51
|
Saccani S, Trabucchi M. Regulation of stimulus-inducible gene expression in myeloid cells. Semin Immunol 2015; 27:33-43. [DOI: 10.1016/j.smim.2015.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
|
52
|
Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TCP, Buesa C. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics 2015; 7:609-26. [PMID: 26111032 DOI: 10.2217/epi.15.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer. An additional role has emerged for KDM1 in brain function, offering additional opportunities for the development of novel therapeutic strategies in neurodegenerative disease. A decade after the identification of KDM1A as a histone demethylase, the first selective inhibitors have now reached the clinic.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Serena Lunardi
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Filippo Ciceri
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, M20 4BX, UK
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| |
Collapse
|
53
|
Katz TA, Vasilatos SN, Harrington E, Oesterreich S, Davidson NE, Huang Y. Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res Treat 2014; 146:99-108. [PMID: 24924415 DOI: 10.1007/s10549-014-3012-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that dysfunction of histone lysine demethylase is associated with abnormal chromatin remodeling and gene silencing, contributing to breast tumorigenesis. In silico analysis shows that the newly identified histone demethylase lysine-specific demethylase 2 is highly expressed in breast cancer, especially in invasive tumors. However, it is currently unknown how LSD2 regulates chromatin remodeling and gene expression regulation in breast cancer. Using short hairpin RNA, we stably knocked down LSD2 (LSD2-KD) in MDA-MB-231 breast cancer cells. LSD2-KD led to accumulation of H3K4me1/2 without changing methylation levels of other key histone lysine residues, suggesting that LSD2 acts as a bona fide H3K4 demethylase in breast cancer cells. LSD2-KD resulted in decreased colony formation and attenuated global DNA methylation in MDA-MB-231 cells. Additionally, treatment with the DNMT inhibitor, 5-aza-deoxycytidine (DAC), synergistically increased mRNA expression of aberrantly silenced genes important in breast cancer development, including PR, RARβ, ERα, SFRP1, SFRP2, and E-cadherin in LSD2-KD cells. Furthermore, LSD2-KD cells are more susceptible to cell death than scramble controls, and combined treatment with tranylcypromine, an LSD2 inhibitor, and DAC resulted in synergistic growth inhibition of breast cancer cells. DNMT inhibition by DAC in LSD2-KD cells led to internucleosomal DNA fragmentation, enhanced PARP cleavage and increased sub-G1 apoptotic cell population. These results demonstrate an important role for LSD2 in regulation of DNA methylation and gene silencing in breast cancer, and suggest that inhibition of LSD2 in combination with DNA methyltransferase inhibition represents a novel approach for epigenetic therapy of breast cancer.
Collapse
Affiliation(s)
- Tiffany A Katz
- UPMC Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Suite 500, 5150 Centre Ave, Pittsburgh, PA, 15232, USA
| | | | | | | | | | | |
Collapse
|
54
|
Bhatt D, Ghosh S. Regulation of the NF-κB-Mediated Transcription of Inflammatory Genes. Front Immunol 2014; 5:71. [PMID: 24611065 PMCID: PMC3933792 DOI: 10.3389/fimmu.2014.00071] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
The NF-κB family of transcription factors plays a central role in the inducible expression of inflammatory genes during the immune response, and the proper regulation of these genes is a critical factor in the maintenance of immune homeostasis. The chromatin environment at stimulus-responsive NF-κB sites is a major determinant in transcription factor binding, and dynamic alteration of the chromatin state to facilitate transcription factor binding is a key regulatory mechanism. NF-κB is in turn able to influence the chromatin state through a variety of mechanisms, including the recruitment of chromatin modifying co-activator complexes such as p300, the competitive eviction of negative chromatin modifications, and the recruitment of components of the general transcriptional machinery. Frequently, the selective interaction with these co-activators is dependent on specific post-translational modification of NF-κB subunits. Finally, the mechanisms of inducible NF-κB activity in different immune cell types seem to be largely conserved. The diversity of cell-specific NF-κB-mediated transcriptional programs is established at the chromatin level during cell differentiation by lineage-defining transcription factors. These factors generate and maintain a cell-specific chromatin landscape that is accessible to NF-κB, thus restricting the inducible transcriptional response to a cell-appropriate output.
