51
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
52
|
Hörnberg H, Holt C. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 2013; 7:81. [PMID: 23734093 PMCID: PMC3661996 DOI: 10.3389/fnins.2013.00081] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/06/2013] [Indexed: 01/11/2023] Open
Abstract
RNA localization and regulation play an important role in the developing and adult nervous system. In navigating axons, extrinsic cues can elicit rapid local protein synthesis that mediates directional or morphological responses. The mRNA repertoire in axons is large and dynamically changing, yet studies suggest that only a subset of these mRNAs are translated after cue stimulation, suggesting the need for a high level of translational regulation. Here, we review the role of RNA-binding proteins (RBPs) as local regulators of translation in developing axons. We focus on their role in growth, guidance, and synapse formation, and discuss the mechanisms by which they regulate translation in axons.
Collapse
Affiliation(s)
- Hanna Hörnberg
- Department of Physiology Development and Neuroscience, University of Cambridge Cambridge, UK
| | | |
Collapse
|
53
|
Klass DM, Scheibe M, Butter F, Hogan GJ, Mann M, Brown PO. Quantitative proteomic analysis reveals concurrent RNA-protein interactions and identifies new RNA-binding proteins in Saccharomyces cerevisiae. Genome Res 2013; 23:1028-38. [PMID: 23636942 PMCID: PMC3668357 DOI: 10.1101/gr.153031.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A growing body of evidence supports the existence of an extensive network of RNA-binding proteins (RBPs) whose combinatorial binding affects the post-transcriptional fate of every mRNA in the cell—yet we still do not have a complete understanding of which proteins bind to mRNA, which of these bind concurrently, and when and where in the cell they bind. We describe here a method to identify the proteins that bind to RNA concurrently with an RBP of interest, using quantitative mass spectrometry combined with RNase treatment of affinity-purified RNA–protein complexes. We applied this method to the known RBPs Pab1, Nab2, and Puf3. Our method significantly enriched for known RBPs and is a clear improvement upon previous approaches in yeast. Our data reveal that some reported protein–protein interactions may instead reflect simultaneous binding to shared RNA targets. We also discovered more than 100 candidate RBPs, and we independently confirmed that 77% (23/30) bind directly to RNA. The previously recognized functions of the confirmed novel RBPs were remarkably diverse, and we mapped the RNA-binding region of one of these proteins, the transcriptional coactivator Mbf1, to a region distinct from its DNA-binding domain. Our results also provided new insights into the roles of Nab2 and Puf3 in post-transcriptional regulation by identifying other RBPs that bind simultaneously to the same mRNAs. While existing methods can identify sets of RBPs that interact with common RNA targets, our approach can determine which of those interactions are concurrent—a crucial distinction for understanding post-transcriptional regulation.
Collapse
Affiliation(s)
- Daniel M Klass
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
54
|
Fundakowski J, Hermesh O, Jansen RP. Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic 2012; 13:1642-52. [PMID: 22994588 DOI: 10.1111/tra.12011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 12/23/2022]
Abstract
Localization of messenger RNA (mRNAs) contributes to generation and maintenance of cellular asymmetry, embryonic development and neuronal function. The She1-3 protein machinery in Saccharomyces cerevisiae localizes >30 mRNAs to the bud tip, including 13 mRNAs encoding membrane or secreted proteins. Ribonucleoprotein (RNP) particles can co-localize with tubular endoplasmic reticulum (ER) structures that form the initial elements for segregation of cortical ER (cER), suggesting a coordination of mRNA localization and cER distribution. By investigating localization of MS2-tagged mRNAs in yeast defective at various stages of cER segregation, we demonstrate that proper cER segregation is required for localization of only a subset of mRNAs. These mRNAs include WSC2, IST2, EAR1 and SRL1 that encode membrane or ER associated proteins and are expressed during S and G2 phases of the cell cycle when tubular ER movement into the bud occurs. Translation of WSC2 is not required for localization, ruling out co-translational targeting of this mRNA. Localization of ASH1 mRNA is independent of cER segregation, which is consistent with the expression pattern of ASH1 at late mitosis. Our findings indicate the presence of two different pathways to localize mRNAs to the yeast bud.
Collapse
Affiliation(s)
- Julia Fundakowski
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, 72076, Germany
| | | | | |
Collapse
|
55
|
Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction. PLoS One 2012; 7:e46868. [PMID: 23056498 PMCID: PMC3466194 DOI: 10.1371/journal.pone.0046868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/05/2012] [Indexed: 12/18/2022] Open
Abstract
Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis–elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs), which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically–inducible RNA–protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i) the Tet Repressor protein (TetR) genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii) a target transcript containing genetically encoded TetR–binding RNA aptamers. TetR–fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.
Collapse
|
56
|
Gonsalvez GB, Long RM. Spatial regulation of translation through RNA localization. F1000 BIOLOGY REPORTS 2012; 4:16. [PMID: 22912650 PMCID: PMC3412389 DOI: 10.3410/b4-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA localization is a mechanism to post-transcriptionally regulate gene
expression. Eukaryotic organisms ranging from fungi to mammals localize mRNAs to
spatially restrict synthesis of specific proteins to distinct regions of the
cytoplasm. In this review, we provide a general summary of RNA localization
pathways in Saccharomyces cerevisiae, Xenopus,
Drosophila and mammalian neurons.
Collapse
Affiliation(s)
- Graydon B. Gonsalvez
- Department of Cellular Biology and
Anatomy, Georgia Health Sciences UniversityC2915D,
1459 Laney Walker Blvd., Augusta, GA
30912USA
| | - Roy M. Long
- Department of Microbiology, Immunology
& Molecular Genetics, Medical College of
Wisconsin8701 Watertown Plank Rd., Milwaukee, WI
53226USA
| |
Collapse
|
57
|
Rajyaguru P, Parker R. RGG motif proteins: modulators of mRNA functional states. Cell Cycle 2012; 11:2594-9. [PMID: 22767211 PMCID: PMC3873214 DOI: 10.4161/cc.20716] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A recent report demonstrates that a subset of RGG-motif proteins can bind translation initiation factor eIF4G and repress mRNA translation. This adds to the growing number of roles RGG-motif proteins play in modulating transcription, splicing, mRNA export and now translation. Herein, we review the nature and breadth of functions of RGG-motif proteins. In addition, the interaction of some RGG-motif proteins and other translation repressors with eIF4G highlights the role of eIF4G as a general modulator of mRNA function and not solely as a translation initiation factor.
