51
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
52
|
Abstract
The proteasome refers to a collection of complexes centered on the 20S proteasome core particle (20S CP), a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important recent advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by the incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform us about mechanisms of assembly and the role of conformational changes in the functional cycle.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | |
Collapse
|
53
|
Andrews DA, Xie M, Hughes V, Wilce MC, Roujeinikova A. Design, purification and characterization of a soluble variant of the integral membrane protein MotB for structural studies. J R Soc Interface 2013; 10:20120717. [PMID: 23193105 PMCID: PMC3565690 DOI: 10.1098/rsif.2012.0717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/05/2012] [Indexed: 11/12/2022] Open
Abstract
The bacterial flagellar motor is an intricate nanomachine powered by a transmembrane electrochemical gradient. Rotation is driven by the cumulative action of several peptidoglycan-anchored stator complexes on the rotor. In proton-motive force-driven motors, the stator complex is composed of a motility protein B (MotB) dimer surrounded by four copies of MotA, where both MotA and MotB are integral membrane proteins. The lack of full-length MotA and MotB structures hinders understanding of the mechanism of torque generation. Given the low levels of expression and low stability of detergent-solubilized MotB, a soluble chimaeric variant was engineered, where the two transmembrane helices of the MotB dimer were replaced by a leucine zipper. The biochemical and biophysical analysis of the resultant protein showed that it was properly folded, stable, behaved as a monodisperse dimer at low pH, had molecular dimensions close to those expected for native MotB and yielded reproducible crystals. The chimaeric protein is, therefore, a good candidate for structural studies. This 'solubilization by design' approach may be generally applicable to the production of soluble forms of other dimeric, trimeric and tetrameric single-span membrane proteins for functional and structural studies.
Collapse
Affiliation(s)
- Daniel A. Andrews
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meng Xie
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Victoria Hughes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew C. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Anna Roujeinikova
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
54
|
Stein ML, Groll M. Applied techniques for mining natural proteasome inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:26-38. [PMID: 23360979 DOI: 10.1016/j.bbamcr.2013.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
Abstract
In eukaryotic cells, the ubiquitin-proteasome-system (UPS) is responsible for the non-lysosomal degradation of proteins and plays a pivotal role in such vital processes as protein homeostasis, antigen processing or cell proliferation. Therefore, it is an attractive drug target with various applications in cancer and immunosuppressive therapies. Being an evolutionary well conserved pathway, many pathogenic bacteria have developed small molecules, which modulate the activity of their hosts' UPS components. Such natural products are, due to their stepwise optimization over the millennia, highly potent in terms of their binding mechanisms, their bioavailability and selectivity. Generally, this makes bioactive natural products an ideal starting point for the development of novel drugs. Since four out of the ten best seller drugs are natural product derivatives, research in this field is still of unfathomable value for the pharmaceutical industry. The currently most prominent example for the successful exploitation of a natural compound in the UPS field is carfilzomib (Kyprolis®), which represents the second FDA approved drug targeting the proteasome after the admission of the blockbuster bortezomib (Velcade®) in 2003. On the other hand side of the spectrum, ONX 0914, which is derived from the same natural product as carfilzomib, has been shown to selectively inhibit the immune response related branch of the pathway. To date, there exists a huge potential of UPS inhibitors with regard to many diseases. Both approved drugs against the proteasome show severe side effects, adaptive resistances and limited applicability, thus the development of novel compounds with enhanced properties is a main objective of active research. In this review, we describe the techniques, which can be utilized for the discovery of novel natural inhibitors, which in particular block the 20S proteasomal activity. In addition, we will illustrate the successful implementation of a recently published methodology with the example of a highly potent but so far unexploited group of proteasome inhibitors, the syrbactins, and their biological functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin L Stein
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Unversität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| | | |
Collapse
|
55
|
Abstract
Archaea contain, both a functional proteasome and an ubiquitin-like protein conjugation system (termed sampylation) that is related to the ubiquitin proteasome system (UPS) of eukaryotes. Archaeal proteasomes have served as excellent models for understanding how proteins are degraded by the central energy-dependent proteolytic machine of eukaryotes, the 26S proteasome. While sampylation has only recently been discovered, it is thought to be linked to proteasome-mediated degradation in archaea. Unlike eukaryotes, sampylation only requires an E1 enzyme homolog of the E1-E2-E3 ubiquitylation cascade to mediate protein conjugation. Furthermore, recent evidence suggests that archaeal and eurkaryotic E1 enzyme homologs can serve dual roles in mediating protein conjugation and activating sulfur for incorporation into biomolecules. The focus of this book chapter is the energy-dependent proteasome and sampylation systems of Archaea.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA,
| |
Collapse
|
56
|
Abstract
Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY, 10016, USA
| | | | | |
Collapse
|
57
|
Abstract
The 26S proteasome operates at the executive end of the ubiquitin-proteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.
