51
|
Gromadzka AM, Steckelberg AL, Singh KK, Hofmann K, Gehring NH. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Res 2016; 44:2348-61. [PMID: 26773052 PMCID: PMC4797287 DOI: 10.1093/nar/gkw009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs.
Collapse
Affiliation(s)
| | | | - Kusum K Singh
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
52
|
Kong J, Shi Y, Wang Z, Pan Y. Interactions among SARS-CoV accessory proteins revealed by bimolecular fluorescence complementation assay. Acta Pharm Sin B 2015; 5:487-92. [PMID: 26579480 PMCID: PMC4629423 DOI: 10.1016/j.apsb.2015.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/13/2015] [Accepted: 04/28/2015] [Indexed: 01/16/2023] Open
Abstract
The accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins (PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus (SARS-CoV) genome. These proteins play important roles in various biological processes mediated by interactions with their partners. However, very little is known about the interactions among these accessory proteins. Here, a EYFP (enhanced yellow fluorescent protein) bimolecular fluorescence complementation (BiFC) assay was used to detect the interactions among accessory proteins. 33 out of 81 interactions were identified by BiFC, much more than that identified by the yeast two-hybrid (Y2H) system. This is the first report describing direct visualization of interactions among accessory proteins of SARS-CoV. These findings attest to the general applicability of the BiFC system for the verification of protein-protein interactions.
Collapse
Key Words
- AD, activation domain
- Accessory proteins
- BD, binding domain
- BiFC, bimolecular fluorescence complementation
- Bimolecular fluorescence complementation assay
- Co-IP, co-immunoprecipitation
- E, envelope
- EYFP, enhanced yellow fluorescent protein
- M, membrane
- N, nucleocapsid
- NLS, nuclear localization signal
- ORFs, open reading frames
- PCR, polymerase chain reaction
- PPIs, protein-protein interactions
- PUPs, predicted unknown proteins
- S, spike
- SARS-CoV
- SARS-CoV, severe acute respiratory syndrome coronavirus
- Y2H
- Y2H, yeast two-hybrid
- aa, amino acids
Collapse
Affiliation(s)
- Jianqiang Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author. Tel.: +86 10 63165169.
| | - Yanwei Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhifang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiting Pan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
53
|
Low-Rank and Sparse Matrix Decomposition for Genetic Interaction Data. BIOMED RESEARCH INTERNATIONAL 2015; 2015:573956. [PMID: 26273633 PMCID: PMC4529927 DOI: 10.1155/2015/573956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.
Collapse
|
54
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
55
|
RNA Export through the NPC in Eukaryotes. Genes (Basel) 2015; 6:124-49. [PMID: 25802992 PMCID: PMC4377836 DOI: 10.3390/genes6010124] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/08/2023] Open
Abstract
In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.
Collapse
|
56
|
Viphakone N, Cumberbatch MG, Livingstone MJ, Heath PR, Dickman MJ, Catto JW, Wilson SA. Luzp4 defines a new mRNA export pathway in cancer cells. Nucleic Acids Res 2015; 43:2353-66. [PMID: 25662211 PMCID: PMC4344508 DOI: 10.1093/nar/gkv070] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth.
Collapse
Affiliation(s)
- Nicolas Viphakone
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Marcus G Cumberbatch
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK Academic Urology Unit, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michaela J Livingstone
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, UK
| | - James W Catto
- Academic Urology Unit, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| |
Collapse
|
57
|
Abstract
Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to other RNA helicases and their purified cofactor(s).
Collapse
Affiliation(s)
- Wai Kit Ma
- Department of Biochemistry, Purdue University, BCHM 305, 175 S. University Street, West Lafayette, Indiana 47907-2063
| | - Elizabeth J. Tran
- Department of Biochemistry, Purdue University, BCHM 305, 175 S. University Street, West Lafayette, Indiana 47907-2063
- Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research, Building, Room 141, 201 S. University Street West Lafayette, Indiana 47907-2064
- Correspondence should be addressed to: Elizabeth J. Tran, PhD., Phone: (765) 496-3889, Fax: (765) 494-7897,
| |
Collapse
|
58
|
Stubbs SH, Conrad NK. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Res 2014; 43:504-19. [PMID: 25477387 PMCID: PMC4288173 DOI: 10.1093/nar/gku1278] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA processing is mechanistically linked to transcription with RNA pol II serving as a platform to recruit RNA processing factors to nascent transcripts. The TREX complex member, REF/Aly, has been suggested to play roles in transcription and nuclear RNA stability in addition to its more broadly characterized role in mRNA export. We employed RNA-seq to identify a subset of transcripts with decreased expression in both nuclear and cytoplasmic fractions upon REF/Aly knockdown, which implies that REF/Aly affects their expression upstream of its role in mRNA export. Transcription inhibition experiments and metabolic labeling assays argue that REF/Aly does not affect stability of selected candidate transcripts. Instead, ChIP assays and nuclear run-on analysis reveal that REF/Aly depletion diminishes the transcription of these candidate genes. Furthermore, we determined that REF/Aly binds directly to candidate transcripts, supporting a direct effect of REF/Aly on candidate gene transcription. Taken together, our data suggest that the importance of REF/Aly is not limited to RNA export, but that REF/Aly is also critical for gene expression at the level of transcription. Our data are consistent with the model that REF/Aly is involved in linking splicing with transcription efficiency.
