematodes, and plants. In Drosophila, centromeric deposition of CENP-A requires the fly-specific protein CAL1. Here, we show that targeting CAL1 to noncentromeric DNA in Drosophila cells is sufficient to heritably recruit CENP-A, kinetochore proteins, and microtubule attachments. CAL1 selectively interacts with CENP-A and is sufficient to assemble CENP-A nucleosomes that display properties consistent with left-handed octamers. The CENP-A assembly activity of CAL1 resides within an N-terminal domain, whereas the C terminus mediates centromere recognition through an interaction with CENP-C. Collectively, this work identifies the “missing” CENP-A chaperone in flies, revealing fundamental conservation between insect and vertebrate centromere-specification mechanisms.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Epigenetically induced paucity of histone H2A.Z stabilizes fission-yeast ectopic centromeres. Nat Struct Mol Biol 2013; 20:1397-406. [PMID: 24186062 DOI: 10.1038/nsmb.2697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 09/16/2013] [Indexed: 11/08/2022]
Abstract
In most eukaryotes, centromeres are epigenetically defined by nucleosomes that contain the histone H3 variant centromere protein A (CENP-A). Specific targeting of the CENP-A-loading chaperone to the centromere is vital for stable centromere propagation; however, the existence of ectopic centromeres (neocentromeres) indicates that this chaperone can function in different chromatin environments. The mechanism responsible for accommodating the CENP-A chaperone at noncentromeric regions is poorly understood. Here, we report the identification of transient, immature neocentromeres in Schizosaccharomyces pombe that show reduced association with the CENP-A chaperone Scm3, owing to persistence of the histone H2A variant H2A.Z. After the acquisition of adjacent heterochromatin or relocation of the immature neocentromeres to subtelomeric regions, H2A.Z was depleted and Scm3 was replenished, thus leading to subsequent stabilization of the neocentromeres. These findings provide new insights into histone variant-mediated epigenetic control of neocentromere establishment.
Collapse
|
94
|
Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1. Genetics 2013; 195:369-79. [PMID: 23893485 DOI: 10.1534/genetics.113.155291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The kinetochore (centromeric DNA and associated protein complex) is essential for faithful chromosome segregation and maintenance of genome stability. Here we report that an evolutionarily conserved protein Pat1 is a structural component of Saccharomyces cerevisiae kinetochore and associates with centromeres in a NDC10-dependent manner. Consistent with a role for Pat1 in kinetochore structure and function, a deletion of PAT1 results in delay in sister chromatid separation, errors in chromosome segregation, and defects in structural integrity of centromeric chromatin. Pat1 is involved in topological regulation of minichromosomes as altered patterns of DNA supercoiling were observed in pat1Δ cells. Studies with pat1 alleles uncovered an evolutionarily conserved region within the central domain of Pat1 that is required for its association with centromeres, sister chromatid separation, and faithful chromosome segregation. Taken together, our data have uncovered a novel role for Pat1 in maintaining the structural integrity of centromeric chromatin to facilitate faithful chromosome segregation and proper kinetochore function.
Collapse
|
95
|
Zasadzińska E, Barnhart-Dailey MC, Kuich PHJL, Foltz DR. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J 2013; 32:2113-24. [PMID: 23771058 DOI: 10.1038/emboj.2013.142] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/23/2013] [Indexed: 11/09/2022] Open
Abstract
The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A-histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | |
Collapse
|
96
|
Westermann S, Schleiffer A. Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol 2013; 23:260-9. [DOI: 10.1016/j.tcb.2013.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
|
97
|
Hong J, Feng H, Zhou Z, Ghirlando R, Bai Y. Identification of functionally conserved regions in the structure of the chaperone/CenH3/H4 complex. J Mol Biol 2013; 425:536-45. [PMID: 23178171 PMCID: PMC3557595 DOI: 10.1016/j.jmb.2012.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/26/2023]
Abstract
In eukaryotes, a variant of conventional histone H3 termed CenH3 epigenetically marks the centromere. The conserved CenH3 chaperone specifically recognizes CenH3 and is required for CenH3 deposition at the centromere. Recently, the structures of the chaperone/CenH3/H4 complexes have been determined for Homo sapiens (Hs) and the budding yeasts Saccharomyces cerevisiae (Sc) and Kluyveromyces lactis (Kl). Surprisingly, the three structures are very different, leading to different proposed structural bases for chaperone function. The question of which structural region of CenH3 provides the specificity determinant for the chaperone recognition is not fully answered. Here, we investigated these issues using solution NMR and site-directed mutagenesis. We discovered that, in contrast to previous findings, the structures of the Kl and Sc chaperone/CenH3/H4 complexes are actually very similar. This new finding reveals that both budding yeast and human chaperones use a similar structural region to block DNA from binding to the histones. Our mutational analyses further indicate that the N-terminal region of the CenH3 α2 helix is sufficient for specific recognition by the chaperone for both budding yeast and human. Thus, our studies have identified conserved structural bases of how the chaperones recognize CenH3 and perform the chaperone function.