Collapse
|
58
|
Hochstrasser M, Funakoshi M. Disulfide engineering to map subunit interactions in the proteasome and other macromolecular complexes. Methods Mol Biol 2012; 832:349-62. [PMID: 22350897 DOI: 10.1007/978-1-61779-474-2_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In studies of protein complexes for which high-resolution structural data are unavailable, it is often still possible to determine both nearest-neighbor relationships between subunits and atomic-resolution details of these interactions. The eukaryotic 26S proteasome, a ∼2.5 MDa protein complex with at least 33 different subunits, is a prime example. Important information about quaternary organization and assembly of proteasomes has been gained using a combination of sequence alignments with related proteins of known tertiary structure, molecular modeling, and disulfide engineering to allow oxidative cross-linking between predicted polypeptide neighbors. Here, we provide detailed protocols for engineered cysteine cross-linking of yeast proteasome subunits in whole-cell extracts, in active 26S proteasome complexes first isolated by native polyacrylamide gel electrophoresis, and in subcomplexes that function as potential assembly intermediates.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
59
|
Kao A, Randall A, Yang Y, Patel VR, Kandur W, Guan S, Rychnovsky SD, Baldi P, Huang L. Mapping the structural topology of the yeast 19S proteasomal regulatory particle using chemical cross-linking and probabilistic modeling. Mol Cell Proteomics 2012; 11:1566-77. [PMID: 22550050 DOI: 10.1074/mcp.m112.018374] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structural characterization of proteasome complexes is an essential step toward understanding the ubiquitin-proteasome system. Currently, high resolution structures are not available for the 26S proteasome holocomplex as well as its subcomplex, the 19S regulatory particle (RP). Here we have employed a novel integrated strategy combining chemical cross-linking with multistage tandem mass spectrometry to define the proximity of subunits within the yeast 19S RP to elucidate its topology. This has resulted in the identification of 174 cross-linked peptides of the yeast 19S RP, representing 43 unique lysine-lysine linkages within 24 nonredundant pair-wise subunit interactions. To map the spatial organization of the 19S RP, we have developed and utilized a rigorous probabilistic framework to derive maximum likelihood (ML) topologies based on cross-linked peptides determined from our analysis. Probabilistic modeling of the yeast 19S AAA-ATPase ring (i.e., Rpt1-6) has produced an ML topology that is in excellent agreement with known topologies of its orthologs. In addition, similar analysis was carried out on the 19S lid subcomplex, whose predicted ML topology corroborates recently reported electron microscopy studies. Together, we have demonstrated the effectiveness and potential of probabilistic modeling for unraveling topologies of protein complexes using cross-linking data. This report describes the first study of the 19S RP topology using a new integrated strategy combining chemical cross-linking, mass spectrometry, and probabilistic modeling. Our results have provided a solid foundation to advance our understanding of the 19S RP architecture at peptide level resolution. Furthermore, our methodology developed here is a valuable proteomic tool that can be generalized for elucidating the structures of protein complexes.
Collapse
Affiliation(s)
- Athit Kao
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Erales J, Hoyt MA, Troll F, Coffino P. Functional asymmetries of proteasome translocase pore. J Biol Chem 2012; 287:18535-43. [PMID: 22493437 DOI: 10.1074/jbc.m112.357327] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.
Collapse
Affiliation(s)
- Jenny Erales
- Department of Microbiology and Immunology, University of California, San Francisco, California 94127, USA
| | | | | | | |
Collapse
|
61
|
da Fonseca P, He J, Morris E. Molecular Model of the Human 26S Proteasome. Mol Cell 2012; 46:54-66. [DOI: 10.1016/j.molcel.2012.03.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/08/2012] [Accepted: 03/28/2012] [Indexed: 01/10/2023]
|
62
|
Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 2012; 109:E1001-10. [PMID: 22460800 DOI: 10.1073/pnas.1116538109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1-Rpt2-Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3-Rpt1-Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.