Collapse
Affiliation(s)
- Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, Tucson, AZ, USA
| | | |
Collapse
|
58
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
59
|
Jansen RP, Niessing D. Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes--an overview. Curr Protein Pept Sci 2012; 13:284-93. [PMID: 22708485 PMCID: PMC3474952 DOI: 10.2174/138920312801619493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 12/11/2022]
Abstract
At all steps from transcription to translation, RNA-binding proteins play important roles in determining mRNA function. Initially it was believed that for the vast majority of transcripts the role of RNA-binding proteins is limited to general functions such as splicing and translation. However, work from recent years showed that members of this class of proteins also recognize several mRNAs via cis-acting elements for their incorporation into large motor-containing particles. These particles are transported to distant subcellular sites, where they become subsequently translated. This process, called mRNA localization, occurs along microtubules or actin filaments, and involves kinesins, dyneins, as well as myosins. Although mRNA localization has been detected in a large number of organisms from fungi to humans, the underlying molecular machineries are not well understood. In this review we will outline general principles of mRNA localization and highlight three examples, for which a comparably large body of information is available. The first example is She2p/She3p-dependent localization of ASH1 mRNA in budding yeast. It is particularly well suited to highlight the interdependence between different steps of mRNA localization. The second example is Staufen-dependent localization of oskar mRNA in the Drosophila embryo, for which the importance of nuclear events for cytoplasmic localization and translational control has been clearly demonstrated. The third example summarizes Egalitarian/Bicaudal D-dependent mRNA transport events in the oocyte and embryo of Drosophila. We will highlight general themes and differences, point to similarities in other model systems, and raise open questions that might be answered in the coming years.
Collapse
Affiliation(s)
- Ralf-Peter Jansen
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| |
Collapse
|
60
|
Conservation of the RNA Transport Machineries and Their Coupling to Translation Control across Eukaryotes. Comp Funct Genomics 2012; 2012:287852. [PMID: 22666086 PMCID: PMC3361156 DOI: 10.1155/2012/287852] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Restriction of proteins to discrete subcellular regions is a common mechanism to establish cellular asymmetries and depends on a coordinated program of mRNA localization and translation control. Many processes from the budding of a yeast to the establishment of metazoan embryonic axes and the migration of human neurons, depend on this type of cell polarization. How factors controlling transport and translation assemble to regulate at the same time the movement and translation of transported mRNAs, and whether these mechanisms are conserved across kingdoms is not yet entirely understood. In this review we will focus on some of the best characterized examples of mRNA transport machineries, the "yeast locasome" as an example of RNA transport and translation control in unicellular eukaryotes, and on the Drosophila Bic-D/Egl/Dyn RNA localization machinery as an example of RNA transport in higher eukaryotes. This focus is motivated by the relatively advanced knowledge about the proteins that connect the localizing mRNAs to the transport motors and the many well studied proteins involved in translational control of specific transcripts that are moved by these machineries. We will also discuss whether the core of these RNA transport machineries and factors regulating mRNA localization and translation are conserved across eukaryotes.
Collapse
|
61
|
Rajyaguru P, She M, Parker R. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 2012; 45:244-54. [PMID: 22284680 DOI: 10.1016/j.molcel.2011.11.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/25/2011] [Accepted: 11/04/2011] [Indexed: 12/30/2022]
Abstract
The formation of mRNPs controls the interaction of the translation and degradation machinery with individual mRNAs. The yeast Scd6 protein and its orthologs regulate translation and mRNA degradation in yeast, C. elegans, D. melanogaster, and humans by an unknown mechanism. We demonstrate that Scd6 represses translation by binding the eIF4G subunit of eIF4F in a manner dependent on its RGG domain, thereby forming an mRNP repressed for translation initiation. Strikingly, several other RGG domain-containing proteins in yeast copurify with eIF4E/G and we demonstrate that two such proteins, Npl3 and Sbp1, also directly bind eIF4G and repress translation in a manner dependent on their RGG motifs. These observations identify the mechanism of Scd6 function through its RGG motif and indicate that eIF4G plays an important role as a scaffolding protein for the recruitment of translation repressors.
Collapse
Affiliation(s)
- Purusharth Rajyaguru
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
62
|
Casolari JM, Thompson MA, Salzman J, Champion LM, Moerner WE, Brown PO. Widespread mRNA association with cytoskeletal motor proteins and identification and dynamics of myosin-associated mRNAs in S. cerevisiae. PLoS One 2012; 7:e31912. [PMID: 22359641 PMCID: PMC3281097 DOI: 10.1371/journal.pone.0031912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/15/2012] [Indexed: 01/08/2023] Open
Abstract
Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe here a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches.
Collapse
Affiliation(s)
- Jason M. Casolari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael A. Thompson
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Lowry M. Champion
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
63
|
Heym RG, Niessing D. Principles of mRNA transport in yeast. Cell Mol Life Sci 2011; 69:1843-53. [PMID: 22159587 PMCID: PMC3350770 DOI: 10.1007/s00018-011-0902-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/20/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022]
Abstract
mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.
Collapse
Affiliation(s)
- Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 81377 Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 81377 Munich, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
64
|
Eliyahu E, Lesnik C, Arava Y. The protein chaperone Ssa1 affects mRNA localization to the mitochondria. FEBS Lett 2011; 586:64-9. [PMID: 22138184 DOI: 10.1016/j.febslet.2011.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/16/2022]
Abstract
Many nuclear-transcribed mRNAs encoding mitochondrial proteins are localized near the mitochondrial outer membrane. A yet unresolved question is whether protein synthesis is important for transport of these mRNAs to their destination. Herein we present a connection between mRNA localization in yeast and the protein chaperone Ssa1. Ssa1 depletion lowered mRNA association with mitochondria while its overexpression increased it. A genome-wide analysis revealed that Ssa proteins preferentially affect mRNAs encoding hydrophobic proteins, which are expected targets for these protein chaperones. Importantly, deletion of the mitochondrial receptor Tom70 abolished the impact of Ssa1 overexpression on mRNAs encoding Tom70 targets. Taken together, our results suggest a role for Ssa1 in mediating localization of nascent peptide-ribosome-mRNA complexes to the mitochondria, consistent with a co-translational transport process.
Collapse
Affiliation(s)
- Erez Eliyahu
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
65
|
Abstract
Genetic variation between individuals is essential to evolution and adaptation. However, intra-organismic genetic variation also shapes the life histories of many organisms, including filamentous fungi. A single fungal syncytium can harbor thousands or millions of mobile and potentially genotypically different nuclei, each having the capacity to regenerate a new organism. Because the dispersal of asexual or sexual spores propagates individual nuclei in many of these species, selection acting at the level of nuclei creates the potential for competitive and cooperative genome dynamics. Recent work in Neurospora crassa and Sclerotinia sclerotiorum has illuminated how nuclear populations are coordinated for fungal growth and other behaviors and has revealed both molecular and physical mechanisms for preventing and policing inter-genomic conflict. Recent results from population-level genomic studies in a variety of filamentous fungi suggest that nuclear exchange between mycelia and recombination between heterospecific nuclei may be of more importance to fungal evolution, diversity and the emergence of newly virulent strains than has previously been recognized.
