51
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
52
|
Bellendir SP, Rognstad DJ, Morris LP, Zapotoczny G, Walton WG, Redinbo MR, Ramsden DA, Sekelsky J, Erie DA. Substrate preference of Gen endonucleases highlights the importance of branched structures as DNA damage repair intermediates. Nucleic Acids Res 2017; 45:5333-5348. [PMID: 28369583 PMCID: PMC5435919 DOI: 10.1093/nar/gkx214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 11/20/2022] Open
Abstract
Human GEN1 and yeast Yen1 are endonucleases with the ability to cleave Holliday junctions (HJs), which are proposed intermediates in recombination. In vivo, GEN1 and Yen1 function secondarily to Mus81, which has weak activity on intact HJs. We show that the genetic relationship is reversed in Drosophila, with Gen mutants having more severe defects than mus81 mutants. In vitro, DmGen, like HsGEN1, efficiently cleaves HJs, 5΄ flaps, splayed arms, and replication fork structures. We find that the cleavage rates for 5΄ flaps are significantly higher than those for HJs for both DmGen and HsGEN1, even in vast excess of enzyme over substrate. Kinetic studies suggest that the difference in cleavage rates results from a slow, rate-limiting conformational change prior to HJ cleavage: formation of a productive dimer on the HJ. Despite the stark difference in vivo that Drosophila uses Gen over Mus81 and humans use MUS81 over GEN1, we find the in vitro activities of DmGen and HsGEN1 to be strikingly similar. These findings suggest that simpler branched structures may be more important substrates for Gen orthologs in vivo, and highlight the utility of using the Drosophila model system to further understand these enzymes.
Collapse
Affiliation(s)
| | | | - Lydia P. Morris
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | | | | | - Matthew R. Redinbo
- Department of Chemistry, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, Chapel Hill, NC 27599, USA
| | - Dale A. Ramsden
- Curriculum in Genetics and Molecular Biology, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dorothy A. Erie
- Department of Chemistry, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, Chapel Hill, NC 27599, USA
| |
Collapse
|
53
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
54
|
Wang C, Higgins JD, He Y, Lu P, Zhang D, Liang W. Resolvase OsGEN1 Mediates DNA Repair by Homologous Recombination. PLANT PHYSIOLOGY 2017; 173:1316-1329. [PMID: 28049740 PMCID: PMC5291025 DOI: 10.1104/pp.16.01726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Yen1/GEN1 are canonical Holliday junction resolvases that belong to the RAD2/XPG family. In eukaryotes, such as budding yeast, mice, worms, and humans, Yen1/GEN1 work together with Mus81-Mms4/MUS81-EME1 and Slx1-Slx4/SLX1-SLX4 in DNA repair by homologous recombination to maintain genome stability. In plants, the biological function of Yen1/GEN1 remains largely unclear. In this study, we characterized the loss of function mutants of OsGEN1 and OsSEND1, a pair of paralogs of Yen1/GEN1 in rice (Oryza sativa). We first investigated the role of OsGEN1 during meiosis and found a reduction in chiasma frequency by ∼6% in osgen1 mutants, compared to the wild type, suggesting a possible involvement of OsGEN1 in the formation of crossovers. Postmeiosis, OsGEN1 foci were detected in wild-type microspore nuclei, but not in the osgen1 mutant concomitant with an increase in double-strand breaks. Persistent double-strand breaks led to programmed cell death of the male gametes and complete male sterility. In contrast, depletion of OsSEND1 had no effects on plant development and did not enhance osgen1 defects. Our results indicate that OsGEN1 is essential for homologous recombinational DNA repair at two stages of microsporogenesis in rice.
Collapse
Affiliation(s)
- Chong Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - James D Higgins
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Yi He
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Pingli Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.);
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.);
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
55
|
Princz LN, Wild P, Bittmann J, Aguado FJ, Blanco MG, Matos J, Pfander B. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. EMBO J 2017; 36:664-678. [PMID: 28096179 PMCID: PMC5331752 DOI: 10.15252/embj.201694831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81‐Mms4, this cell cycle stage‐specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7‐Dbf4 (DDK), targets Mus81‐Mms4 in conjunction with Cdc5—both kinases bind to as well as phosphorylate Mus81‐Mms4 in an interdependent manner. Moreover, DDK‐mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81‐Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution.