Collapse
Affiliation(s)
- Sarah H Stubbs
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| |
Collapse
|
59
|
Pearson E, Moore C. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes. Cell Rep 2014; 9:821-8. [PMID: 25437538 DOI: 10.1016/j.celrep.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023] Open
Abstract
Current models of transcription termination factor recruitment to the RNA polymerase II (Pol II) transcription complex rely exclusively on the direct interaction between the termination factor and phosphorylated isoforms of the Pol II C-terminal domain (CTD). Here, we report that the Pol II flap loop is needed for physical interaction of Pol II with the Pcf11/Clp1 subcomplex of cleavage factor IA (CF IA), which functions in both 3? end processing and Pol II termination, and for proper termination of short RNAs in vitro and in vivo. Deletion of the flap loop reduces the in vivo interaction of Pol II with CF IA but increases the association of Nrd1 during stages of the transcription cycle when the CTD is predominantly Ser5 phosphorylated. We propose a model in which the flap loop coordinates a binding equilibrium between the competing termination factors Pcf11 and Nrd1 to Pol II during termination of short RNA synthesis.
Collapse
Affiliation(s)
- Erika Pearson
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
60
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
61
|
Björk P, Wieslander L. Mechanisms of mRNA export. Semin Cell Dev Biol 2014; 32:47-54. [PMID: 24813364 DOI: 10.1016/j.semcdb.2014.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 02/02/2023]
Abstract
Release of properly processed and assembled mRNPs from the actively transcribing genes, movement of the mRNPs through the interchromatin and interaction with the Nuclear Pore Complexes, leading to cytoplasmic export, are essential steps of eukaryotic gene expression. Here, we review these intranuclear gene expression steps.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
62
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
63
|
Bretes H, Rouviere JO, Leger T, Oeffinger M, Devaux F, Doye V, Palancade B. Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs. Nucleic Acids Res 2014; 42:5043-58. [PMID: 24500206 PMCID: PMC4005672 DOI: 10.1093/nar/gku124] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.
Collapse
Affiliation(s)
- Hugo Bretes
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France, Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud-11, Orsay, France, Proteomics facility, Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France, Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada H2W 1R7, Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3T 1J4, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada H3A 1A3, Université Pierre et Marie Curie, UMR7238, 15, rue de l'Ecole de Médecine, 75006 Paris, France and CNRS, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
64
|
Durairaj G, Lahudkar S, Bhaumik SR. A new regulatory pathway of mRNA export by an F-box protein, Mdm30. RNA (NEW YORK, N.Y.) 2014; 20:133-42. [PMID: 24327750 PMCID: PMC3895266 DOI: 10.1261/rna.042325.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.
Collapse
|
65
|
Intron excision from precursor tRNA molecules in mammalian cells requires ATP hydrolysis and phosphorylation of tRNA-splicing endonuclease components. Biochem Soc Trans 2013; 41:831-7. [PMID: 23863140 DOI: 10.1042/bst20130025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The process of tRNA splicing entails removal of an intron by TSEN (tRNA-splicing endonuclease) and ligation of the resulting exon halves to generate functional tRNAs. In mammalian cells, the RNA kinase CLP1 (cleavage and polyadenylation factor I subunit) associates with TSEN and phosphorylates the 3' exon at the 5' end in vitro, suggesting a role for CLP1 in tRNA splicing. Interestingly, recent data suggest that the ATP-binding and/or hydrolysis capacity of CLP1 is required to enhance pre-tRNA cleavage. In vivo, the lack of CLP1 kinase activity leads to progressive motor neuron loss and accumulation of novel 5' leader-5' exon tRNA fragments. We have extended the investigation of the biochemical requirements in pre-tRNA splicing and found that β-γ-hydrolysable ATP is crucial for the productive generation of exon halves. In addition, we provide evidence that phosphorylation of the TSEN complex components supports efficient pre-tRNA cleavage. Taken together, our data improve the mechanistic understanding of mammalian pre-tRNA processing and its regulation.
Collapse
|
66
|
Saguez C, Gonzales FA, Schmid M, Bøggild A, Latrick CM, Malagon F, Putnam A, Sanderson L, Jankowsky E, Brodersen DE, Jensen TH. Mutational analysis of the yeast RNA helicase Sub2p reveals conserved domains required for growth, mRNA export, and genomic stability. RNA (NEW YORK, N.Y.) 2013; 19:1363-1371. [PMID: 23962665 PMCID: PMC3854527 DOI: 10.1261/rna.040048.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Sub2p/UAP56 is a highly conserved DEAD-box RNA helicase involved in the packaging and nuclear export of mRNA/protein particles (mRNPs). In Saccharomyces cerevisiae, Sub2p is recruited to active chromatin by the pentameric THO complex and incorporated into the larger transcription-export (TREX) complex. Sub2p also plays a role in the maintenance of genome integrity as its inactivation causes severe transcription-dependent recombination of DNA. Despite the central role of Sub2p in early mRNP biology, little is known about its function. Here, we report the presence of an N-terminal motif (NTM) conserved specifically in the Sub2p branch of RNA helicases. Mutation of the NTM causes nuclear accumulation of poly(A)(+) RNA and impaired growth without affecting core helicase functions. Thus, the NTM functions as an autonomous unit. Moreover, two sub2 mutants, that are deficient in ATP binding, act in a trans-dominant negative fashion for growth and induce high recombination rates in vivo. Although wild-type Sub2p is prevented access to transcribed loci in such a background, this does not mechanistically explain the phenotype.