Collapse
Affiliation(s)
- Marcus Roper
- Department of Mathematics, University of California, Berkeley, USA
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Chris Ellison
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| |
Collapse
|
66
|
RNA-binding protein Khd1 and Ccr4 deadenylase play overlapping roles in the cell wall integrity pathway in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 10:1340-7. [PMID: 21873511 DOI: 10.1128/ec.05181-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae RNA-binding protein Khd1/Hek2 associates with hundreds of potential mRNA targets preferentially, including the mRNAs encoding proteins localized to the cell wall and plasma membrane. We have previously revealed that Khd1 positively regulates expression of MTL1 mRNA encoding a membrane sensor in the cell wall integrity (CWI) pathway. However, a khd1Δ mutation has no detectable phenotype on cell wall synthesis. Here we show that the khd1Δ mutation causes a severe cell lysis when combined with the deletion of the CCR4 gene encoding a cytoplasmic deadenylase. We identified the ROM2 mRNA, encoding a guanine nucleotide exchange factor (GEF) for Rho1, as a target for Khd1 and Ccr4. The ROM2 mRNA level was decreased in the khd1Δ ccr4Δ mutant, and ROM2 overexpression suppressed the cell lysis of the khd1Δ ccr4Δ mutant. We also found that Ccr4 negatively regulates expression of the LRG1 mRNA encoding a GTPase-activating protein (GAP) for Rho1. The LRG1 mRNA level was increased in the ccr4Δ and khd1Δ ccr4Δ mutants, and deletion of LRG1 suppressed the cell lysis of the khd1Δ ccr4Δ mutant. Our results presented here suggest that Khd1 and Ccr4 modulate a signal from Rho1 in the CWI pathway by regulating the expression of RhoGEF and RhoGAP.
Collapse
|
67
|
Paix A, Le Nguyen PN, Sardet C. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER). Dev Biol 2011; 357:211-26. [PMID: 21723275 DOI: 10.1016/j.ydbio.2011.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/07/2023]
Abstract
Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum.
Collapse
Affiliation(s)
- Alexandre Paix
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, BioMarCell, UMR BioDev, Observatoire Océanologique, Villefranche-sur-mer, France
| | | | | |
Collapse
|
68
|
Müller M, Heym RG, Mayer A, Kramer K, Schmid M, Cramer P, Urlaub H, Jansen RP, Niessing D. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 2011; 9:e1000611. [PMID: 21526221 PMCID: PMC3079584 DOI: 10.1371/journal.pbio.1000611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 03/10/2011] [Indexed: 11/18/2022] Open
Abstract
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes. In eukaryotes, hundreds of mRNAs are localized by specialized transport complexes. For localization, transcripts are recognized by RNA-binding proteins and incorporated into motor-containing messenger ribonucleoprotein particles (mRNPs). To date, the molecular assembly of such mRNPs is not well understood and most details on cargo specificity remain unresolved. We used ASH1-mRNA transport in yeast to provide a first assessment of where and how localizing mRNAs are specifically recognized and incorporated into mRNPs. By using in vitro–interaction and reconstitution assays, we found that none of the implicated mRNA-binding proteins showed highly specific cargo binding. Instead, we identified the cytoplasmic myosin adapter She3p as additional RNA-binding protein. We further found that only the complex of the RNA-binding proteins She2p and She3p achieves synergistic cargo binding, with an at least 60-fold higher affinity for localizing mRNAs when compared to control RNA. Mutational studies identified a C-terminal RNA-binding fragment of She3p to be important for synergistic RNA binding with She2p. The observed cargo specificity of the ternary complex is considerably higher than previously reported for localizing mRNAs. It suggests that RNA binding for mRNP localization generally exhibits higher selectivity than inferred from previous in vitro data. This conclusion is fully consistent with a large body of in vivo evidence from different organisms. Since the ternary yeast complex only assembles in the cytoplasm, specific mRNA recognition might be limited to the very last steps of mRNP assembly. Remarkably, the mRNA itself triggers the assembly of mature, motor-containing complexes. Our reconstitution of a major portion of the mRNA-transport complex offers new and unexpected insights into the molecular assembly of specific, localization-competent mRNPs and provides an important step forward in our mechanistic understanding of mRNA localization in general. In eukaryotes, the majority of cells are asymmetric and a way to establish such polarity is directional transport of macromolecules along cytoskeletal filaments. Among the cargoes transported, mRNAs play an essential role, as their localized translation contributes significantly to the generation of asymmetry. To date, hundreds of asymmetrically localized mRNAs in various organisms have been identified. These mRNAs are recognized by RNA-binding proteins and incorporated into large motor-containing messenger ribonucleoprotein particles (mRNPs) whose molecular assembly is poorly understood. In this study, we used the well-characterized process of ASH1-mRNA transport in Saccharomyces cerevisiae to address the question of how localizing mRNAs are recognized and specifically incorporated into mRNPs. Surprisingly, we found that the previously implicated mRNA-binding proteins She2p and Puf6p do not bind to cargo mRNAs with high specificity. Instead, the cytoplasmic motor-adapter protein She3p is responsible for synergistic cargo binding with She2p and for the stable incorporation of specific localizing mRNA into the transport complex. We propose that the specific recognition of localizing mRNAs happens at the very last step of cytoplasmic mRNP maturation. Other organisms might employ similar mechanisms to establish cellular polarity.
Collapse
Affiliation(s)
- Marisa Müller
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Roland Gerhard Heym
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Andreas Mayer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria Schmid
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Patrick Cramer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- Center for Integrated Protein Science CIPSM, München, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf-Peter Jansen
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- * E-mail:
| |
Collapse
|
69
|
Papanayotou I, Sun B, Roth AF, Davis NG. Protein aggregation induced during glass bead lysis of yeast. Yeast 2011; 27:801-16. [PMID: 20641011 DOI: 10.1002/yea.1771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein-protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation.