Collapse
Affiliation(s)
- Dev Bhatt
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| |
Collapse
|
55
|
Yang RF, Zhao GW, Liang ST, Chen HZ, Liu DP. Lysine-specific demethylase 1 represses THP-1 monocyte-to-macrophage differentiation. ACTA ACUST UNITED AC 2013; 28:82-7. [PMID: 23806369 DOI: 10.1016/s1001-9294(13)60027-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the role of lysine-specific demethylase 1 (LSD1) in the process of THP-1 monocyte-to-macrophage differentiation. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting were performed to analyze the expression of LSD1 and interleukin-6 (IL-6) in THP-1 monocytes and THP-1-derived macrophages. Chromatin immunoprecipitation (ChIP) assay was applied to detect the occupancy of LSD1 and H3K4 methylation at IL-6 promoter during THP-1 monocyte-to-macrophage differentiation. IL-6 mRNA level and H3K4 methylation at IL-6 promoter were analyzed using qRT-PCR and ChIP assay in LSD1-knockdown THP-1 cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 0, 4, 8, 12, and 24 hours. Fluorescence activated flow cytometry was performed to reveal the percentage of macrophages differentiated from THP-1 monocytes. RESULTS The expression of LSD1 reduced during THP-1 monocyte-to-macrophage differentiation (P<0.01). LSD1 occupancy decreased and H3K4 methylation increased at IL-6 promoter during the differentiation. With knockdown of LSD1, H3K4 methylation at IL-6 promoter was found increased after TPA treatment at different times points (all P<0.05, except 24 hours). The percentage of macrophages increased significantly in the THP-1 cells with LSD1 knockdown (P<0.05). CONCLUSIONS LSD1 is repressed during the monocyte-to-macrophage differentiation of THP-1 cells. Suppression of LSD1-mediated H3K4 demethylation may be required for THP-1 monocyte-to-macrophage differentiation.
Collapse
Affiliation(s)
- Rui-feng Yang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
56
|
Mai T, Pone EJ, Li G, Lam TS, Moehlman J, Xu Z, Casali P. Induction of activation-induced cytidine deaminase-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5'-CpG-3'-rich 14-3-3γ promoter and is sustained by E2A. THE JOURNAL OF IMMUNOLOGY 2013; 191:1895-906. [PMID: 23851690 DOI: 10.4049/jimmunol.1300922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Class switch DNA recombination (CSR) crucially diversifies Ab biologic effector functions. 14-3-3γ specifically binds to the 5'-AGCT-3' repeats in the IgH locus switch (S) regions. By interacting directly with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. In this study, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by LPSs, and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A.
Collapse
Affiliation(s)
- Thach Mai
- Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Li J, Braganza A, Sobol RW. Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Antioxid Redox Signal 2013; 18:2429-43. [PMID: 23311711 PMCID: PMC3671628 DOI: 10.1089/ars.2012.5107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. RECENT ADVANCES The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. CRITICAL ISSUES One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. FUTURE DIRECTIONS To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
58
|
Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, Fang J, Yang Y, Mei P, Rutenberg M, Li Z, Zhang Y, Xu Y, Yang H, Wang P, Simon MD, Zhou Q, Li J, Marynick MP, Li X, Lu H, Kaiser UB, Kingston RE, Xu Y, Shi YG. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell 2013; 49:558-70. [PMID: 23260659 PMCID: PMC3625064 DOI: 10.1016/j.molcel.2012.11.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/21/2012] [Accepted: 11/16/2012] [Indexed: 01/07/2023]
Abstract
Dynamic regulation of histone methylation represents a fundamental epigenetic mechanism underlying eukaryotic gene regulation, yet little is known about how the catalytic activities of histone demethylases are regulated. Here, we identify and characterize NPAC/GLYR1 as an LSD2/KDM1b-specific cofactor that stimulates H3K4me1 and H3K4me2 demethylation. We determine the crystal structures of LSD2 alone and LSD2 in complex with the NPAC linker region in the absence or presence of histone H3 peptide, at resolutions of 2.9, 2.0, and 2.25 Å, respectively. These crystal structures and further biochemical characterization define a dodecapeptide of NPAC (residues 214-225) as the minimal functional unit for its cofactor activity and provide structural determinants and a molecular mechanism underlying the intrinsic cofactor activity of NPAC in stimulating LSD2-catalyzed H3K4 demethylation. Thus, these findings establish a model for how a cofactor directly regulates histone demethylation and will have a significant impact on our understanding of catalytic-activity-based epigenetic regulation.