Collapse
|
63
|
He J, Kulkarni K, da Fonseca PCA, Krutauz D, Glickman MH, Barford D, Morris EP. The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 2012; 20:513-21. [PMID: 22405010 DOI: 10.1016/j.str.2011.12.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 10/28/2022]
Abstract
The 26S proteasome proteolyses ubiquitylated proteins and is assembled from a 20S proteolytic core and two 19S regulatory particles (19S-RP). The 19S-RP scaffolding subunits Rpn1 and Rpn2 function to engage ubiquitin receptors. Rpn1 and Rpn2 are characterized by eleven tandem copies of a 35-40 amino acid repeat motif termed the proteasome/cyclosome (PC) repeat. Here, we reveal that the eleven PC repeats of Rpn2 form a closed toroidal structure incorporating two concentric rings of α helices encircling two axial α helices. A rod-like N-terminal domain consisting of 17 stacked α helices and a globular C-terminal domain emerge from one face of the toroid. Rpn13, an ubiquitin receptor, binds to the C-terminal 20 residues of Rpn2. Rpn1 adopts a similar conformation to Rpn2 but differs in the orientation of its rod-like N-terminal domain. These findings have implications for understanding how 19S-RPs recognize, unfold, and deliver ubiquitylated substrates to the 20S core.
Collapse
Affiliation(s)
- Jun He
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
64
|
Truscott KN, Bezawork-Geleta A, Dougan DA. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life 2012; 63:955-63. [PMID: 22031494 DOI: 10.1002/iub.526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the crowded environment of a cell, the protein quality control machinery, such as molecular chaperones and proteases, maintains a population of folded and hence functional proteins. The accumulation of unfolded proteins in a cell is particularly harmful as it not only reduces the concentration of active proteins but also overburdens the protein quality control machinery, which in turn, can lead to a significant increase in nonproductive folding and protein aggregation. To circumvent this problem, cells use heat shock and unfolded protein stress response pathways, which essentially sense the change to protein homeostasis upregulating protein quality control factors that act to restore the balance. Interestingly, several stress response pathways are proteolytically controlled. In this review, we provide a brief summary of targeted protein degradation by AAA+ proteases and focus on the role of ClpXP proteases, particularly in the signaling pathway of the Escherichia coli extracellular stress response and the mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Kaye N Truscott
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| | | | | |
Collapse
|
65
|
|
66
|
Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 2012; 109:1380-7. [PMID: 22307589 PMCID: PMC3277140 DOI: 10.1073/pnas.1120559109] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The "lid" of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 1700 4th Street, University of California, San Francisco, CA 94158
- Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stefan Bohn
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Thomas Walzthoeni
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische, Technische Hochschule, 8093 Zürich, Switzerland
- PhD Program in Molecular Life Sciences, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and
| | - Elizabeth Villa
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Pia Unverdorben
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische, Technische Hochschule, 8093 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8093 Zürich, Switzerland
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 1700 4th Street, University of California, San Francisco, CA 94158
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
67
|
Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci U S A 2012; 109:1479-84. [PMID: 22215586 DOI: 10.1073/pnas.1119394109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two canonical subunits of the 26S proteasome, Rpn10 and Rpn13, function as ubiquitin (Ub) receptors. The mutual arrangement of these subunits--and all other non-ATPase subunits--in the regulatory particle is unknown. Using electron cryomicroscopy, we calculated difference maps between wild-type 26S proteasome from Saccharomyces cerevisiae and deletion mutants (rpn10Δ, rpn13Δ, and rpn10Δrpn13Δ). These maps allowed us to localize the two Ub receptors unambiguously. Rpn10 and Rpn13 mapped to the apical part of the 26S proteasome, above the N-terminal coiled coils of the AAA-ATPase heterodimers Rpt4/Rpt5 and Rpt1/Rpt2, respectively. On the basis of the mutual positions of Rpn10 and Rpn13, we propose a model for polyubiquitin binding to the 26S proteasome.
Collapse
|
68
|
Abstract
Proteasome is a highly organized protease complex comprising a catalytic 20S core particle (CP) and two 19S regulatory particles (RP), which together form the 26S structure. The 26S proteasome is responsible for the degradation of most ubiquitylated proteins through a multistep process involving recognition of the polyubiquitin chain, unfolding of the substrate, and translocation of the substrate into the active site in the cavity of the CP. Recent studies have shed light on various aspects of the complex functions of the 26S proteasome. In addition, the recent identification of various proteasome-dedicated chaperones indicates that the assembly pathways of the RP and CP are multistep processes. In this review, we summarize recent advances in the understanding of the proteasome structure, function, and assembly.