Collapse
Affiliation(s)
- Irene Papanayotou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
70
|
Liao G, Ma X, Liu G. An RNA-zipcode-independent mechanism that localizes Dia1 mRNA to the perinuclear ER through interactions between Dia1 nascent peptide and Rho-GTP. J Cell Sci 2011; 124:589-99. [PMID: 21266463 DOI: 10.1242/jcs.072421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Signal-peptide-mediated ER localization of mRNAs encoding for membrane and secreted proteins, and RNA-zipcode-mediated intracellular targeting of mRNAs encoding for cytosolic proteins are two well-known mechanisms for mRNA localization. Here, we report a previously unidentified mechanism by which mRNA encoding for Dia1, a cytosolic protein without the signal peptide, is localized to the perinuclear ER in an RNA-zipcode-independent manner in fibroblasts. Dia1 mRNA localization is also independent of the actin and microtubule cytoskeleton but requires translation and the association of Dia1 nascent peptide with the ribosome-mRNA complex. Sequence mapping suggests that interactions of the GTPase binding domain of Dia1 peptide with active Rho are important for Dia1 mRNA localization. This mechanism can override the β-actin RNA zipcode and redirect β-actin mRNA to the perinuclear region, providing a new way to manipulate intracellular mRNA localization.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
71
|
Slobodin B, Gerst JE. RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes. Methods Mol Biol 2011; 714:387-406. [PMID: 21431754 DOI: 10.1007/978-1-61779-005-8_24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNA metabolism involves regulatory processes, such as transcription, splicing, nuclear export, transport and localization, association with sites of RNA modification, silencing and decay, and necessitates a wide variety of diverse RNA-interacting proteins. These interactions can be direct via RNA-binding proteins (RBPs) or indirect via other proteins and RNAs that form ribonucleoprotein complexes that together control RNA fate. While pull-down methods for the isolation of known RBPs are commonly used, strategies have also been described for the direct isolation of messenger RNAs (mRNAs) and their associated factors. The latter techniques allow for the identification of interacting proteins and RNAs, but most suffer from problems of low sensitivity and high background. Here we describe a simple and highly effective method for RNA purification and identification (RaPID) that allows for the isolation of specific mRNAs of interest from yeast and mammalian cells, and subsequent analysis of the associated proteins and RNAs using mass spectrometry and reverse transcription-PCR, respectively. This method employs the MS2 coat RBP fused to both GFP and streptavidin-binding protein to precipitate MS2 aptamer-tagged RNAs using immobilized streptavidin.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
72
|
Powrie EA, Zenklusen D, Singer RH. A nucleoporin, Nup60p, affects the nuclear and cytoplasmic localization of ASH1 mRNA in S. cerevisiae. RNA (NEW YORK, N.Y.) 2011; 17:134-144. [PMID: 21036941 PMCID: PMC3004054 DOI: 10.1261/rna.1210411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/27/2010] [Indexed: 05/30/2023]
Abstract
The biogenesis of a localization-competent mRNP begins in the nucleus. It is thought that the coordinated action of nuclear and cytoplasmic components of the localization machinery is required for the efficient export and subsequent subcellular localization of these mRNAs in the cytoplasm. Using quantitative poly(A)(+) and transcript-specific fluorescent in situ hybridization, we analyzed different nonessential nucleoporins and nuclear pore-associated proteins for their potential role in mRNA export and localization. We found that Nup60p, a nuclear pore protein located on the nucleoplasmic side of the nuclear pore complex, was required for the mRNA localization pathway. In a Δnup60 background, localized mRNAs were preferentially retained within the nucleus compared to nonlocalized transcripts. However, the export block was only partial and some transcripts could still reach the cytoplasm. Importantly, downstream processes were also affected. Localization of ASH1 and IST2 mRNAs to the bud was impaired in the Δnup60 background, suggesting that the assembly of a localization competent mRNP ("locasome") was inhibited when NUP60 was deleted. These results demonstrate transcript specificity of a nuclear mRNA retention defect and identify a specific nucleoporin as a functional component of the localization pathway in budding yeast.
Collapse
Affiliation(s)
- Erin A Powrie
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
73
|
Cridge AG, Castelli LM, Smirnova JB, Selley JN, Rowe W, Hubbard SJ, McCarthy JE, Ashe MP, Grant CM, Pavitt GD. Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Res 2010; 38:8039-50. [PMID: 20705650 PMCID: PMC3001062 DOI: 10.1093/nar/gkq686] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/12/2010] [Accepted: 07/20/2010] [Indexed: 12/18/2022] Open
Abstract
eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3'-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.
Collapse
Affiliation(s)
- Andrew G. Cridge
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Lydia M. Castelli
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Julia B. Smirnova
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Julian N. Selley
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - William Rowe
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Simon J. Hubbard
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - John E.G. McCarthy
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mark P. Ashe
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Christopher M. Grant
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Graham D. Pavitt
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
74
|
Yasuda K, Kotani T, Ota R, Yamashita M. Transgenic zebrafish reveals novel mechanisms of translational control of cyclin B1 mRNA in oocytes. Dev Biol 2010; 348:76-86. [DOI: 10.1016/j.ydbio.2010.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 12/21/2022]
|
75
|
Mauchi N, Ohtake Y, Irie K. Stability control of MTL1 mRNA by the RNA-binding protein Khd1p in yeast. Cell Struct Funct 2010; 35:95-105. [PMID: 20953064 DOI: 10.1247/csf.10011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Khd1p (KH-domain protein 1) is a yeast RNA-binding protein highly homologous to mammalian hnRNP K. Khd1p associates with hundreds of potential mRNA targets including a bud-localized ASH1 mRNA and mRNAs encoding membrane-associated proteins such as Mid2p and Mtl1p. While Khd1p negatively regulates gene expression of Ash1p by translational repression, Khd1p positively regulates gene expression of Mtl1p by mRNA stabilization. To investigate how Khd1p regulates the stability of MTL1 mRNA, we searched for cis-acting elements and trans-acting factors controlling MTL1 mRNA stability. Regional analysis revealed that partial deletion of the coding sequences of MTL1 mRNA restored the decreased MTL1 mRNA and protein levels in khd1Δ mutants. This region, encompassing nucleotides 532 to 1032 of the Mtl1p coding sequence, contains CNN repeats that direct Khd1p-binding. Insertion of this sequence into other mRNAs conferred mRNA instability in khd1Δ mutants. We further searched for factors involved in the destabilization of MTL1 mRNA. Mutations in CCR4 and CAF1/POP2, encoding major cytoplasmic deadenylases, or of SKI genes, which code for components of a complex involved in 3' to 5' degradation, did not restore the decreased MTL1 mRNA levels caused by khd1Δ mutation. However, mutations in DCP1 and DCP2, encoding a decapping enzyme complex, and XRN1, encoding a 5'-3' exonuclease, restored the decreased MTL1 mRNA levels. Furthermore, Khd1p colocalized with Dcp1p in processing bodies, cytoplasmic sites for mRNA degradation. Our results suggest that MTL1 mRNA bears a cis-acting element involved in destabilization by the decapping enzyme and the 5'-3' exonuclease, and Khd1p stabilizes MTL1 mRNA through binding to this element.