Collapse
Affiliation(s)
- Rui Fang
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Fei Chen
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Zhenghong Dong
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Di Hu
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
,Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Andrew J. Barbera
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Erin A. Clark
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Jian Fang
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Ying Yang
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Pinchao Mei
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Rutenberg
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Ze Li
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Ying Zhang
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,Department of Chemistry Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Youwei Xu
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Huirong Yang
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Ping Wang
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Matthew D. Simon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qiongjie Zhou
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
,Obstetrics and Gynecology Hospital Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Jing Li
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Mark P. Marynick
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Haojie Lu
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,Department of Chemistry Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yanhui Xu
- Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,State Key Laboratory of Genetic Engineering Fudan University, 130 Dong An Road, Shanghai 200032, China
,Correspondence: (Y.X.), (Y.G.S.)
| | - Yujiang Geno Shi
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
,Institutes of Biomedical Sciences Fudan University, 130 Dong An Road, Shanghai 200032, China
,Children’s Hospital Fudan University, 130 Dong An Road, Shanghai 200032, China
,Correspondence: (Y.X.), (Y.G.S.)
| |
Collapse
|
59
|
Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res 2013; 23:225-41. [PMID: 23266887 PMCID: PMC3567814 DOI: 10.1038/cr.2012.177] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
LSD2/AOF1/KDM1b catalyzes demethylation of mono- and di-methylated H3K4 and plays an important role in transcriptional regulation and genomic imprinting. Here, we report the high-resolution crystal structures of apo-LSD2 and LSD2 in complex with a peptide that mimics H3K4me2. Three structural domains of LSD2, namely, the novel N-terminal zinc finger, the centrally located SWIRM domain, and the C-terminal oxidase domain, closely pack together to form a boot-shaped structure. The active site cavity in the oxidase domain is large enough to accommodate several residues of the histone H3 tail and cannot discriminate between the different states of H3K4 methylation. The N-terminal zinc-finger domain, composed of a novel C4H2C2-type zinc finger and a specific CW-type zinc finger, is required for demethylase activity and, surprisingly, the binding of cofactor flavin adenine dinucleotide (FAD). In fact, a relay of extensive interactions through the zinc finger-SWIRM-oxidase domains is required for LSD2 demethylase activity and the binding of FAD. These results reveal a novel mechanism for the zinc finger and SWIRM domains in controlling LSD2 demethylase activity and provide a framework for elucidating the regulation and function of LSD2.