Collapse
Affiliation(s)
- Lissa N Princz
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Philipp Wild
- Institute of Biochemistry, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Julia Bittmann
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| |
Collapse
|
56
|
Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:E8114-E8121. [PMID: 27911848 DOI: 10.1073/pnas.1618129113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA replication stress (DRS)-induced genomic instability is an important factor driving cancer development. To understand the mechanisms of DRS-associated genomic instability, we measured the rates of genomic alterations throughout the genome in a yeast strain with lowered expression of the replicative DNA polymerase δ. By a genetic test, we showed that most recombinogenic DNA lesions were introduced during S or G2 phase, presumably as a consequence of broken replication forks. We observed a high rate of chromosome loss, likely reflecting a reduced capacity of the low-polymerase strains to repair double-stranded DNA breaks (DSBs). We also observed a high frequency of deletion events within tandemly repeated genes such as the ribosomal RNA genes. By whole-genome sequencing, we found that low levels of DNA polymerase δ elevated mutation rates, both single-base mutations and small insertions/deletions. Finally, we showed that cells with low levels of DNA polymerase δ tended to accumulate small promoter mutations that increased the expression of this polymerase. These deletions conferred a selective growth advantage to cells, demonstrating that DRS can be one factor driving phenotypic evolution.
Collapse
|
57
|
Medhi D, Goldman AS, Lichten M. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis. eLife 2016; 5. [PMID: 27855779 PMCID: PMC5222560 DOI: 10.7554/elife.19669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI:http://dx.doi.org/10.7554/eLife.19669.001 Inside the cells of many species, double-stranded DNA is packaged together with specialized proteins to form structures called chromosomes. Breaks that span across both strands of the DNA can cause cell death because if the break is incorrectly repaired, a segment of the DNA may be lost. Cells use a process known as homologous recombination to repair such breaks correctly. This uses an undamaged DNA molecule as a template that can be copied to replace missing segments of the DNA sequence. During the repair of double-strand breaks, connections called crossovers may form. This results in the damaged and undamaged DNA molecules swapping a portion of their sequences. In meiosis, a type of cell division that produces sperm and eggs, cells deliberately break their chromosomes and then repair them using homologous recombination. The crossovers that form during this process are important for sharing chromosomes between the newly forming cells. It is crucial that the crossovers form at the right time and place along the chromosomes. Chromosomes have different structures depending on whether a cell is undergoing meiosis or normal (mitotic) cell division. This structure may influence how and where crossovers form. Enzymes called resolvases catalyze the reactions that occur during the last step in homologous recombination to generate crossovers. One particular resolvase acts only during meiosis, whereas others are active in both mitotic and meiotic cells. However, it is not known whether local features of the chromosome structure – such as the proteins packaged in the chromosome alongside the DNA – influence when and where meiotic crossover occurs. Medhi et al. have now studied how recombination occurs along different regions of the chromosomes in budding yeast cells, which undergo meiosis in a similar way to human cells. The results of the experiments reveal that the mechanism by which crossovers form depends on proteins called axis proteins, one type of which is specifically found in meiotic chromosomes. In regions that had high levels of meiotic axis proteins, crossovers mainly formed using the meiosis-specific resolvase enzyme. In regions that had low levels of meiotic axis proteins, crossovers formed using resolvases that are active in mitotic cells. Further experiments demonstrated that altering the levels of one of the meiotic axis proteins changed which resolvase was used. Overall, the results presented by Medhi et al. show that differences in chromosome structure, in particular the relative concentration of meiotic axis proteins, influence how crossovers form in yeast. Future studies will investigate whether this is observed in other organisms such as humans, and whether local chromosome structure influences other steps of homologous recombination in meiosis. DOI:http://dx.doi.org/10.7554/eLife.19669.002
Collapse
Affiliation(s)
- Darpan Medhi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States.,Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair Sh Goldman
- Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
58
|
Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat Commun 2016; 7:13157. [PMID: 27779184 PMCID: PMC5093310 DOI: 10.1038/ncomms13157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome.