Collapse
|
69
|
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci U S A 2011; 109:149-54. [PMID: 22187461 DOI: 10.1073/pnas.1117648108] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.
Collapse
|
70
|
Abstract
Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.
Collapse
Affiliation(s)
- Julie Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA.
| |
Collapse
|
71
|
Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D. An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 2011; 18:1259-67. [PMID: 22037170 PMCID: PMC3210322 DOI: 10.1038/nsmb.2147] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/18/2011] [Indexed: 12/29/2022]
Abstract
The S. cerevisiae proteasome comprises a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP). To be degraded, substrates must cross the CP-RP interface, a site of complex conformational changes and regulatory events. This interface includes two aligned heteromeric rings: the six ATPase (Rpt) subunits of the RP and the seven α subunits of the CP. Rpt C-termini bind intersubunit cavities of the α ring, thus directing CP gating and proteasome assembly. We used crosslinking to map the Rpt C-termini to the α subunit pockets. This reveals an unexpected asymmetry: one side of the ring shows 1:1 contacts of Rpt2–α4, Rpt6–α3, and Rpt3–α2, whereas, on the opposite side, the Rpt1, Rpt4, and Rpt5 tails each crosslink to multiple α pockets. Rpt-CP crosslinks are all sensitive to nucleotide, implying that ATP hydrolysis drives dynamic alterations at the CP-RP interface.
Collapse
Affiliation(s)
- Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Tomko RJ, Hochstrasser M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem Biophys 2011; 60:13-20. [PMID: 21461838 DOI: 10.1007/s12013-011-9178-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 26S proteasome is responsible for a large fraction of the regulated protein degradation in eukaryotic cells. The enzyme complex is composed of a 20S proteolytic core particle (CP) capped on one or both ends with a 19S regulatory particle (RP). The RP recognizes and unfolds substrates and translocates them into the CP. The RP can be further divided into lid and base subcomplexes. The base contains a ring of six AAA+ ATPases (Rpts) that directly abuts the CP and is responsible for unfolding substrates and driving them into the CP for proteolysis. Although 120 arrangements of the six different ATPases within the ring are possible in principle, they array themselves in one specific order. The high sequence and structural similarity between the Rpt subunits presents special challenges for their ordered association and incorporation into the assembling proteasome. In this review, we discuss recent advances in our understanding of proteasomal RP base biogenesis, with emphasis on potential specificity determinants in ring arrangement, and the implications of the ATPase ring arrangement for proteasome assembly.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
73
|
Abstract
AAA+ family proteolytic machines (ClpXP, ClpAP, ClpCP, HslUV, Lon, FtsH, PAN/20S, and the 26S proteasome) perform protein quality control and are used in regulatory circuits in all cells. These machines contain a compartmental protease, with active sites sequestered in an interior chamber, and a hexameric ring of AAA+ ATPases. Substrate proteins are tethered to the ring, either directly or via adaptor proteins. An unstructured region of the substrate is engaged in the axial pore of the AAA+ ring, and cycles of ATP binding/hydrolysis drive conformational changes that create pulses of pulling that denature the substrate and translocate the unfolded polypeptide through the pore and into the degradation chamber. Here, we review our current understanding of the molecular mechanisms of substrate recognition, adaptor function, and ATP-fueled unfolding and translocation. The unfolding activities of these and related AAA+ machines can also be used to disassemble or remodel macromolecular complexes and to resolubilize aggregates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
74
|
Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson CV. The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell 2011; 42:637-49. [PMID: 21658604 DOI: 10.1016/j.molcel.2011.04.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/25/2011] [Accepted: 04/05/2011] [Indexed: 01/04/2023]
Abstract
The 26S proteasome is a 2.5 MDa macromolecular machine responsible for targeted protein degradation. Recently, four chaperones were identified that promote the assembly of the 19S regulatory particle (RP). Here, we probe the dynamic architecture of the proteasome by applying quantitative proteomics and mass spectrometry (MS) of intact complexes to provide a detailed characterization of how Ubp6 assists this assembly process. Our MS data demonstrate stoichiometric binding of chaperones and Ubp6 to the basal part of the RP. Genetic interactions of Ubp6 with Hsm3, but not with the other chaperones, indicate a functional overlay with Hsm3. Our biochemical data identified Ubp6 as an additional member of the Hsm3 module. Deletions of ubp6 with hsm3 perturb 26S proteasome assembly, which we attribute to an accumulation of ubiquitylated substrates on these assembly precursors. We therefore propose that Ubp6 facilitates proteasomal assembly by clearing ubiquitylated substrates from assembly precursors by its deubiquitylating activity.