Collapse
Affiliation(s)
- Jingjun Hong
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
98
|
Lidsky PV, Sprenger F, Lehner CF. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells. J Cell Sci 2013; 126:4782-93. [DOI: 10.1242/jcs.134122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres are specified epigenetically in animal cells. Therefore, faithful chromosome inheritance depends critically on the accurate maintenance of epigenetic centromere marks during progression through the cell cycle. Clarification of the mechanisms that control centromere protein behavior during the cell cycle should profit from the relative simplicity of the protein cast at Drosophila centromeres. Thus we have analyzed the dynamics of the three key players Cid/Cenp-A, Cenp-C and Cal1 in S2R+ cells using quantitative microscopy and fluorescence recovery after photobleaching in combination with novel fluorescent cell cycle markers. As revealed by the observed protein abundances and mobilities, centromeres proceed through at least five distinct states during the cell cycle, distinguished in part by unexpected Cid behavior. In addition to the predominant Cid loading onto centromeres during G1, a considerable but transient increase was detected during early mitosis. Low level of Cid loading was detected in late S and G2, starting at the reported time of centromere DNA replication. Our results disclose the complexities of Drosophila centromere protein dynamics and its intricate coordination with cell cycle progression.
Collapse
|
99
|
Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol 2012; 10:e1001460. [PMID: 23300382 PMCID: PMC3531500 DOI: 10.1371/journal.pbio.1001460] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 01/16/2023] Open
Abstract
CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.
Collapse
Affiliation(s)
- Elaine M. Dunleavy
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Nicole L. Beier
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Walter Gorgescu
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jonathan Tang
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sylvain V. Costes
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gary H. Karpen
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
100
|
Cell cycle-dependent deposition of CENP-A requires the Dos1/2-Cdc20 complex. Proc Natl Acad Sci U S A 2012; 110:606-11. [PMID: 23267073 DOI: 10.1073/pnas.1214874110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Centromeric histone CENP-A, a variant of canonical histone H3, plays a central role in proper chromosome segregation. Loading of CENP-A at centromeres is cell cycle-regulated: parental CENP-A is deposited at centromeres during S phase, whereas newly synthesized CENP-A is deposited during later stages of the cell cycle. The mechanisms involved in deposition of CENP-A at centromeres during S phase remain poorly understood. In fission yeast, loading of CENP-A during S phase is regulated by the GATA-type factor, Ams2. Here we show that the Dos1/2-Cdc20 complex, previously characterized as a silencing complex essential for inheritance of H3K9 methylation during S phase, is also required for localization of CENP-A(cnp1) at centromeres at this stage. Disruption of Dos1 (also known as Raf1/Clr8/Cmc1), Dos2 (also known as Raf2/Clr7/Cmc2), or Cdc20, a DNA polymerase epsilon subunit, results in dissociation of CENP-A from centromeres and mislocalization of the protein to noncentromeric sites. All three mutants display spindle disorganization and mitotic defects. Inactivation of Dos1 or Cdc20 also results in accumulation of noncoding RNA transcripts from centromeric cores, a feature common to mutants affecting kinetochore integrity. We further find that Dos1 physically associates with Ams2 and is required for the association of Ams2 with centromeric cores during S phase. Finally, we show that Dos2 associates with centromeric cores during S phase and that its recruitment to centromeric cores depends on Cdc20. This study identifies a physical link between DNA replication and CENP-A assembly machinery and provides mechanistic insight into how CENP-A is faithfully inherited during S phase.
Collapse
|