Collapse
Affiliation(s)
- Naoko Mauchi
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tennoudai, Tsukuba, Japan
| | | | | |
Collapse
|
76
|
Tsvetanova NG, Klass DM, Salzman J, Brown PO. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 2010; 5. [PMID: 20844764 PMCID: PMC2937035 DOI: 10.1371/journal.pone.0012671] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022] Open
Abstract
The vast landscape of RNA-protein interactions at the heart of post-transcriptional regulation remains largely unexplored. Indeed it is likely that, even in yeast, a substantial fraction of the regulatory RNA-binding proteins (RBPs) remain to be discovered. Systematic experimental methods can play a key role in discovering these RBPs - most of the known yeast RBPs lack RNA-binding domains that might enable this activity to be predicted. We describe here a proteome-wide approach to identify RNA-protein interactions based on in vitro binding of RNA samples to yeast protein microarrays that represent over 80% of the yeast proteome. We used this procedure to screen for novel RBPs and RNA-protein interactions. A complementary mass spectrometry technique also identified proteins that associate with yeast mRNAs. Both the protein microarray and mass spectrometry methods successfully identify previously annotated RBPs, suggesting that other proteins identified in these assays might be novel RBPs. Of 35 putative novel RBPs identified by either or both of these methods, 12, including 75% of the eight most highly-ranked candidates, reproducibly associated with specific cellular RNAs. Surprisingly, most of the 12 newly discovered RBPs were enzymes. Functional characteristics of the RNA targets of some of the novel RBPs suggest coordinated post-transcriptional regulation of subunits of protein complexes and a possible link between mRNA trafficking and vesicle transport. Our results suggest that many more RBPs still remain to be identified and provide a set of candidates for further investigation.
Collapse
Affiliation(s)
- Nikoleta G. Tsvetanova
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel M. Klass
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Shen Z, St-Denis A, Chartrand P. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev 2010; 24:1914-26. [PMID: 20713510 PMCID: PMC2932973 DOI: 10.1101/gad.1937510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/13/2010] [Indexed: 12/13/2022]
Abstract
Pre-mRNA processing is coupled with transcription. It is still unclear if the transcription machinery can also directly affect the cytoplasmic fate of a transcript, such as its intracellular localization. In yeast, the RNA-binding protein She2p binds several mRNAs and targets them for localization at the bud. Here we report that She2p is recruited cotranscriptionally to the nascent bud-localized ASH1, IST2, and EAR1 mRNA. She2p interacts in vivo with the elongating forms of RNA polymerase II (pol II) via the transcription elongation factor Spt4-Spt5. Mutations in either SPT4 or SPT5 reduce the cotranscriptional recruitment of She2p on the ASH1 gene, disrupt the proper localization of ASH1 mRNA at the bud tip, and affect Ash1p sorting to the daughter cell nucleus. We propose that She2p is recruited by the RNA pol II machinery prior to its transfer to nascent bud-localized mRNAs. Indeed, She2p is present with RNA pol II on genes coding for localized or nonlocalized transcripts, but is associated with nascent mRNA only on genes coding for bud-localized transcripts. Moreover, a She2p mutant defective in RNA binding still associates with RNA pol II transcribed genes. This study uncovers a novel mechanism for the cotranscriptional assembly of mRNP complexes primed for localization in the cytoplasm.
Collapse
Affiliation(s)
- Zhifa Shen
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| | - Anik St-Denis
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| |
Collapse
|
78
|
Heuck A, Fetka I, Brewer DN, Hüls D, Munson M, Jansen RP, Niessing D. The structure of the Myo4p globular tail and its function in ASH1 mRNA localization. ACTA ACUST UNITED AC 2010; 189:497-510. [PMID: 20439999 PMCID: PMC2867299 DOI: 10.1083/jcb.201002076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A conserved patch of amino acids in the globular tail of type V myosin binds She3p to localize ASH1 mRNA to the bud of dividing yeast cells. Type V myosin (MyoV)–dependent transport of cargo is an essential process in eukaryotes. Studies on yeast and vertebrate MyoV showed that their globular tails mediate binding to the cargo complexes. In Saccharomyces cerevisiae, the MyoV motor Myo4p interacts with She3p to localize asymmetric synthesis of HO 1 (ASH1) mRNA into the bud of dividing cells. A recent study showed that localization of GFP-MS2–tethered ASH1 particles does not require the Myo4p globular tail, challenging the supposed role of this domain. We assessed ASH1 mRNA and Myo4p distribution more directly and found that their localization is impaired in cells expressing globular tail–lacking Myo4p. In vitro studies further show that the globular tail together with a more N-terminal linker region is required for efficient She3p binding. We also determined the x-ray structure of the Myo4p globular tail and identify a conserved surface patch important for She3p binding. The structure shows pronounced similarities to membrane-tethering complexes and indicates that Myo4p may not undergo auto-inhibition of its motor domain.
Collapse
Affiliation(s)
- Alexander Heuck
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Wolf JJ, Dowell RD, Mahony S, Rabani M, Gifford DK, Fink GR. Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics 2010; 185:513-22. [PMID: 20382833 PMCID: PMC2881133 DOI: 10.1534/genetics.110.113944] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/07/2010] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae can divide asymmetrically so that the mother and daughter cells have different fates. We show that the RNA-binding protein Khd1 regulates asymmetric expression of FLO11 to determine daughter cell fate during filamentous growth. Khd1 represses transcription of FLO11 indirectly through its regulation of ASH1 mRNA. Khd1 also represses FLO11 through a post-transcriptional mechanism independent of ASH1. Cross-linking immunoprecipitation (CLIP) coupled with high-throughput sequencing shows that Khd1 directly binds repetitive sequences in FLO11 mRNA. Khd1 inhibits translation through this interaction, establishing feed-forward repression of FLO11. This regulation enables changes in FLO11 expression between mother and daughter cells, which establishes the asymmetry required for the developmental transition between yeast form and filamentous growth.
Collapse
Affiliation(s)
- Joshua J. Wolf
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 and Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robin D. Dowell
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 and Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Shaun Mahony
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 and Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Michal Rabani
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 and Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David K. Gifford
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 and Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gerald R. Fink
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 and Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
80
|
Abstract
The localization and local translation of mRNAs constitute an important mechanism to promote the correct subcellular targeting of proteins. mRNA localization is mediated by the active transport of mRNPs, large assemblies consisting of mRNAs and associated factors such as RNA-binding proteins. Molecular motors move mRNPs along the actin or microtubule cytoskeleton for short-distance or long-distance trafficking, respectively. In filamentous fungi, microtubule-based long-distance transport of vesicles, which are involved in membrane and cell wall expansion, supports efficient hyphal growth. Recently, we discovered that the microtubule-mediated transport of mRNAs is essential for the fast polar growth of infectious filaments in the corn pathogen Ustilago maydis. Combining in vivo UV cross-linking and RNA live imaging revealed that the RNA-binding protein Rrm4, which constitutes an integral part of the mRNP transport machinery, mediates the transport of distinct mRNAs encoding polarity factors, protein synthesis factors, and mitochondrial proteins. Moreover, our results indicate that microtubule-dependent mRNA transport is evolutionarily conserved from fungi to higher eukaryotes. This raises the exciting possibility of U. maydis as a model system to uncover basic concepts of long-distance mRNA transport.