Collapse
Affiliation(s)
- Eri Sakata
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:67-82. [PMID: 21820014 DOI: 10.1016/j.bbamcr.2011.07.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.
Collapse
Affiliation(s)
- Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
76
|
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011; 144:526-38. [PMID: 21335235 DOI: 10.1016/j.cell.2011.02.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/03/2010] [Accepted: 02/01/2011] [Indexed: 01/10/2023]
Abstract
In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits and, in archaea, by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits, it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules or two ATPγS plus two ADP molecules, it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and "wobble" on top of the heptameric 20S proteasome.
Collapse
|
77
|
Stadtmueller BM, Hill CP. Proteasome activators. Mol Cell 2011; 41:8-19. [PMID: 21211719 DOI: 10.1016/j.molcel.2010.12.020] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 01/25/2023]
Abstract
Proteasomes degrade a multitude of protein substrates in the cytosol and nucleus, and thereby are essential for many aspects of cellular function. Because the proteolytic sites are sequestered in a closed barrel-shaped structure, activators are required to facilitate substrate access. Structural and biochemical studies of two activator families, 11S and Blm10, have provided insights to proteasome activation mechanisms, although the biological functions of these factors remain obscure. Recent advances have improved our understanding of the third activator family, including the 19S activator, which targets polyubiquitylated proteins for degradation. Here we present a structural perspective on how proteasomes are activated and how substrates are delivered to the proteolytic sites.
Collapse
Affiliation(s)
- Beth M Stadtmueller
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | |
Collapse
|
78
|
Inobe T, Fishbain S, Prakash S, Matouschek A. Defining the geometry of the two-component proteasome degron. Nat Chem Biol 2011; 7:161-7. [PMID: 21278740 PMCID: PMC3129032 DOI: 10.1038/nchembio.521] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 11/18/2022]
Abstract
The eukaryotic 26S proteasome controls cellular processes by degrading specific regulatory proteins. Most proteins are targeted for degradation by a signal or degron that consists of two parts: a proteasome-binding tag, typically covalently attached polyubiquitin chains, and an unstructured region that serves as the initiation region for proteasomal proteolysis. Here we have characterized how the arrangement of the two degron parts in a protein affects degradation. We found that a substrate is degraded efficiently only when its initiation region is of a certain minimal length and is appropriately separated in space from the proteasome-binding tag. Regions that are located too close or too far from the proteasome-binding tag cannot access the proteasome and induce degradation. These spacing requirements are different for a polyubiquitin chain and a ubiquitin-like (UbL) domain. Thus, arrangement and location of the proteasome initiation region affect a protein’s fate and play a central role in selecting proteins for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
79
|
Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci U S A 2010; 107:20992-7. [PMID: 21098295 DOI: 10.1073/pnas.1015530107] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The structure of the 26S proteasome from Schizosaccharomyces pombe has been determined to a resolution of 9.1 Å by cryoelectron microscopy and single particle analysis. In addition, chemical cross-linking in conjunction with mass spectrometry has been used to identify numerous residue pairs in close proximity to each other, providing an array of spatial restraints. Taken together these data clarify the topology of the AAA-ATPase module in the 19S regulatory particle and its spatial relationship to the α-ring of the 20S core particle. Image classification and variance analysis reveal a belt of high "activity" surrounding the AAA-ATPase module which is tentatively assigned to the reversible association of proteasome interacting proteins and the conformational heterogeneity among the particles. An integrated model is presented which sheds light on the early steps of protein degradation by the 26S complex.
Collapse
|
80
|
Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 2010; 17:1352-7. [PMID: 20953180 PMCID: PMC2988878 DOI: 10.1038/nsmb.1918] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/27/2010] [Indexed: 01/17/2023]
Abstract
Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an α-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.