Collapse
|
60
|
Ivashkiv LB. Epigenetic regulation of macrophage polarization and function. Trends Immunol 2012; 34:216-23. [PMID: 23218730 DOI: 10.1016/j.it.2012.11.001] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/12/2023]
Abstract
Macrophage polarization refers to development of a specific phenotype important for tissue homeostasis or host defense in response to environmental cues. Environmental factors that induce macrophage polarization include cytokines and microbial factors produced by pathogens or commensal microbiota. Signaling pathways utilized by these polarizing factors have been well characterized, but it is less clear how signals are converted into complex and sustained patterns of gene expression, and how macrophages are reprogrammed during polarization to alter their responses to subsequent environmental challenges. Emerging evidence, reviewed here, suggests an important role for epigenetic mechanisms in modulating and transmitting signals during macrophage polarization and reprogramming. Deeper understanding of epigenetic regulation of macrophage phenotype will enable development of gene-specific therapeutic approaches to enhance host defense while preserving tissue integrity and preventing chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
61
|
Walport LJ, Hopkinson RJ, Schofield CJ. Mechanisms of human histone and nucleic acid demethylases. Curr Opin Chem Biol 2012; 16:525-34. [PMID: 23063108 DOI: 10.1016/j.cbpa.2012.09.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/31/2023]
Abstract
The discovery that protein and nucleic acid demethylation is common opens up the possibility of 'methylation cycles' of functional importance, including in the regulation of gene expression. The mechanisms of known demethylases can be broadly divided into those involving nucleophilic catalysis and those involving oxidative catalysis. The latter group appear more common; they produce formaldehyde as a co-product. Nucleophilic demethylases include those proceeding via irreversible S-methylation and methyl esterases. In addition to the direct reversal of methylation, demethylation can occur concurrent with loss of other groups, such as in methylarginine hydrolysis, oxidation of N(ɛ)-methyllysine to allysine, and indirectly, for example via base-excision repair. We discuss chemically viable mechanisms for biological demethylation and summarise mechanistic knowledge of the major known families of demethylases.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | | |
Collapse
|
62
|
Epigenetic control and cancer: the potential of histone demethylases as therapeutic targets. Pharmaceuticals (Basel) 2012; 5:963-90. [PMID: 24280700 PMCID: PMC3816642 DOI: 10.3390/ph5090963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/21/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
The development of cancer involves an immense number of factors at the molecular level. These factors are associated principally with alterations in the epigenetic mechanisms that regulate gene expression profiles. Studying the effects of chromatin structure alterations, which are caused by the addition/removal of functional groups to specific histone residues, are of great interest as a promising way to identify markers for cancer diagnosis, classify the disease and determine its prognosis, and these markers could be potential targets for the treatment of this disease in its different forms. This manuscript presents the current point of view regarding members of the recently described family of proteins that exhibit histone demethylase activity; histone demethylases are genetic regulators that play a fundamental role in both the activation and repression of genes and whose expression has been observed to increase in many types of cancer. Some fundamental aspects of their association with the development of cancer and their relevance as potential targets for the development of new therapeutic strategies at the epigenetic level are discussed in the following manuscript.
Collapse
|
63
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
64
|
Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 2012; 109:E2865-74. [PMID: 22802645 DOI: 10.1073/pnas.1121131109] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.
Collapse
|
65
|
Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol Cell Biol 2012; 32:3121-31. [PMID: 22645312 DOI: 10.1128/mcb.00204-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Constitutive NF-κB activation by proinflammatory cytokines plays a major role in cancer progression. However, the underlying mechanism is still unclear. We report here that histone methyltransferase NSD2 (also known as MMSET or WHSC1), a target of bromodomain protein ANCCA/ATAD2, acts as a strong coactivator of NF-κB by directly interacting with NF-κB for activation of target genes, including those for interleukin-6 (IL-6), IL-8, vascular endothelial growth factor A (VEGFA), cyclin D, Bcl-2, and survivin, in castration-resistant prostate cancer (CRPC) cells. NSD2 is recruited to the target gene promoters upon induction and mediates NF-κB activation-associated elevation of histone H3K36me2 and H3K36me3 marks at the promoter, which involves its methylase activity. Interestingly, we found that NSD2 is also critical for cytokine-induced recruitment of NF-κB and acetyltransferase p300 and histone hyperacetylation. Importantly, NSD2 is overexpressed in prostate cancer tumors, and its overexpression correlates with NF-κB activation. Furthermore, NSD2 expression is strongly induced by tumor necrosis factor alpha (TNF-α) and IL-6 via NF-κB and plays a crucial role in tumor growth. These results identify NSD2 to be a key chromatin regulator of NF-κB and mediator of the cytokine autocrine loop for constitutive NF-κB activation and emphasize the important roles played by NSD2 in cancer cell proliferation and survival and tumor growth.