Collapse
Affiliation(s)
- Cyril Saguez
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Fernando A. Gonzales
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andreas Bøggild
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Chrysa M. Latrick
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Francisco Malagon
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andrea Putnam
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lee Sanderson
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ditlev E. Brodersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
67
|
Stuparevic I, Mosrin-Huaman C, Hervouet-Coste N, Remenaric M, Rahmouni AR. Cotranscriptional recruitment of RNA exosome cofactors Rrp47p and Mpp6p and two distinct Trf-Air-Mtr4 polyadenylation (TRAMP) complexes assists the exonuclease Rrp6p in the targeting and degradation of an aberrant messenger ribonucleoprotein particle (mRNP) in yeast. J Biol Chem 2013; 288:31816-29. [PMID: 24047896 DOI: 10.1074/jbc.m113.491290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cotranscriptional mRNA processing and packaging reactions that lead to the formation of export-competent messenger ribonucleoprotein particles (mRNPs) are under the surveillance of quality control steps. Aberrant mRNPs resulting from faulty events are retained in the nucleus with ensuing elimination of their mRNA component. The molecular mechanisms by which the surveillance system recognizes defective mRNPs and stimulates their destruction by the RNA degradation machinery are still not completely elucidated. Using an experimental approach in which mRNP formation in yeast is disturbed by the action of the bacterial Rho helicase, we have shown previously that the targeting of Rho-induced aberrant mRNPs is mediated by Rrp6p, which is recruited cotranscriptionally in association with Nrd1p following Rho action. Here we investigated the specific involvement in this quality control process of different cofactors associated with the nuclear RNA degradation machinery. We show that, in addition to the main hydrolytic action of the exonuclease Rrp6p, the cofactors Rrp47p, Mpp6p as well as the Trf-Air-Mtr4 polyadenylation (TRAMP) components Trf4p, Trf5p, and Air2p contribute significantly by stimulating the degradation process upon their cotranscriptional recruitment. Trf4p and Trf5p are apparently recruited in two distinct TRAMP complexes that both contain Air2p as component. Surprisingly, Rrp47p appears to play an important role in mutual protein stabilization with Rrp6p, which highlights a close association between the two partners. Together, our results provide an integrated view of how different cofactors of the RNA degradation machinery cooperate to target and eliminate aberrant mRNPs.
Collapse
Affiliation(s)
- Igor Stuparevic
- From the Centre de Biophysique Moléculaire, Unité Propre de Recherche (UPR) 4301 du CNRS, rue Charles Sadron, 45071 Orléans, France
| | | | | | | | | |
Collapse
|
68
|
Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 2013; 5:1901-23. [PMID: 23896747 PMCID: PMC3761232 DOI: 10.3390/v5081901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022] Open
Abstract
Nuclear mRNA export is a highly complex and regulated process in cells. Cellular transcripts must undergo successful maturation processes, including splicing, 5'-, and 3'-end processing, which are essential for assembly of an export competent ribonucleoprotein particle. Many viruses replicate in the nucleus of the host cell and require cellular mRNA export factors to efficiently export viral transcripts. However, some viral mRNAs undergo aberrant mRNA processing, thus prompting the viruses to express their own specific mRNA export proteins to facilitate efficient export of viral transcripts and allowing translation in the cytoplasm. This review will focus on the Kaposi's sarcoma-associated herpesvirus ORF57 protein, a multifunctional protein involved in all stages of viral mRNA processing and that is essential for virus replication. Using the example of ORF57, we will describe cellular bulk mRNA export pathways and highlight their distinct features, before exploring how the virus has evolved to exploit these mechanisms.
Collapse
Affiliation(s)
| | | | | | - Adrian Whitehouse
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
69
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
70
|
Teng IF, Wilson SA. Mapping interactions between mRNA export factors in living cells. PLoS One 2013; 8:e67676. [PMID: 23826332 PMCID: PMC3691119 DOI: 10.1371/journal.pone.0067676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
The TREX complex couples nuclear mRNA processing events with subsequent export to the cytoplasm. TREX also acts as a binding platform for the mRNA export receptor Nxf1. The sites of mRNA transcription and processing within the nucleus have been studied extensively. However, little is known about where TREX assembly takes place and where Nxf1 is recruited to TREX to form the export competent mRNP. Here we have used sensitized emission Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM)-FRET, to produce a spatial map in living cells of the sites for the interaction of two TREX subunits, Alyref and Chtop, with Nxf1. Prominent assembly sites for export factors are found in the vicinity of nuclear speckles in regions known to be involved in transcription, splicing and exon junction complex formation highlighting the close coupling of mRNA export with mRNP biogenesis.
Collapse
Affiliation(s)
- I-Fang Teng
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Stuart A. Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
71
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
72
|
Ma WK, Cloutier SC, Tran EJ. The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 2013; 425:3824-38. [PMID: 23721653 DOI: 10.1016/j.jmb.2013.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/01/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.
Collapse
Affiliation(s)
- Wai Kit Ma
- Department of Biochemistry, Purdue University, BCHM 305, 175 South University Street, West Lafayette, IN 47907-2063, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | |
Collapse
|
73
|
Katahira J, Okuzaki D, Inoue H, Yoneda Y, Maehara K, Ohkawa Y. Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I. Nucleic Acids Res 2013; 41:7060-72. [PMID: 23685434 PMCID: PMC3737531 DOI: 10.1093/nar/gkt414] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The transcription-export complex (TREX) couples mRNA transcription, processing and nuclear export. We found that CFIm68, a large subunit of a heterotetrameric protein complex mammalian cleavage factor I (CFIm), which is implicated in alternative polyadenylation site choice, co-purified with Thoc5, a component of human TREX. Immunoprecipitation using antibodies against different components of TREX indicated that most likely both complexes interact via an interaction between Thoc5 and CFIm68. Microarray analysis using human HeLa cells revealed that a subset of genes was differentially expressed on Thoc5 knockdown. Notably, the depletion of Thoc5 selectively attenuated the expression of mRNAs polyadenylated at distal, but not proximal, polyadenylation sites, which phenocopied the depletion of CFIm68. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) indicated that CFIm68 preferentially associated with the 5′ regions of genes; strikingly, the 5′ peak of CFIm68 was significantly and globally reduced on Thoc5 knockdown. We suggest a model in which human Thoc5 controls polyadenylation site choice through the co-transcriptional loading of CFIm68 onto target genes.