Collapse
|
81
|
Xie Y. Structure, Assembly and Homeostatic Regulation of the 26S Proteasome. J Mol Cell Biol 2010; 2:308-17. [DOI: 10.1093/jmcb/mjq030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
82
|
Effantin G, Ishikawa T, De Donatis GM, Maurizi MR, Steven AC. Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations. Structure 2010; 18:553-62. [PMID: 20462489 DOI: 10.1016/j.str.2010.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
The ClpA chaperone combines with the ClpP peptidase to perform targeted proteolysis in the bacterial cytoplasm. ClpA monomer has an N-terminal substrate-binding domain and two AAA+ ATPase domains (D1 and D2). ClpA hexamers stack axially on ClpP heptamers to form the symmetry-mismatched protease. We used cryo-electron microscopy to visualize the ClpA-ATPgammaS hexamer, in the context of ClpAP complexes. Two segments lining the axial channel show anomalously low density, indicating that these motifs, which have been implicated in substrate translocation, are mobile. We infer that ATP hydrolysis is accompanied by substantial structural changes in the D2 but not the D1 tier. The entire N domain is rendered invisible by large-scale fluctuations. When deletions of 10 and 15 residues were introduced into the linker, N domain mobility was reduced but not eliminated and changes were observed in enzymatic activities. Based on these observations, we present a pseudo-atomic model of ClpAP holoenzyme, a dynamic proteolytic nanomachine.
Collapse
Affiliation(s)
- Grégory Effantin
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
83
|
Structure characterization of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:67-79. [PMID: 20800708 DOI: 10.1016/j.bbagrm.2010.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/27/2023]
Abstract
In all eukaryotic cells, 26S proteasome plays an essential role in the process of ATP-dependent protein degradation. In this review, we focus on structure characterization of the 26S proteasome. Although the progress towards a high-resolution structure of the 26S proteasome has been slow, the recently solved structures of various proteasomal subcomplexes have greatly enhanced our understanding of this large machinery. In addition to having an ATP-dependent proteolytic function, the 26S proteasome is also involved in many non-proteolytic cellular activities, which are often mediated by subunits in its 19S regulatory complex. Thus, we include a detailed discussion of the structures of 19S subunits, including proteasomal ATPases, ubiquitin receptors, deubiquitinating enzymes and subunits that contain PCI domain. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
84
|
Förster F, Lasker K, Nickell S, Sali A, Baumeister W. Toward an integrated structural model of the 26S proteasome. Mol Cell Proteomics 2010; 9:1666-77. [PMID: 20467039 PMCID: PMC2938054 DOI: 10.1074/mcp.r000002-mcp201] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/26/2010] [Indexed: 11/06/2022] Open
Abstract
The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation.
Collapse
Affiliation(s)
- Friedrich Förster
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Keren Lasker
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, and
- ‖Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephan Nickell
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Andrej Sali
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, and
| | - Wolfgang Baumeister
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
85
|
Duman RE, Löwe J. Crystal Structures of Bacillus subtilis Lon Protease. J Mol Biol 2010; 401:653-70. [DOI: 10.1016/j.jmb.2010.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/29/2022]
|
86
|
Gallastegui N, Groll M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 2010; 35:634-42. [PMID: 20541423 DOI: 10.1016/j.tibs.2010.05.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
Abstract
The heart of the ubiquitin-mediated degradation pathway, the 26S proteasome, endoproteolytically cleaves most intracellular proteins, thereby maintaining biological homeostasis and regulating many crucial processes in the cell. This hydrolyzing machine comprises more than 30 different subunits, which perform different functions including the recognition, unfolding, translocating and cleavage of protein substrates. Thus, careful assemblage and regulation of the 26S proteasome is essential to ensure correct positioning and function of each subunit, thereby preserving the delicate cellular balance between protein synthesis and degradation. Here, we review the most current research on the 26S proteasome assembly pathway, and describe the mechanism used by the cell to manage the complex structure and functions of the proteasome.
Collapse
Affiliation(s)
- Nerea Gallastegui
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | |
Collapse
|
87
|
Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 2010; 38:393-403. [PMID: 20471945 DOI: 10.1016/j.molcel.2010.02.035] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/01/2010] [Accepted: 02/16/2010] [Indexed: 12/18/2022]
Abstract
The proteasome has a paramount role in eukaryotic cell regulation. It consists of a proteolytic core particle (CP) bound to one or two regulatory particles (RPs). Each RP is believed to include six different AAA+ ATPases in a heterohexameric ring that binds the CP while unfolding and translocating substrates into the core. No atomic-resolution RP structures are available. Guided by crystal structures of related homohexameric prokaryotic ATPases, we use disulfide engineering to show that the eukaryotic ATPases form a ring with the arrangement Rpt1-Rpt2-Rpt6-Rpt3-Rpt4-Rpt5 in fully assembled proteasomes. The arrangement is consistent with known assembly intermediates. This quaternary organization clarifies the functional overlap of specific RP assembly chaperones and led us to identify a potential RP assembly intermediate that includes four ATPases (Rpt6-Rpt3-Rpt4-Rpt5) and their cognate chaperones (Rpn14, Nas6, and Nas2). Finally, the ATPase ring structure casts light on alternative RP structural models and the mechanism of RP action.