DNA replication stress drives genome instability and cancer. Here, Ölmezer and colleagues show that the helicase activity of multifunctional enzyme Dna2 suppresses dead-end replication structures that impair chromosome segregation if not removed by Holliday junction resolvase Yen1 in yeast.
Collapse
|
59
|
Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. mBio 2016; 7:mBio.01109-16. [PMID: 27729506 PMCID: PMC5061868 DOI: 10.1128/mbio.01109-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species. IMPORTANCE Recessive lethal alleles impose significant constraints on the biology of diploid organisms. Using a combination of an I-SceI meganuclease-mediated DNA DSB, a fluorescence-activated cell sorter (FACS)-optimized reporter of LOH, and a compendium of 155 genome sequences, we were able to unmask and identify recessive lethal and deleterious alleles in isolates of Candida albicans, a diploid yeast and the major fungal pathogen of humans. Accumulation of recessive deleterious mutations upon clonal reproduction of C. albicans could contribute to the maintenance of heterozygosity despite the high frequency of LOH events in this species.
Collapse
|
60
|
Onaka AT, Toyofuku N, Inoue T, Okita AK, Sagawa M, Su J, Shitanda T, Matsuyama R, Zafar F, Takahashi TS, Masukata H, Nakagawa T. Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Res 2016; 44:10744-10757. [PMID: 27697832 PMCID: PMC5159554 DOI: 10.1093/nar/gkw874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022] Open
Abstract
Centromeres consist of DNA repeats in many eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inverted repeats in the centromere. However, how the HR enzyme prevents homology-mediated GCRs remains unclear. Here, we provide evidence that Rad51 with the aid of the Swi/Snf-type motor protein Rad54 promotes non-crossover recombination between centromere repeats to prevent isochromosome formation. Mutations in Rad51 and Rad54 epistatically increased the rates of isochromosome formation and chromosome loss. In sharp contrast, these mutations decreased gene conversion between inverted repeats in the centromere. Remarkably, analysis of recombinant DNAs revealed that rad51 and rad54 increase the proportion of crossovers. In the absence of Rad51, deletion of the structure-specific endonuclease Mus81 decreased both crossovers and isochromosomes, while the cdc27/pol32-D1 mutation, which impairs break-induced replication, did not. We propose that Rad51 and Rad54 promote non-crossover recombination between centromere repeats on the same chromatid, thereby suppressing crossover between non-allelic repeats on sister chromatids that leads to chromosomal rearrangements. Furthermore, we found that Rad51 and Rad54 are required for gene silencing in centromeres, suggesting that HR also plays a role in the structure and function of centromeres.
Collapse
Affiliation(s)
- Atsushi T Onaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takahiro Inoue
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Minami Sagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Shitanda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rei Matsuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuro S Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
61
|
Sebesta M, Urulangodi M, Stefanovie B, Szakal B, Pacesa M, Lisby M, Branzei D, Krejci L. Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Res 2016; 45:215-230. [PMID: 27694623 PMCID: PMC5224511 DOI: 10.1093/nar/gkw882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo. Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | | | - Barbora Stefanovie
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Martin Pacesa
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic .,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| |
Collapse
|
62
|
Colosio A, Frattini C, Pellicanò G, Villa-Hernández S, Bermejo R. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability. Nucleic Acids Res 2016; 44:10676-10690. [PMID: 27672038 PMCID: PMC5159547 DOI: 10.1093/nar/gkw858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022] Open
Abstract
Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork structures and counteracting the accumulation of aberrant intermediates resembling fork cleavage products. Genetic analyses demonstrated a functional interplay of Exo1 with Mus81, Dna2 and Sae2 nucleases in promoting cell survival following replication stress, suggestive of concerted nucleolytic processing of stalled forks. While Mus81 and other Structure Specific Endonucleases do not contribute to obvious collapsed fork transitions, Dna2 promotes reversed fork resection likely by facilitating Exo1 access to nascent strands. Instead, Sae2 cooperates with Exo1 in counteracting putative fork cleavage events linked to double strand breaks formation and increased gross chromosomal rearrangement rates. Our data indicate that in checkpoint deficient cells diverse nuclease activities interface to eliminate aberrant replication intermediates and prevent chromosome instability.