Collapse
Affiliation(s)
- Jun Katahira
- Biomolecular Networks Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
74
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
75
|
TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun 2013; 3:1006. [PMID: 22893130 PMCID: PMC3654228 DOI: 10.1038/ncomms2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/11/2012] [Indexed: 12/03/2022] Open
Abstract
The metazoan TREX complex is recruited to mRNA during nuclear RNA processing and functions in exporting mRNA to the cytoplasm. Nxf1 is an mRNA export receptor, which binds processed mRNA and transports it through the nuclear pore complex. At present, the relationship between TREX and Nxf1 is not understood. Here we show that Nxf1 uses an intramolecular interaction to inhibit its own RNA binding activity. When the TREX subunits Aly and Thoc5 make contact with Nxf1, Nxf1 is driven into an open conformation, exposing its RNA binding domain, allowing RNA binding. Moreover, the combined knockdown of Aly and Thoc5 drastically reduces the amount of Nxf1 bound to mRNA in vivo and also causes a severe mRNA export block. Together, our data indicate that TREX provides a license for mRNA export by driving Nxf1 into a conformation capable of binding mRNA.
Collapse
|
76
|
Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 2013; 32:473-86. [PMID: 23299939 PMCID: PMC3567497 DOI: 10.1038/emboj.2012.342] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022] Open
Abstract
The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.
Collapse
|
77
|
Lei H, Zhai B, Yin S, Gygi S, Reed R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res 2012; 41:2517-25. [PMID: 23275560 PMCID: PMC3575797 DOI: 10.1093/nar/gks1314] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously showed that mRNAs synthesized from three genes that naturally lack introns contain a portion of their coding sequence, known as a cytoplasmic accumulation region (CAR), which is essential for stable accumulation of the intronless mRNAs in the cytoplasm. The CAR in each mRNA is unexpectedly large, ranging in size from ∼160 to 285 nt. Here, we identified one or more copies of a 10-nt consensus sequence in each CAR. To determine whether this element (designated CAR-E) functions in cytoplasmic accumulation of intronless mRNA, we multimerized the most conserved CAR-E and inserted it upstream of β-globin cDNA, which is normally retained/degraded in the nucleus. Significantly, the tandem CAR-E, but not its antisense counterpart, rescued cytoplasmic accumulation of β-globin cDNA transcripts. Moreover, dinucleotide mutations in the CAR-E abolished this rescue. We show that the CAR-E, but not the mutant CAR-E, associates with components of the TREX mRNA export machinery, the Prp19 complex and U2AF2. Moreover, knockdown of these factors results in nuclear retention of the intronless mRNAs. Together, these data suggest that the CAR-E promotes export of intronless mRNA by sequence-dependent recruitment of the mRNA export machinery.
Collapse
Affiliation(s)
- Haixin Lei
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
78
|
Chi B, Wang Q, Wu G, Tan M, Wang L, Shi M, Chang X, Cheng H. Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res 2012; 41:1294-306. [PMID: 23222130 PMCID: PMC3553972 DOI: 10.1093/nar/gks1188] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mRNA export complex TREX (TREX) is known to contain Aly, UAP56, Tex1 and the THO complex, among which UAP56 is required for TREX assembly. Here, we systematically investigated the role of each human TREX component in TREX assembly and its association with the mRNA. We found that Tex1 is essentially a subunit of the THO complex. Aly, THO and UAP56 are all required for assembly of TREX, in which Aly directly interacts with THO subunits Thoc2 and Thoc5. Both Aly and THO function in linking UAP56 to the cap-binding protein CBP80. Interestingly, association of UAP56 with the spliced mRNA, but not with the pre-mRNA, requires Aly and THO. Unexpectedly, we found that Aly and THO require each other to associate with the spliced mRNA. Consistent with these biochemical results, similar to Aly and UAP56, THO plays critical roles in mRNA export. Together, we propose that Aly, THO and UAP56 form a highly integrated unit to associate with the spliced mRNA and function in mRNA export.
Collapse
Affiliation(s)
- Binkai Chi
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Heidemann M, Hintermair C, Voß K, Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:55-62. [PMID: 22982363 DOI: 10.1016/j.bbagrm.2012.08.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/09/2012] [Accepted: 08/29/2012] [Indexed: 12/27/2022]
Abstract
The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Martin Heidemann
- Department of Molecular Epigenetics, Center for Integrated Protein Science Munich, Munich, Germany
| | | | | | | |
Collapse
|
80
|
Chanarat S, Burkert-Kautzsch C, Meinel DM, Sträßer K. Prp19C and TREX: interacting to promote transcription elongation
and mRNA export. Transcription 2012; 3:8-12. [PMID: 22456314 DOI: 10.4161/trns.3.1.19078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During transcription of protein coding genes by RNA Polymerase II the mRNA is processed and packaged into an mRNP. Among the proteins binding cotranscriptionally to the mRNP are mRNA export factors. One of the protein complexes thus coupling transcription to mRNA export is the TREX complex. However, despite the fact that TREX was identified and characterized about a decade ago, it had remained enigmatic how TREX is recruited to genes. The conserved Prp19 complex (Prp19C) has long been known for its function in splicing. We recently identified Prp19C to be essential for a second step in gene expression namely TREX occupancy at transcribed genes, answering this long-standing question but also raising new ones.