Collapse
|
81
|
Garcia M, Delaveau T, Goussard S, Jacq C. Mitochondrial presequence and open reading frame mediate asymmetric localization of messenger RNA. EMBO Rep 2010; 11:285-91. [PMID: 20224577 PMCID: PMC2854591 DOI: 10.1038/embor.2010.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 11/09/2022] Open
Abstract
Although a considerable amount of data have been gathered on mitochondrial translocases, which control the import of a large number of nuclear-encoded proteins, the preceding steps taking place in the cytosol are poorly characterized. The localization of messenger RNAs (mRNAs) on the surface of mitochondria was recently shown to involve specific classes of protein and could be an important regulatory step. By using an improved statistical fluorescent in situ hybridization technique, we analysed the elements of the ATP2 open reading frame that control its mRNA asymmetric localization. The amino-terminal mitochondrial targeting peptide (MTS) and translation of two elements in the coding sequence, R1 and R2, were required for anchoring of ATP2 mRNA to mitochondria. Unexpectedly, any MTS can replace ATP2 MTS, whereas R1 and R2 are specifically required to maintain perimitochondrial mRNA localization. These data connect the well-known MTS-translocase interaction step with a site-specific translation step and offer a mechanistic description for a co-translational import process.
Collapse
Affiliation(s)
- Mathilde Garcia
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, Paris 75230, France
| | - Thierry Delaveau
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, Paris 75230, France
| | - Sebastien Goussard
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, Paris 75230, France
| | - Claude Jacq
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, Paris 75230, France
| |
Collapse
|
82
|
Meignin C, Davis I. Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 2010; 22:112-9. [DOI: 10.1016/j.ceb.2009.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
|
83
|
Hannapel DJ. A model system of development regulated by the long-distance transport of mRNA. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:40-52. [PMID: 20074139 DOI: 10.1111/j.1744-7909.2010.00911.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1-types to regulate numerous developmental processes. In potato, the RNA of several BEL1-like transcription factors has been identified in phloem cells. One of these, StBEL5, and its Knox protein partner regulate tuber formation by targeting genes that control growth. RNA detection methods and grafting experiments demonstrated that StBEL5 transcripts move across a graft union to localize in stolon tips, the site of tuber induction. This movement of RNA originates in source leaf veins and petioles and is induced by a short-day photoperiod, regulated by the untranslated regions, and correlated with enhanced tuber production. Addition of the StBEL5 untranslated regions to another BEL1-like mRNA resulted in its preferential transport to stolon tips leading to increased tuber production. Upon fusion of the untranslated regions of StBEL5 to a beta-glucuronidase marker, translation in tobacco protoplasts was repressed by those constructs containing the 3' untranslated sequence. The untranslated regions of the StBEL5 mRNA are involved in mediating its long-distance transport and in controlling translation. The 3' untranslated sequence contains an abundance of conserved motifs that may serve as binding motifs for RNA-binding proteins. Because of their presence in the phloem sieve tube system, their unique untranslated region sequences and their diverse RNA accumulation patterns, the family of BEL1-like RNAs from potato represents a valuable model for studying the long-distance transport of full-length mRNAs and their role in development.
Collapse
Affiliation(s)
- David J Hannapel
- Plant Biology Major, 253 Horticulture Hall, Iowa State University, Ames, IA 50011-1100, USA.
| |
Collapse
|
84
|
|
85
|
Jansen JM, Wanless AG, Seidel CW, Weiss EL. Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control. Curr Biol 2009; 19:2114-20. [PMID: 19962308 DOI: 10.1016/j.cub.2009.10.071] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 11/30/2022]
Abstract
Spatial control of gene expression, at the level of both transcription and translation, is critical for cellular differentiation [1-4]. In budding yeast, the conserved Ndr/warts kinase Cbk1 localizes to the new daughter cell, where it acts as a cell fate determinant. Cbk1 both induces a daughter-specific transcriptional program and promotes morphogenesis in a less well-defined role [5-8]. Cbk1 is essential in cells expressing functional Ssd1, an RNA-binding protein of unknown function [9-11]. We show here that Cbk1 inhibits Ssd1 in vivo. Loss of this regulation dramatically slows bud expansion, leading to highly aberrant cell wall organization at the site of cell growth. Ssd1 associates with specific mRNAs, a significant number of which encode cell wall remodeling proteins. Translation of these messages is rapidly and specifically suppressed when Cbk1 is inhibited; this suppression requires Ssd1. Transcription of several of these Ssd1-associated mRNAs is also regulated by Cbk1, indicating that the kinase controls both the transcription and translation of daughter-specific mRNAs. This work suggests a novel system by which cells coordinate localized expression of genes involved in processes critical for cell growth and division.
Collapse
Affiliation(s)
- Jaclyn M Jansen
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
86
|
Müller M, Richter K, Heuck A, Kremmer E, Buchner J, Jansen RP, Niessing D. Formation of She2p tetramers is required for mRNA binding, mRNP assembly, and localization. RNA (NEW YORK, N.Y.) 2009; 15:2002-12. [PMID: 19710186 PMCID: PMC2764475 DOI: 10.1261/rna.1753309] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/30/2009] [Indexed: 05/08/2023]
Abstract
In eukaryotic cells, dozens to hundreds of different mRNAs are localized by specialized motor-dependent transport complexes. One of the best-studied examples for directional mRNA transport is the localization of ASH1 mRNA in Saccharomyces cerevisiae. For transport, ASH1 mRNA is bound by the unusual RNA-binding protein She2p. Although previous results indicated that She2p forms dimers required for RNA binding and transcript localization, it remained unclear if the dimer constitutes the minimal RNA-binding unit assembling in vivo. By using analytical ultracentrifugation we found that She2p forms larger oligomeric complexes in solution. We also identified a point mutant that shows impaired oligomer formation. Size-exclusion chromatography suggests that She2p forms defined tetramers at physiological concentrations. Subsequent structural studies by small-angle X-ray scattering confirmed this finding and demonstrated that the previously observed She2p dimers interact in a head-to-head conformation to form an elongated tetrameric complex. This She2p tetramer suggests the generation of large continuous RNA-binding surfaces at both sides of the complex. Biochemical studies and immunostaining of cells confirmed that She2p tetramer formation is required for RNA binding, efficient mRNP assembly, and mRNA localization in vivo. Our finding on She2p tetramerization resolves previously raised questions on complex formation and mRNP function.