Collapse
|
66
|
Zhu Y, van Essen D, Saccani S. Cell-Type-Specific Control of Enhancer Activity by H3K9 Trimethylation. Mol Cell 2012; 46:408-23. [DOI: 10.1016/j.molcel.2012.05.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 04/15/2012] [Accepted: 05/08/2012] [Indexed: 11/16/2022]
|
67
|
Abstract
Epigenetic regulation of gene expression is a dynamic and reversible process that establishes normal cellular phenotypes but also contributes to human diseases. At the molecular level, epigenetic regulation involves hierarchical covalent modification of DNA and the proteins that package DNA, such as histones. Here, we review the key protein families that mediate epigenetic signalling through the acetylation and methylation of histones, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones. These protein families are emerging as druggable classes of enzymes and druggable classes of protein-protein interaction domains. In this article, we discuss the known links with disease, basic molecular mechanisms of action and recent progress in the pharmacological modulation of each class of proteins.
Collapse
|
68
|
Natoli G. NF-κB and chromatin: ten years on the path from basic mechanisms to candidate drugs. Immunol Rev 2012; 246:183-92. [DOI: 10.1111/j.1600-065x.2012.01103.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
69
|
Fullard N, Wilson CL, Oakley F. Roles of c-Rel signalling in inflammation and disease. Int J Biochem Cell Biol 2012; 44:851-60. [PMID: 22405852 DOI: 10.1016/j.biocel.2012.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/13/2022]
Abstract
Nuclear factor kappa B (NFκB) is a dimeric transcription factor comprised of five family members RelA (p65), RelB, c-Rel, p50 and p52. NFκB signalling is complex and controls a myriad of normal cellular functions. However, constitutive or aberrant activation of this pathway is associated with disease progression and cancer in multiple organs. The diverse array of biological responses is modulated by many factors, including the activating stimulus, recruitment of co-regulatory molecules, consensus DNA binding sequence, dimer composition and post-translational modifications. Each subunit has very different biological functions and in the context of disease the individual subunits forming the NFκB dimer can have a profound effect, causing a shift in the balance from normal to pathogenic signalling. Here we discuss the role of c-Rel dependant signalling in normal physiology and its contribution to disease both inside and outside of the immune system.
Collapse
Affiliation(s)
- Nicola Fullard
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
70
|
Abstract
It is only recently that the full importance of nuclear factor-κB (NF-κB) signalling to cancer development has been understood. Although much attention has focused on the upstream pathways leading to NF-κB activation, it is now becoming clear that the inhibitor of NF-κB kinases (IKKs), which regulate NF-κB activation, have many independent functions in tissue homeostasis and normal immune function that could compromise the clinical utility of IKK inhibitors. Therefore, if the NF-κB pathway is to be properly exploited as a target for both anticancer and anti-inflammatory drugs, it is appropriate to reconsider the complex roles of the individual NF-κB subunits.
Collapse
Affiliation(s)
- Neil D Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
71
|
Abstract
Posttranslational modifications (PTMs) of histone proteins, such as acetylation, methylation, phosphorylation, and ubiquitylation, play essential roles in regulating chromatin dynamics. Combinations of different modifications on the histone proteins, termed 'histone code' in many cases, extend the information potential of the genetic code by regulating DNA at the epigenetic level. Many PTMs occur on non-histone proteins as well as histones, regulating protein-protein interactions, stability, localization, and/or enzymatic activities of proteins involved in diverse cellular processes. Although protein phosphorylation, ubiquitylation, and acetylation have been extensively studied, only a few proteins other than histones have been reported that can be modified by lysine methylation. This review summarizes the current progress on lysine methylation of non-histone proteins, and we propose that lysine methylation, like phosphorylation and acetylation, is a common PTM that regulates proteins in diverse cellular processes.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | |
Collapse
|
72
|
Rotili D, Mai A. Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer 2011; 2:663-79. [PMID: 21941621 DOI: 10.1177/1947601911417976] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to genetic disorders, epigenetic alterations have been shown to be involved in cancer, through misregulation of histone modifications. Miswriting, misreading, and mis-erasing of histone acetylation as well as methylation marks can be actually associated with oncogenesis and tumor proliferation. Historically, methylation of Arg and Lys residues has been considered a stable, irreversible process due to the slow turnover of methyl groups in chromatin. The discovery in recent years of a large number of histone Lys demethylases (KDMs, belonging to either the amino oxidase or the JmjC family) totally changed this point of view and suggested a new role for dynamic histone methylation in biological processes. Since overexpression, alteration, or mutation of a number of KDMs has been found in many types of cancers, such enzymes could represent diagnostic tools as well as epigenetic targets to modulate for obtaining novel therapeutic weapons against cancer. The first little steps in this direction are described here.