Collapse
|
81
|
Cloutier SC, Ma WK, Nguyen LT, Tran EJ. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 2012; 287:26155-66. [PMID: 22679025 DOI: 10.1074/jbc.m112.383075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DEAD-box proteins are a class of RNA-dependent ATP hydrolysis enzymes that rearrange RNA and RNA-protein (ribonucleoprotein) complexes. In an effort to characterize the cellular function of individual DEAD-box proteins, our laboratory has uncovered a previously unrecognized link between the DEAD-box protein Dbp2 and the regulation of transcription in Saccharomyces cerevisiae. Here, we report that Dbp2 is a double-stranded RNA-specific ATPase that associates directly with chromatin and is required for transcriptional fidelity. In fact, loss of DBP2 results in multiple gene expression defects, including accumulation of noncoding transcripts, inefficient 3' end formation, and appearance of aberrant transcriptional initiation products. We also show that loss of DBP2 is synthetic lethal with deletion of the nuclear RNA decay factor, RRP6, pointing to a global role for Dbp2 in prevention of aberrant transcriptional products. Taken together, we present a model whereby Dbp2 functions to cotranscriptionally modulate RNA structure, a process that facilitates ribonucleoprotein assembly and clearance of transcripts from genomic loci. These studies suggest that Dbp2 is a missing link in RNA quality control that functions to maintain the fidelity of transcriptional processes.
Collapse
Affiliation(s)
- Sara C Cloutier
- Department of Biochemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | |
Collapse
|
82
|
Brockmann C, Soucek S, Kuhlmann SI, Mills-Lujan K, Kelly SM, Yang JC, Iglesias N, Stutz F, Corbett AH, Neuhaus D, Stewart M. Structural basis for polyadenosine-RNA binding by Nab2 Zn fingers and its function in mRNA nuclear export. Structure 2012; 20:1007-18. [PMID: 22560733 PMCID: PMC3384006 DOI: 10.1016/j.str.2012.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/19/2023]
Abstract
Polyadenylation regulation and efficient nuclear export of mature mRNPs both require the polyadenosine-RNA-binding protein, Nab2, which contains seven CCCH Zn fingers. We describe here the solution structure of fingers 5-7, which are necessary and sufficient for high-affinity polyadenosine-RNA binding, and identify key residues involved. These Zn fingers form a single structural unit. Structural coherence is lost in the RNA-binding compromised Nab2-C437S mutant, which also suppresses the rat8-2 allele of RNA helicase Dbp5. Structure-guided Nab2 variants indicate that dbp5(rat8-2) suppression is more closely linked to hyperadenylation and suppression of mutant alleles of the nuclear RNA export adaptor, Yra1, than to affinity for polyadenosine-RNA. These results indicate that, in addition to modulating polyA tail length, Nab2 has an unanticipated function associated with generating export-competent mRNPs, and that changes within fingers 5-7 lead to suboptimal assembly of mRNP export complexes that are more easily disassembled by Dbp5 upon reaching the cytoplasm.
Collapse
Affiliation(s)
- Christoph Brockmann
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Ruepp MD, Schümperli D, Barabino SML. mRNA 3' end processing and more--multiple functions of mammalian cleavage factor I-68. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:79-91. [PMID: 21956970 DOI: 10.1002/wrna.35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The formation of defined 3(') ends is an important step in the biogenesis of mRNAs. In eukaryotic cells, all mRNA 3(') ends are generated by endonucleolytic cleavage of primary transcripts in reactions that are essentially posttranscriptional. Nevertheless, 3(') end formation is tightly connected to transcription in vivo, and a link with mRNA export to the cytoplasm has been postulated. Here, we briefly review the current knowledge about the two types of mRNA 3(') end processing reactions, cleavage/polyadenylation and histone RNA processing. We then focus on factors shared between these two reactions. In particular, we discuss evidence for new functions of the mammalian cleavage factor I subunit CF I(m) 68 in histone RNA 3(') processing and in the export of mature mRNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
84
|
Valkov E, Dean JC, Jani D, Kuhlmann SI, Stewart M. Structural basis for the assembly and disassembly of mRNA nuclear export complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:578-92. [PMID: 22406340 DOI: 10.1016/j.bbagrm.2012.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/26/2012] [Accepted: 02/17/2012] [Indexed: 12/17/2022]
Abstract
Most of the individual components of the nuclear elements of the gene expression pathway have been identified and high-resolution structural information is becoming available for many of them. Information is also starting to become available on the larger complexes they form and is beginning to give clues about how the dynamics of their interactions generate function. Although the translocation of export-competent messenger ribonucleoprotein particles (mRNPs) through the nuclear pore transport channel that is mediated by interactions with nuclear pore proteins (nucleoporins) is relatively well understood, the precise molecular mechanisms underlying the assembly of export-competent mRNPs in the nucleus and their Dbp5-mediated disassembly in the cytoplasm is less well defined. Considerable information has been obtained on the structure of Dbp5 in its different nucleotide-bound states and in complex with Gle1 or Nup159/NUP214. Although the precise manner by which the Dbp5 ATPase cycle is coupled to mRNP remodelling remains to be established, current models capture many key details of this process. The formation of export-competent mRNPs in the nucleus remains an elusive component of this pathway and the precise nature of the remodelling that generates these mRNPs as well as detailed understanding of the molecular mechanisms by which this step is integrated with the transcriptional, splicing and polyadenylation machinery by the TREX and TREX-2 complexes remain obscure. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Eugene Valkov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
85
|
Oeffinger M, Zenklusen D. To the pore and through the pore: a story of mRNA export kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:494-506. [PMID: 22387213 DOI: 10.1016/j.bbagrm.2012.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada.