Collapse
Affiliation(s)
- Marisa Müller
- Institute of Structural Biology, Helmholtz Zentrum München, Genome Research Center for Environmental Health, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
87
|
Russell JH, Keiler KC. Subcellular localization of a bacterial regulatory RNA. Proc Natl Acad Sci U S A 2009; 106:16405-9. [PMID: 19805312 PMCID: PMC2752561 DOI: 10.1073/pnas.0904904106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
Eukaryotes and bacteria regulate the activity of some proteins by localizing them to discrete subcellular structures, and eukaryotes localize some RNAs for the same purpose. To explore whether bacteria also spatially regulate RNAs, the localization of tmRNA was determined using fluorescence in situ hybridization. tmRNA is a small regulatory RNA that is ubiquitous in bacteria and that interacts with translating ribosomes in a reaction known as trans-translation. In Caulobacter crescentus, tmRNA was localized in a cell-cycle-dependent manner. In G(1)-phase cells, tmRNA was found in regularly spaced foci indicative of a helix-like structure. After initiation of DNA replication, most of the tmRNA was degraded, and the remaining molecules were spread throughout the cytoplasm. Immunofluorescence assays showed that SmpB, a protein that binds tightly to tmRNA, was colocalized with tmRNA in the helix-like pattern. RNase R, the nuclease that degrades tmRNA, was localized in a helix-like pattern that was separate from the SmpB-tmRNA complex. These results suggest a model in which tmRNA-SmpB is localized to sequester tmRNA from RNase R, and localization might also regulate tmRNA-SmpB interactions with ribosomes.
Collapse
Affiliation(s)
- Jay H. Russell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, 401 Althouse Lab, University Park, PA 16802
| | - Kenneth C. Keiler
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, 401 Althouse Lab, University Park, PA 16802
| |
Collapse
|
88
|
She3p possesses a novel activity required for ASH1 mRNA localization in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:1072-83. [PMID: 19429778 DOI: 10.1128/ec.00084-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracellular and intercellular polarity requires that specific proteins be sorted to discreet locations within and between cells. One mechanism for sorting proteins is through RNA localization. In Saccharomyces cerevisiae, ASH1 mRNA localizes to the distal tip of the bud, resulting in the asymmetric sorting of the transcriptional repressor Ash1p. ASH1 mRNA localization requires four cis-acting localization elements and the trans-acting factors Myo4p, She3p, and She2p. Myo4p is a type V myosin motor that functions to directly transport ASH1 mRNA to the bud. She2p is an RNA-binding protein that directly interacts with the ASH1 mRNA cis-acting elements. Currently, the role for She3p in ASH1 mRNA localization is as an adaptor protein, since it can simultaneously associate with Myo4p and She2p. Here, we present data for two novel mutants of She3p, S348E and the double mutant S343E S361E, that are defective for ASH1 mRNA localization, and yet both of these mutants retain the ability to associate with Myo4p and She2p. These observations suggest that She3p possesses a novel activity required for ASH1 mRNA localization, and our data imply that this function is related to the ability of She3p to associate with ASH1 mRNA. Interestingly, we determined that She3p is phosphorylated, and global mass spectrometry approaches have determined that Ser 343, 348, and 361 are sites of phosphorylation, suggesting that the novel function for She3p could be negatively regulated by phosphorylation. The present study reveals that the current accepted model for ASH1 mRNA localization does not fully account for the function of She3p in ASH1 mRNA localization.
Collapse
|
89
|
Shen Z, Paquin N, Forget A, Chartrand P. Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 2009; 20:2265-75. [PMID: 19244342 PMCID: PMC2669033 DOI: 10.1091/mbc.e08-11-1151] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 12/16/2022] Open
Abstract
The transport and localization of mRNAs results in the asymmetric synthesis of specific proteins. In yeast, the nucleocytoplasmic shuttling protein She2 binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p-Myo4p complex. Although the cytoplasmic role of She2p in mRNA localization is well characterized, its nuclear function is still unclear. Here, we show that She2p contains a nonclassical nuclear localization signal (NLS) that is essential for its nuclear import via the importin alpha Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS leads to defective ASH1 mRNA localization and Ash1p sorting. Interestingly, these phenotypes mimic knockouts of LOC1 and PUF6, which encode for nuclear RNA-binding proteins that bind the ASH1 mRNA and control its translation. We find that She2p interacts with both Loc1p and Puf6p and that excluding She2p from the nucleus decreases this interaction. Absence of nuclear She2p disrupts the binding of Loc1p and Puf6p to the ASH1 mRNA, suggesting that nuclear import of She2p is necessary to recruit both factors to the ASH1 transcript. This study reveals that a direct coupling between localization and translation regulation factors in the nucleus is required for proper cytoplasmic localization of mRNAs.
Collapse
Affiliation(s)
- Zhifa Shen
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| | - Nicolas Paquin
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| | - Amélie Forget
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| |
Collapse
|
90
|
Besse F, Ephrussi A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 2008; 9:971-80. [PMID: 19023284 DOI: 10.1038/nrm2548] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
91
|
Hasegawa Y, Irie K, Gerber AP. Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA (NEW YORK, N.Y.) 2008; 14:2333-47. [PMID: 18805955 PMCID: PMC2578860 DOI: 10.1261/rna.1016508] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 08/04/2008] [Indexed: 05/20/2023]
Abstract
The RNA-binding protein Khd1p (KH-domain protein 1) is required for efficient localization of ASH1 mRNA to the bud-tip, probably acting as a translational repressor during mRNA transport in yeast. Here, we have systematically examined Khd1p mRNA targets and colocalization with known bud-tip-localized mRNAs in vivo. Affinity purification and DNA microarray analysis of Khd1p-associated mRNAs revealed hundreds of potential mRNAs targets, many of them encoding membrane-associated proteins. The putative targets include the messages for MID2, MTL1, WSC2, SRL1, EGT2, CLB2, ASH1, and Khd1p colocalizes with these mRNAs at the bud-tip. The combination of bioinformatics, RNA localization, and in vitro RNA-binding assays revealed that Khd1p binds to CNN repeats in coding regions of mRNA targets. Among the proteins encoded by previously known bud-tip-localized mRNAs, only Mtl1p levels were decreased in khd1Delta mutant cells, whereas Ash1p and Srl1p were reduced in cells overexpressing KHD1. Hence, Khd1p differentially affects gene expression possibly due to combinatorial arrangement with additional factors reflecting the redundant structure of post-transcriptional regulatory systems.
Collapse
Affiliation(s)
- Yuko Hasegawa
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 305-8575 Tsukuba, Japan
| | | | | |
Collapse
|
92
|
Abstract
Nonsense-mediated mRNA decay (NMD) performs two functions in eukaryotes, one in controlling the expression level of a substantial subset of genes and the other in RNA surveillance. In the vast majority of genes, nonsense mutations render the corresponding transcripts prone to surveillance and subject to rapid degradation by NMD. To examine whether some classes of nonsense transcripts escape surveillance, we asked whether NMD acts on mRNAs that undergo subcellular localization prior to translation. In Saccharomyces cerevisiae, wild-type ASH1 mRNA is one of several dozen transcripts that are exported from the mother-cell nucleus during mitotic anaphase, transported to the bud tip on actin cables, anchored at the bud tip, and translated. Although repressed during transport, translation is a prerequisite for NMD. We found that ash1 nonsense mutations affect transport and/or anchoring independently of NMD. The nonsense transcripts respond to NMD in a manner dependent on the position of the mutation. Maximal sensitivity to NMD occurs when transport and translational repression are simultaneously impaired. Overall, our results suggest a model in which ash1 mRNAs are insensitive to NMD while translation is repressed during transport but become sensitive once repression is relieved.