Collapse
|
88
|
Ordering an engagement ring. Mol Cell 2010; 38:319-20. [PMID: 20471937 DOI: 10.1016/j.molcel.2010.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this issue of Molecular Cell, Tomko et al. (2010) establish that the six distinct ATPase subunits of the eukaryotic proteasome form a heterohexameric ring and resolve how the subunits are arranged within the ring.
Collapse
|
89
|
Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 2010; 20:391-401. [PMID: 20427185 DOI: 10.1016/j.tcb.2010.03.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/15/2023]
Abstract
The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.
Collapse
|
90
|
Abstract
The proteasome is the most complex protease known, with a molecular mass of approx. 3 MDa and 33 distinct subunits. Recent studies reported the discovery of four chaperones that promote the assembly of a 19-subunit subcomplex of the proteasome known as the regulatory particle, or RP. These and other findings define a new and highly unusual macromolecular assembly pathway. The RP mediates substrate selection by the proteasome and injects substrates into the CP (core particle) to be degraded. A heterohexameric ring of ATPases, the Rpt proteins, is critical for RP function. These ATPases abut the CP and their C-terminal tails help to stabilize the RP-CP interface. ATPase heterodimers bound to the chaperone proteins are early intermediates in assembly of the ATPase ring. The four chaperones have the common feature of binding the C-domains of Rpt proteins, apparently a remarkable example of convergent evolution; each chaperone binds a specific Rpt subunit. The C-domains are distinct from the C-terminal tails, but are proximal to them. Some, but probably not all, of the RP chaperones appear to compete with CP for binding of the Rpt proteins, as a result of the proximity of the tails to the C-domain. This competition may underlie the release mechanism for these chaperones. Genetic studies in yeast point to the importance of the interaction between the CP and the Rpt tails in assembly, and a recent biochemical study in mammals suggests that RP assembly takes place on pre-assembled CP. These results do not exclude a parallel CP-independent pathway of assembly. Ongoing work should soon clarify the roles of both the CP and the four chaperones in RP assembly.
Collapse
|
91
|
The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. EMBO J 2010; 29:1262-71. [PMID: 20203624 DOI: 10.1038/emboj.2010.23] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/03/2010] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin-like protein (Pup) that is recognized by the N-terminal coiled-coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation. We show that the Mpa-proteasome complex unfolds and degrades Pup-tagged proteins and that this activity requires physical interaction of the ATPase with the proteasome. Furthermore, we establish the N-terminal region of Pup as the structural element required for engagement of pupylated substrates into the Mpa pore. In this process, Mpa pulls on Pup to initiate unfolding of substrate proteins and to drag them toward the proteasome chamber. Unlike the eukaryotic ubiquitin, Pup is not recycled but degraded with the substrate. This assigns a dual function to Pup as both the Mpa recognition element as well as the threading determinant.
Collapse
|
92
|
Wang T, Li H, Lin G, Tang C, Li D, Nathan C, Darwin KH, Li H. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 2010; 17:1377-85. [PMID: 19836337 DOI: 10.1016/j.str.2009.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/16/2022]
Abstract
Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPgammaS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double beta barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.
Collapse
Affiliation(s)
- Tao Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J 2009; 29:692-702. [PMID: 20019667 DOI: 10.1038/emboj.2009.382] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 11/27/2009] [Indexed: 11/08/2022] Open
Abstract
Protein degradation in the 20S proteasome is regulated in eukaryotes by the 19S ATPase complex and in archaea by the homologous PAN ATPase ring complex. Subunits of these hexameric ATPases contain on their C-termini a conserved hydrophobic-tyrosine-X (HbYX) motif that docks into pockets in the 20S to stimulate the opening of a gated substrate entry channel. Here, we report the crystal structure of the archaeal 20S proteasome in complex with the C-terminus of the archaeal proteasome regulatory ATPase, PAN. This structure defines the detailed interactions between the critical C-terminal HbYX motif and the 20S alpha-subunits and indicates that the intersubunit pocket in the 20S undergoes an induced-fit conformational change on binding of the HbYX motif. This structure together with related mutagenesis data suggest how in eukaryotes certain proteasomal ATPases bind to specific pockets in an asymmetrical manner to regulate gate opening.