| | | |
Collapse
|
86
|
Abstract
TREX is a conserved multiprotein complex that is necessary for efficient mRNA export to the cytoplasm. In Saccharomyces cerevisiae, the TREX complex is additionally implicated in RNA quality control pathways, but it is unclear whether this function is conserved in mammalian cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds and recruits the TREX component REF/Aly to viral mRNAs. Here, we demonstrate that REF/Aly is recruited to the KSHV noncoding polyadenylated nuclear (PAN) RNA by ORF57. This recruitment correlates with ORF57-mediated stabilization of PAN RNA, suggesting that REF/Aly promotes nuclear RNA stability. Further supporting this idea, tethering REF/Aly to PAN RNA is sufficient to increase the nuclear abundance and half-life of PAN RNA but is not sufficient to promote its export. Interestingly, REF/Aly appears to protect the poly(A) tail from deadenylation, and REF/Aly-stabilized transcripts are further adenylated over time, consistent with previous reports linking poly(A) tail length with nuclear RNA surveillance. These studies show that REF/Aly can stabilize nuclear RNAs independently of their export and support a broader conservation of RNA quality control mechanisms from yeast to humans.
Collapse
|
87
|
Abstract
During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368-1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572-1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3' RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3' ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo.
Collapse
|
88
|
Nuclear export as a key arbiter of "mRNA identity" in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:566-77. [PMID: 22248619 DOI: 10.1016/j.bbagrm.2011.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/15/2023]
Abstract
Over the past decade, various studies have indicated that most of the eukaryotic genome is transcribed at some level. The pervasiveness of transcription might seem surprising when one considers that only a quarter of the human genome comprises genes (including exons and introns) and less than 2% codes for protein. This conundrum is partially explained by the unique evolutionary pressures that are imposed on species with small population sizes, such as eukaryotes. These conditions promote the expansion of introns and non-functional intergenic DNA, and the accumulation of cryptic transcriptional start sites. As a result, the eukaryotic gene expression machinery must effectively evaluate whether or not a transcript has all the hallmarks of a protein-coding mRNA. If a transcript contains these features, then positive feedback loops are activated to further stimulate its transcription, processing, nuclear export and ultimately, translation. However if a transcript lacks features associated with "mRNA identity", then the RNA is degraded and/or used to inhibit further transcription and translation of the gene. Here we discuss how mRNA identity is assessed by the nuclear export machinery in order to extract meaningful information from the eukaryotic genome. In the process, we provide an explanation of why certain sequences that are enriched in protein-coding genes, such as the signal sequence coding region, promote mRNA nuclear export in vertebrates. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
89
|
Babour A, Dargemont C, Stutz F. Ubiquitin and assembly of export competent mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:521-30. [PMID: 22240387 DOI: 10.1016/j.bbagrm.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Anna Babour
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
90
|
The P-loop domain of yeast Clp1 mediates interactions between CF IA and CPF factors in pre-mRNA 3' end formation. PLoS One 2011; 6:e29139. [PMID: 22216186 PMCID: PMC3245249 DOI: 10.1371/journal.pone.0029139] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 11/21/2011] [Indexed: 11/19/2022] Open
Abstract
Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3' end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 homologues, but not the yeast protein, carry 5' RNA kinase activity. We show that depletion of Clp1 in yeast promoted defective 3' end formation and RNA polymerase II termination; however, cells expressing Clp1 with mutant P-loops displayed only minor defects in gene expression. Similarly, purified and reconstituted mutant CF IA factors that interfered with ATP binding complemented CF IA depleted extracts in coupled in vitro transcription/3' end processing reactions. We found that Clp1 was required to assemble recombinant CF IA and that certain P-loop mutants failed to interact with the CF IA subunit Pcf11. In contrast, mutations in Clp1 enhanced binding to the 3' endonuclease Ysh1 that is a component of CPF. Our results support a structural role for the Clp1 P-loop motif. ATP binding by Clp1 likely contributes to CF IA formation and cross-factor interactions during the dynamic process of 3' end formation.