Collapse
|
93
|
Sánchez-Carbente MDR, Desgroseillers L. Understanding the importance of mRNA transport in memory. PROGRESS IN BRAIN RESEARCH 2008; 169:41-58. [PMID: 18394467 DOI: 10.1016/s0079-6123(07)00003-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA localization is an important mechanism to sort proteins to specific subcellular domains. In neurons, several mRNAs are localized in dendrites and their presence allows autonomous control of local translation in response to stimulation of specific synapses. Active constitutive and activity-induced mechanisms of mRNA transport have been described that represent critical steps in the establishment and maintenance of synaptic plasticity. In recent years, the molecular composition of different transporting units has been reported and the identification of proteins and mRNAs in these RNA granules contributes to our understanding of the key steps that regulate mRNA transport and translation. Although RNA granules are heterogeneous, several proteins are common to different RNA granule populations, suggesting that they play important roles in the formation of the granules and/or their regulation during transport and translation. About 1-4% of the neuron transcriptome is found in RNA granules and the characterization of bound mRNAs reveal that they encode proteins of the cytoskeleton, the translation machinery, vesicle trafficking, and/or proteins involved in synaptic plasticity. Non-coding RNAs and microRNAs are also found in dendrites and likely regulate RNA translation. These mechanisms of mRNA transport and local translation are critical for synaptic plasticity mediated by activity or experience and memory.
Collapse
|
94
|
Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 2008; 22:1037-50. [PMID: 18413716 DOI: 10.1101/gad.1611308] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Translational repression during mRNA transport is essential for spatial restriction of protein production. In the yeast Saccharomyces cerevisae, silencing of ASH1 mRNA before it is localized to the bud cortex in late anaphase is critical for asymmetric segregation of Ash1p to the daughter cell nucleus. Puf6p, an ASH1 mRNA-binding protein, has been implicated in this process as a translational repressor, but the underlying mechanism is unknown. Here, we used yeast extract-based in vitro translation assays, which recapitulate translation and phosphorylation, to characterize the mechanism of Puf6p-mediated translational regulation. We report that Puf6p interferes with the conversion of the 48S complex to the 80S complex during initiation, and this repression by Puf6p is mediated through the general translation factor eIF5B (Fun12p in S. cerevisiae). Puf6p interacts with Fun12p via the PUF domain, and this interaction is RNA-dependent and essential for translational repression by Puf6p. This repression is relieved by phosphorylation of the N-terminal region of Puf6p mediated by protein kinase CK2 (casein kinase II). Inhibition of phosphorylation at Ser31, Ser34, and Ser35 of Puf6p increases its translational repression and results in ASH1 mRNA delocalization. Our results indicate that Puf6p suppresses the translation initiation of ASH1 mRNA via interaction with Fun12p during its transport, and this repression can be released by CK2 phosphorylation in the N-terminal region of Puf6p when the mRNA reaches the bud tip.
Collapse
|
95
|
Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO Rep 2008; 9:781-7. [PMID: 18566598 DOI: 10.1038/embor.2008.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/09/2023] Open
Abstract
Cytoplasmic localization and localized translation of messenger RNAs contribute to asymmetrical protein distribution. Recognition of localized mRNAs by RNA-binding proteins can occur in the cytoplasm or, alternatively, co- or post-transcriptionally in the nucleus. In budding yeast, mRNAs destined for localization are bound by the She2 protein before their nuclear export. Here, we show that a specific transcript, known as ASH1 mRNA, and She2 localize specifically to the nucleolus when their nuclear export is blocked. Nucleolar She2 localization is enhanced in a She2 mutant that cannot bind to RNA. A fusion protein of the amino terminus of She3 and She2 (She3N-She2) fails to enter the nucleus, but does not impair ASH1 mRNA localization. Instead, these cells fail to distribute Ash1 protein asymmetrically, which is caused by a defective translational control of ASH1 mRNA. Our results indicate that the nucleolar transit of RNA-binding proteins such as She2 is necessary for the correct assembly of translationally silenced localizing messenger ribonucleoproteins.
Collapse
|
96
|
Rodriguez AJ, Czaplinski K, Condeelis JS, Singer RH. Mechanisms and cellular roles of local protein synthesis in mammalian cells. Curr Opin Cell Biol 2008; 20:144-9. [PMID: 18378131 PMCID: PMC2404115 DOI: 10.1016/j.ceb.2008.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/09/2008] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
After the export from the nucleus it turns out that all mRNAs are not treated equally. Not only is mRNA subject to translation, but also through RNA-binding proteins and other trans-acting factors, eukaryotic cells interpret codes for spatial sorting within the mRNA sequence. These codes instruct the cytoskeleton and translation apparatus to make decisions about where to transport and when to translate the intended protein product. Signaling pathways decode extra-cellular cues and can modify transport and translation factors in the appropriate cytoplasmic space to achieve translation locally. Identifying regulatory sites on transport factors as well as novel physiological functions for well-known translation factors has provided significant advances in how spatially controlled translation impacts cell function.
Collapse
Affiliation(s)
| | | | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Phone: (718)430-8646, Facsimile: (718)430-8697, , Web: http://singerlab.org/
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Phone: (718)430-8646, Facsimile: (718)430-8697, , Web: http://singerlab.org/
| |
Collapse
|
97
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
98
|
Paquin N, Chartrand P. Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol 2008; 18:105-11. [PMID: 18262421 DOI: 10.1016/j.tcb.2007.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Active mRNA transport and localization is an efficient way for cells to regulate the site and time of expression of specific proteins. Recent publications have identified factors involved in the sorting and translational regulation of bud-localized transcripts in Saccharomyces cerevisiae and uncovered interplay between mRNA trafficking, translational regulation and ER inheritance. mRNA localization at the bud tip of yeast cells depends on the She2p-She3p-Myo4p complex. To avoid any ectopic expression, translation of the bud-localized ASH1 mRNA is repressed by the translational repressors Puf6p and Khd1p during its transport. As this complex reaches the bud tip, phosphorylation of Khd1p by the membrane-associated kinase Yck1p activates the local translation of this transcript, thereby defining a fine-tuning mechanism of Ash1p expression.
Collapse
Affiliation(s)
- Nicolas Paquin
- Département de Biochimie, Université de Montréal, Montréal, Québec, H3C 3J7 Canada
| | | |
Collapse
|