Collapse
|
94
|
Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B, Sander P, Weber-Ban E. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol 2009; 75:744-54. [PMID: 20025664 DOI: 10.1111/j.1365-2958.2009.07013.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteasome-bearing bacteria make use of a ubiquitin-like modification pathway to target proteins for proteasomal turnover. In a process termed pupylation, proteasomal substrates are covalently modified with the small protein Pup that serves as a degradation signal. Pup is attached to substrate proteins by action of PafA. Prior to its attachment, Pup needs to undergo deamidation at its C-terminal residue, converting glutamine to glutamate. This step is catalysed in vitro by Dop. In order to characterize Dop activity in vivo, we generated a dop deletion mutant in Mycobacterium smegmatis. In the Deltadop strain, pupylation is severely impaired and the steady-state levels of two known proteasomal substrates are drastically increased. Pupylation can be re-established by complementing the mutant with either DopWt or a Pup variant carrying a glutamate at its ultimate C-terminal position (PupGGE). Our data show that Pup is deamidated by Dop in vivo and that likely Dop alone is responsible for this activity. Furthermore, we demonstrate that a putative N-terminal ATP-binding motif is crucial for catalysis, as a single point mutation (E10A) in this motif abolishes Dop activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Frank Imkamp
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
95
|
Stadtmueller BM, Ferrell K, Whitby FG, Heroux A, Robinson H, Myszka DG, Hill CP. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J Biol Chem 2009; 285:13-7. [PMID: 19889631 DOI: 10.1074/jbc.c109.070425] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome activity is regulated by sequestration of its proteolytic centers in a barrel-shaped structure that limits substrate access. Substrates enter the proteasome by means of activator complexes that bind to the end rings of proteasome alpha subunits and induce opening of an axial entrance/exit pore. The PA26 activator binds in a pocket on the proteasome surface using main chain contacts of its C-terminal residues and uses an internal activation loop to trigger gate opening by repositioning the proteasome Pro-17 reverse turn. Subunits of the unrelated PAN/19S activators bind with their C termini in the same pockets but can induce proteasome gate opening entirely from interactions of their C-terminal peptides, which are reported to cause gate opening by inducing a rocking motion of proteasome alpha subunits rather than by directly contacting the Pro-17 turn. Here we report crystal structures and binding studies of proteasome complexes with PA26 constructs that display modified C-terminal residues, including those corresponding to PAN. These findings suggest that PA26 and PAN/19S C-terminal residues bind superimposably and that both classes of activator induce gate opening by using direct contacts to residues of the proteasome Pro-17 reverse turn. In the case of the PAN and 19S activators, a penultimate tyrosine/phenylalanine residue contacts the proteasome Gly-19 carbonyl oxygen to stabilize the open conformation.
Collapse
Affiliation(s)
- Beth M Stadtmueller
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
|
97
|
Sutter M, Striebel F, Damberger FF, Allain FHT, Weber-Ban E. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett 2009; 583:3151-7. [PMID: 19761766 DOI: 10.1016/j.febslet.2009.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
The mycobacterial ubiquitin-like protein Pup is coupled to proteins, thereby rendering them as substrates for proteasome-mediated degradation. The Pup-tagged proteins are recruited by the proteasomal ATPase Mpa (also called ARC). Using a combination of biochemical and NMR methods, we characterize the structural determinants of Pup and its interaction with Mpa, demonstrating that Pup adopts a range of extended conformations with a short helical stretch in its C-terminal portion. We show that the N-terminal coiled-coil domain of Mpa makes extensive contacts along the central region of Pup leaving its N-terminus unconstrained and available for other functional interactions.
Collapse
Affiliation(s)
- Markus Sutter
- ETH Zurich, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
98
|
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem Biophys Res Commun 2009; 388:228-33. [PMID: 19653995 DOI: 10.1016/j.bbrc.2009.07.145] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 07/28/2009] [Indexed: 11/21/2022]
Abstract
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.
Collapse
|
99
|
Abstract
Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the "base" part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the "wobbling" model that was previously proposed to explain the role of the regulatory complex in opening the gate in the alpha-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.
Collapse
|
100
|
|