Collapse
|
91
|
Luna R, Rondón AG, Aguilera A. New clues to understand the role of THO and other functionally related factors in mRNP biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:514-20. [PMID: 22207203 DOI: 10.1016/j.bbagrm.2011.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023]
Abstract
Coupling of transcription with mRNA processing and export has been shown to be relevant to efficient gene expression. A number of studies have determined that THO/TREX, a nuclear protein complex conserved from yeast to humans, plays an important role in mRNP biogenesis connecting transcription elongation, mRNA export and preventing genetic instability. Recent data indicates that THO could be relevant to different mRNA processing steps, including the 3'-end formation, transcript release and export. Novel connections of THO to proteins related to the splicing machinery, provide new views about possible functions of THO in mRNP biogenesis. In this review, we summarize the previous and new results concerning the impact of THO in transcription and its biological implications, with a special emphasis on the relationship with THSC/TREX-2 and other functionally related factors involved in mRNA biogenesis and export. The emerging picture presents THO as a dynamic complex interacting with the nascent RNA and with different factors connecting nuclear functions necessary for mRNP biogenesis with genome integrity, cellular homeostasis and development. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Av Américo Vespucio s/n, 41092 Sevilla, Spain. rlvarp@is/es
| | | | | |
Collapse
|
92
|
Katahira J. mRNA export and the TREX complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:507-13. [PMID: 22178508 DOI: 10.1016/j.bbagrm.2011.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 02/08/2023]
Abstract
Over the past few decades, we have learned that eukaryotes have evolved sophisticated means to coordinate the nuclear export of mRNAs with different steps of gene expression. This functional orchestration is important for the maintenance of the efficiency and fidelity of gene expression processes. The TREX (TRanscription-EXport) complex is an evolutionarily conserved multiprotein complex that plays a major role in the functional coupling of different steps during mRNA biogenesis, including mRNA transcription, processing, decay, and nuclear export. Furthermore, recent gene knockout studies in mice have revealed that the metazoan TREX complex is required for cell differentiation and development, likely because this complex regulates the expression of key genes. These newly identified roles for the TREX complex suggest the existence of a relationship between mRNA nuclear biogenesis and more complex cellular processes. This review describes the functional roles of the TREX complex in gene expression and the nuclear export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Jun Katahira
- Biomolecular Networks Laboratories, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
93
|
MacKellar AL, Greenleaf AL. Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II. J Biol Chem 2011; 286:36385-95. [PMID: 21856751 PMCID: PMC3196081 DOI: 10.1074/jbc.m111.268144] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The unique C-terminal domain (CTD) of RNA polymerase II, composed of tandem heptad repeats of the consensus sequence YSPTSPS, is subject to differential phosphorylation throughout the transcription cycle. Several RNA processing factors have been shown to bind the phosphorylated CTD and use it to localize to nascent pre-mRNA during transcription. In Saccharomyces cerevisiae, the mRNA export protein Yra1 (ALY/RNA export factor in metazoa) cotranscriptionally associates with mRNA and delivers it to the nuclear pore complex for export to the cytoplasm. Here we report that Yra1 directly binds in vitro the hyperphosphorylated form of the CTD characteristic of elongating RNA polymerase II and contains a phospho-CTD-interacting domain within amino acids 18-184, which also include an "RNA recognition motif" (RRM) (residues 77-184). Using UV cross-linking, we showed that the RRM alone binds RNA, although a larger segment extending to the C terminus (amino acids 77-226) displayed stronger RNA binding activity. Although the RRM is implicated in both RNA and CTD binding, RRM point mutations separated these two functions. Both functions are important in vivo as RNA binding-defective or CTD binding-defective versions of Yra1 engendered growth and mRNA export defects. We also report the construction and characterization of a useful new temperature-sensitive YRA1 allele (R107A/F126A). Using ChIP, we demonstrated that removing the N-terminal 76 amino acids of Yra1 (all of the phospho-CTD-interacting domain up to the RRM) results in a 10-fold decrease in Yra1 recruitment to genes during elongation. These results indicate that the phospho-CTD is likely involved directly in the cotranscriptional recruitment of Yra1.
Collapse
Affiliation(s)
- April L. MacKellar
- From the Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Arno L. Greenleaf
- From the Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
94
|
Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci U S A 2011; 108:17985-90. [PMID: 22010220 DOI: 10.1073/pnas.1113076108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A great deal is known about the export of spliced mRNAs, but little is known about the export of mRNAs encoded by human cellular genes that naturally lack introns. Here, we investigated the requirements for export of three naturally intronless mRNAs (HSPB3, IFN-α1, and IFN-β1). Significantly, we found that all three mRNAs are stable and accumulate in the cytoplasm, whereas size-matched random RNAs are unstable and detected only in the nucleus. A portion of the coding region confers this stability and cytoplasmic localization on the naturally intronless mRNAs and a cDNA transcript, which is normally retained in the nucleus and degraded. A polyadenylation signal, TREX mRNA export components, and the mRNA export receptor TAP are required for accumulation of the naturally intronless mRNAs in the cytoplasm. We conclude that naturally intronless mRNAs contain specific sequences that result in efficient packaging into the TREX mRNA export complex, thereby supplanting the splicing requirement for efficient mRNA export.
Collapse
|
95
|
Bartkowiak B, Mackellar AL, Greenleaf AL. Updating the CTD Story: From Tail to Epic. GENETICS RESEARCH INTERNATIONAL 2011; 2011:623718. [PMID: 22567360 PMCID: PMC3335468 DOI: 10.4061/2011/623718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 12/03/2022]
Abstract
Eukaryotic RNA polymerase II (RNAPII) not only synthesizes mRNA but also coordinates transcription-related processes via its unique C-terminal repeat domain (CTD). The CTD is an RNAPII-specific protein segment consisting of repeating heptads with the consensus sequence Y1S2P3T4S5P6S7 that has been shown to be extensively post-transcriptionally modified in a coordinated, but complicated, manner. Recent discoveries of new modifications, kinases, and binding proteins have challenged previously established paradigms. In this paper, we examine results and implications of recent studies related to modifications of the CTD and the respective enzymes; we also survey characterizations of new CTD-binding proteins and their associated processes and new information regarding known CTD-binding proteins. Finally, we bring into focus new results that identify two additional CTD-associated processes: nucleocytoplasmic transport of mRNA and DNA damage and repair.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
96
|
Ghazy MA, Gordon JMB, Lee SD, Singh BN, Bohm A, Hampsey M, Moore C. The interaction of Pcf11 and Clp1 is needed for mRNA 3'-end formation and is modulated by amino acids in the ATP-binding site. Nucleic Acids Res 2011; 40:1214-25. [PMID: 21993299 PMCID: PMC3273803 DOI: 10.1093/nar/gkr801] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyadenylation of eukaryotic mRNAs contributes to stability, transport and translation, and is catalyzed by a large complex of conserved proteins. The Pcf11 subunit of the yeast CF IA factor functions as a scaffold for the processing machinery during the termination and polyadenylation of transcripts. Its partner, Clp1, is needed for mRNA processing, but its precise molecular role has remained enigmatic. We show that Clp1 interacts with the Cleavage–Polyadenylation Factor (CPF) through its N-terminal and central domains, and thus provides cross-factor connections within the processing complex. Clp1 is known to bind ATP, consistent with the reported RNA kinase activity of human Clp1. However, substitution of conserved amino acids in the ATP-binding site did not affect cell growth, suggesting that the essential function of yeast Clp1 does not involve ATP hydrolysis. Surprisingly, non-viable mutations predicted to displace ATP did not affect ATP binding but disturbed the Clp1–Pcf11 interaction. In support of the importance of this interaction, a mutation in Pcf11 that disrupts the Clp1 contact caused defects in growth, 3′-end processing and transcription termination. These results define Clp1 as a bridge between CF IA and CPF and indicate that the Clp1–Pcf11 interaction is modulated by amino acids in the conserved ATP-binding site of Clp1.