Collapse
Affiliation(s)
- Dante Rotili
- Pasteur Institute-Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
73
|
Abstract
The 'histone code' hypothesis states that chromatin-based regulation of nuclear processes such as transcription is brought about by the combination of distinct modifications (histone marks) at specific loci. Its correct establishment involves chromatin cross-talks, ensuring an ordered and concerted deposition/removal of a particular set of modifications that act together to give the correct transcriptional outcome. Histone methylation on lysine residues can negatively or positively impact on gene transcription, depending on the residue and on its degree of methylation. Thanks to this complexity and given the number of chromatin 'readers' that can recognize methylated lysine residues, histone methylation plays a very special role in specifying the various chromatin states. The recent discovery of histone demethylases, which represent a large family of enzymes often containing histone modification binding modules, sheds new light on cross-talk mechanisms involving methylated residues. In the present review, after a brief overview of the various families of histone demethylases, we describe the different mechanisms by which they participate in chromatin cross-talks and how these mechanisms are integrated to achieve the mutual exclusion or the link between chromatin marks, leading to the establishment of the correct histone code.
Collapse
|
74
|
Green EM, Gozani O. Everybody's welcome: The big tent approach to epigenetic drug discovery. ACTA ACUST UNITED AC 2011; 9:e75-e81. [PMID: 23505394 DOI: 10.1016/j.ddstr.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The rapid expansion of epigenetics research is fueled by the increasing understanding that epigenetic processes are critical to regulating cellular development and dysfunction of epigenetic programs is responsible for a diverse set of human pathologies, including cancer, autoimmune and neurodegenerative diseases. The expansive set of components contributing to epigenetic disease mechanisms and the often reversible nature of epigenetic lesions provide prime opportunities for the development of novel therapeutic strategies. Here, we provide an overview of epigenetics and its relationship to disease, discuss current epigenetics-based therapies and suggest new avenues for the identification of therapies targeting deregulated epigenetic programs in disease.
Collapse
Affiliation(s)
- Erin M Green
- Department of Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
75
|
Abstract
Members of the NF-κB family of transcription factors function as dominant regulators of inducible gene expression in almost all cell types in response to a broad range of stimuli, with particularly important roles in coordinating both innate and adaptive immunity. This review summarizes the present knowledge and recent progress toward elucidating the numerous regulatory layers that confer target-gene selectivity in response to an NF-κB-inducing stimulus.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
76
|
Baron R, Binda C, Tortorici M, McCammon JA, Mattevi A. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure 2011; 19:212-20. [PMID: 21300290 DOI: 10.1016/j.str.2011.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/20/2010] [Accepted: 01/04/2011] [Indexed: 11/26/2022]
Abstract
Histone demethylases LSD1 and LSD2 (KDM1A/B) catalyze the oxidative demethylation of Lys4 of histone H3. We used molecular dynamics simulations to probe the diffusion of the oxygen substrate. Oxygen can reach the catalytic center independently from the presence of a bound histone peptide, implying that LSD1 can complete subsequent demethylation cycles without detaching from the nucleosomal particle. The simulations highlight the role of a strictly conserved active-site Lys residue providing general insight into the enzymatic mechanism of oxygen-reacting flavoenzymes. The crystal structure of LSD1-CoREST bound to a peptide of the transcription factor SNAIL1 unravels a fascinating example of molecular mimicry. The SNAIL1 N-terminal residues bind to the enzyme active-site cleft, effectively mimicking the H3 tail. This finding predicts that other members of the SNAIL/Scratch transcription factor family might associate to LSD1/2. The combination of selective histone-modifying activity with the distinct recognition mechanisms underlies the biological complexity of LSD1/2.