Collapse
Affiliation(s)
- Arianna Colosio
- The F.I.R.C. Institute of Molecular Oncology (IFOM) Foundation, Via Adamello 16, 20139 Milan, Italy
| | - Camilla Frattini
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Grazia Pellicanò
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sara Villa-Hernández
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain.,Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rodrigo Bermejo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain .,Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
63
|
Talhaoui I, Bernal M, Mazón G. The nucleolytic resolution of recombination intermediates in yeast mitotic cells. FEMS Yeast Res 2016; 16:fow065. [PMID: 27509904 DOI: 10.1093/femsyr/fow065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
In mitotic cells, the repair of double-strand breaks by homologous recombination (HR) is important for genome integrity. HR requires the orchestration of a subset of pathways for timely removal of joint-molecule intermediates that would otherwise prevent segregation of chromosomes in mitosis. The use of nucleases to resolve recombination intermediates is important for chromosome segregation, but is hazardous because crossovers can result in loss of heterozygosity or chromosome rearrangements. Unregulated use of the nucleases involved in the resolution of recombination intermediates could also be a risk during replication. The yeast models (Saccharomyces cerevisae and Schizosaccharomyces pombe) have proven effective in determining the major nucleases involved in the processing of such intermediates: Mus81-Mms4 and Yen1. Mus81-Mms4 and Yen1 are regulated by the cell cycle in a gradual activation during G2/M to keep the crossing-over risk low while ensuring proper removal of HJ intermediates.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) UMR 8200 Genetic Stability and Oncogenesis, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Manuel Bernal
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) UMR 8200 Genetic Stability and Oncogenesis, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Gerard Mazón
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) UMR 8200 Genetic Stability and Oncogenesis, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
64
|
Wang X, Wang H, Guo B, Zhang Y, Gong Y, Zhang C, Xu H, Wu X. Gen1 and Eme1 Play Redundant Roles in DNA Repair and Meiotic Recombination in Mice. DNA Cell Biol 2016; 35:585-590. [PMID: 27383418 DOI: 10.1089/dna.2015.3022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Resolution of the Holliday junction (HJ) is essential for homologous recombination and DNA repair. In Saccharomyces cerevisiae, HJ resolvase Yen1 and the Mus81-Mms4 complex are redundant in DNA damage repair. In cultured mammalian cells, such redundancy also exists between Yen1 ortholog GEN1 and the Mus81-Mms1 ortholog MUS81-EME1. In this report, we further tested if GEN1 and EME1 redundantly affect HJ-related physiological processes in mice. We found that combined homozygous mutations of Gen1 and Eme1 led to synthetic lethality during early embryonic stages. Homozygous Gen1 mutations did not cause DNA repair deficiency in mouse embryonic fibroblast (MEF) cells, but made heterozygous Eme1 mutant MEFs more sensitive to various DNA-damaging reagents. Gen1 mutations also reduced the meiotic recombination efficiency in Eme1 mutant mice. These results suggest that Gen1 and Eme1 play redundant roles in DNA repair and meiotic recombination in vivo.