Collapse
Affiliation(s)
- Mohamed A Ghazy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Molina-Navarro MM, Martinez-Jimenez CP, Rodriguez-Navarro S. Transcriptional elongation and mRNA export are coregulated processes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:652461. [PMID: 22567364 PMCID: PMC3335577 DOI: 10.4061/2011/652461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/10/2011] [Indexed: 01/06/2023]
Abstract
Chromatin structure complexity requires the interaction and coordinated work of a multiplicity of factors at different transcriptional regulation stages. Transcription control comprises a set of processes that ensures proper balance in the gene expression under different conditions, such as signals, metabolic states, or development. We could frame those steps from epigenetic marks to mRNA stability to support the holistic view of a fine-tune balance of final mRNA levels through mRNA transcription, export, stability, translation, and degradation. Transport of mRNA from the nucleus to the cytoplasm is a key process in regulated gene expression. Transcriptional elongation and mRNA export are coregulated steps that determine the mature mRNA levels in the cytoplasm. In this paper, recent insights into the coordination of these processes in eukaryotes will be summarised.
Collapse
|
98
|
Johnson SA, Kim H, Erickson B, Bentley DL. The export factor Yra1 modulates mRNA 3' end processing. Nat Struct Mol Biol 2011; 18:1164-71. [PMID: 21947206 PMCID: PMC3307051 DOI: 10.1038/nsmb.2126] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 07/20/2011] [Indexed: 11/09/2022]
Abstract
The Saccharomyces cerevisiae mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A that links export to 3' end formation. We found that an unexpected consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit Clp1 for binding to Pcf11, and excess Yra1 inhibits 3' processing in vitro. Release of Yra1 at the 3' ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit; instead, Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice, particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A 3' processing factor.
Collapse
Affiliation(s)
- Sara A Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
99
|
Lavoie M, Ge D, Abou Elela S. Regulation of conditional gene expression by coupled transcription repression and RNA degradation. Nucleic Acids Res 2011; 40:871-83. [PMID: 21933814 PMCID: PMC3258148 DOI: 10.1093/nar/gkr759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene expression is determined by a combination of transcriptional and post-transcriptional regulatory events that were thought to occur independently. This report demonstrates that the genes associated with the Snf3p–Rgt2p glucose-sensing pathway are regulated by interconnected transcription repression and RNA degradation. Deletion of the dsRNA-specific ribonuclease III Rnt1p increased the expression of Snf3p–Rgt2p-associated transcription factors in vivo and the recombinant enzyme degraded their messenger RNA in vitro. Surprisingly, Rnt1ps effect on gene expression in vivo was both RNA and promoter dependent, thus linking RNA degradation to transcription. Strikingly, deletion of RNT1-induced promoter-specific transcription of the glucose sensing genes even in the absence of RNA cleavage signals. Together, the results presented here support a model in which co-transcriptional RNA degradation increases the efficiency of gene repression, thereby allowing an effective cellular response to the continuous changes in nutrient concentrations.
Collapse
Affiliation(s)
- Mathieu Lavoie
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | |
Collapse
|
100
|
Nucleophosmin deposition during mRNA 3' end processing influences poly(A) tail length. EMBO J 2011; 30:3994-4005. [PMID: 21822216 DOI: 10.1038/emboj.2011.272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/04/2011] [Indexed: 12/12/2022] Open
Abstract
During polyadenylation, the multi-functional protein nucleophosmin (NPM1) is deposited onto all cellular mRNAs analysed to date. Premature termination of poly(A) tail synthesis in the presence of cordycepin abrogates deposition of the protein onto the mRNA, indicating natural termination of poly(A) addition is required for NPM1 binding. NPM1 appears to be a bona fide member of the complex involved in 3' end processing as it is associated with the AAUAAA-binding CPSF factor and can be co-immunoprecipitated with other polyadenylation factors. Furthermore, reduction in the levels of NPM1 results in hyperadenylation of mRNAs, consistent with alterations in poly(A) tail chain termination. Finally, knockdown of NPM1 results in retention of poly(A)(+) RNAs in the cell nucleus, indicating that NPM1 influences mRNA export. Collectively, these data suggest that NPM1 has an important role in poly(A) tail length determination and may help network 3' end processing with other aspects of nuclear mRNA maturation.
Collapse
|