Collapse
Affiliation(s)
- Riccardo Baron
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, and Department of Pharmacology, Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0365, USA.
| | | | | | | | | |
Collapse
|
77
|
Gross KL, Oakley RH, Scoltock AB, Jewell CM, Cidlowski JA. Glucocorticoid receptor alpha isoform-selective regulation of antiapoptotic genes in osteosarcoma cells: a new mechanism for glucocorticoid resistance. Mol Endocrinol 2011; 25:1087-99. [PMID: 21527497 DOI: 10.1210/me.2010-0051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids regulate a variety of physiological processes and are commonly used to treat disorders of inflammation, autoimmune diseases, and cancer. Glucocorticoid action is predominantly mediated through the classic glucocorticoid receptor (GR)α isoform. Recent data suggest that the mature GRα mRNA is translated into multiple N-terminal isoforms that have distinct biochemical properties and gene regulatory profiles. Interestingly, osteosarcoma cells stably expressing the GRα-D translational isoform are unique in that they are resistant to glucocorticoid-induced apoptosis. In this study, we investigate whether GRα isoform-specific differences in the regulation of antiapoptotic genes contribute to this resistant phenotype. We now show that GRα-D, unlike the other receptor isoforms, does not inhibit the activity of a nuclear factor κB (NF-κB)-responsive reporter gene and does not efficiently repress either the transcription or protein production of the antiapoptotic genes Bcl-xL, cellular inhibitor of apoptosis protein 1, and survivin. The inability of GRα-D to down-regulate the expression of these genes appears to be associated with a diminished interaction between GRα-D and NF-κB that is observed in cells, but not in vitro, and likely reflects the sequestration of GRα-D in the nucleus. Deletion of the GRα N-terminal amino acids 98-335 also results in a nuclear resident GR, which fails to interact with NF-κB in cells and promote apoptosis in response to glucocorticoids. These data suggest that the N-terminal translational isoforms of GRα selectively regulate antiapoptotic genes and that the GRα-D isoform may contribute to the resistance of certain cancer cells to glucocorticoid-induced apoptosis.
Collapse
Affiliation(s)
- Katherine L Gross
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
78
|
Durham AL, Wiegman C, Adcock IM. Epigenetics of asthma. Biochim Biophys Acta Gen Subj 2011; 1810:1103-9. [PMID: 21397662 DOI: 10.1016/j.bbagen.2011.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 01/11/2023]
Abstract
Asthma is caused by both heritable and environmental factors. It has become clear that genetic studies do not adequately explain the heritability and susceptibility to asthma. The study of epigenetics, heritable non-coding changes to DNA may help to explain the heritable component of asthma. Additionally, epigenetic modifications can be influenced by the environment, including pollution and cigarette smoking, which are known asthma risk factors. These environmental trigger-induced epigenetic changes may be involved in skewing the immune system towards a Th2 phenotype following in utero exposure and thereby enhancing the risk of asthma. Alternatively, they may directly or indirectly modulate the immune and inflammatory processes in asthmatics via effects on treatment responsiveness. The study of epigenetics may therefore play an important role in our understanding and possible treatment of asthma and other allergic diseases. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Andrew L Durham
- National Heart and Lung Institute, Imperial College London, UK.
| | | | | |
Collapse
|
79
|
Research Highlights. Nat Immunol 2010. [DOI: 10.1038/ni1110-987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|