Collapse
Affiliation(s)
- Xiaowen Wang
- 1 Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University , Shanghai, China .,2 Department of Nephrology, Wuhan Medical and Healthcare Center for Women and Children , Wuhan, China
| | - Herui Wang
- 3 State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai, China .,4 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | - Bin Guo
- 3 State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai, China
| | - Ya Zhang
- 1 Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University , Shanghai, China
| | - Yinv Gong
- 1 Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University , Shanghai, China
| | - Chi Zhang
- 3 State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai, China .,5 Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado
| | - Hong Xu
- 1 Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University , Shanghai, China
| | - Xiaohui Wu
- 1 Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University , Shanghai, China .,3 State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University , Shanghai, China
| |
Collapse
|
65
|
Wu Y, Qian Y, Zhou G, Lv J, Yan Q, Dong X. Effect of GEN1 interference on the chemosensitivity of the breast cancer MCF-7 and SKBR3 cell lines. Oncol Lett 2016; 11:3597-3604. [PMID: 27284361 PMCID: PMC4887781 DOI: 10.3892/ol.2016.4489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is a notable method for the treatment of breast cancer. Numerous genes associated with the sensitivity of cancer to chemotherapy have been found. In recent years, evidence has suggested that a particular structure termed Holliday junction (HJ) plays a crucial role in cancer chemosensitivity. Targeting HJ resolvases, such as structure-specific endonuclease subunit SLX4 (Slx4) and MUS81 structure-specific endonuclease subunit (Mus81), significantly increases the chemosensitivity of tumor cells. Flap endonuclease GEN homolog 1 (GEN1) is a HJ resolvase that belongs to the Rad2/xeroderma pigmentosum complementation group G nuclease family. Whether GEN1 affects the chemosensitivity of tumor cells in a similar manner to Slx4 and Mus81 remains unknown. The aim of the present study was to determine the effect of GEN1 interference on the chemosensitivity of breast cancer cell lines. The investigation of the function of GEN1 was performed using MCF-7 and SKBR3 cells. Short hairpin RNA was used to suppress the expression of GEN1, and western blot analysis and reverse transcription-quantitative polymerase chain reaction were used to detect gene expression. In addition, a cell counting kit-8 assay was performed to detect the viability of cells and flow cytometry was performed to test apoptosis levels. Suppression of GEN1 in SKBR3 cells effectively increased the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU), while MCF-7 cells showed no significant change in sensitivity following GEN1 suppression. However, when GEN1 was targeted in addition to Mus81, the MCF-7 cells also demonstrated a significantly increased sensitivity to 5-FU. In addition, when the level of Mus81 was low, GEN1 expression was increased under a low concentration of 5-FU. The present results suggest that GEN1 may play different roles in different breast cancer cell lines. The function of GEN1 may be affected by the level of Mus81 in the cell line. In addition, GEN1 interference may improve the sensitivity to chemotherapy induced by targeting Mus81 alone.
Collapse
Affiliation(s)
- Yunlu Wu
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Qian
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Guozhong Zhou
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Juan Lv
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Qiuyue Yan
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuejun Dong
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
66
|
Silva S, Altmannova V, Luke-Glaser S, Henriksen P, Gallina I, Yang X, Choudhary C, Luke B, Krejci L, Lisby M. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes Dev 2016; 30:700-17. [PMID: 26966248 PMCID: PMC4803055 DOI: 10.1101/gad.276204.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022]
Abstract
Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | - Peter Henriksen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Irene Gallina
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xuejiao Yang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Brian Luke
- Institute of Molecular Biology gGmbH (IMB), 55128 Mainz, Germany
| | - Lumir Krejci
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic; Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
67
|
Wild P, Matos J. Cell cycle control of DNA joint molecule resolution. Curr Opin Cell Biol 2016; 40:74-80. [PMID: 26970388 DOI: 10.1016/j.ceb.2016.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/02/2016] [Accepted: 02/19/2016] [Indexed: 12/01/2022]
Abstract
The establishment of stable interactions between chromosomes underpins vital cellular processes such as recombinational DNA repair and bipolar chromosome segregation. On the other hand, timely disengagement of persistent connections is necessary to assure efficient partitioning of the replicated genome prior to cell division. Whereas great progress has been made in defining how cohesin-mediated chromosomal interactions are disengaged as cells prepare to undergo chromosome segregation, little is known about the metabolism of DNA joint molecules (JMs), generated during the repair of chromosomal lesions. Recent work on Mus81 and Yen1/GEN1, two conserved structure-selective endonucleases, revealed unforeseen links between JM-processing and cell cycle progression. Cell cycle kinases and phosphatases control Mus81 and Yen1/GEN1 to restrain deleterious JM-processing during S-phase, while safeguarding chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
68
|
MTE1 Functions with MPH1 in Double-Strand Break Repair. Genetics 2016; 203:147-57. [PMID: 26920759 DOI: 10.1534/genetics.115.185454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.
Collapse
|
69
|
Olivier M, Da Ines O, Amiard S, Serra H, Goubely C, White CI, Gallego ME. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis. THE PLANT CELL 2016; 28:74-86. [PMID: 26704385 PMCID: PMC4746687 DOI: 10.1105/tpc.15.00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 05/02/2023]
Abstract
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.
Collapse
Affiliation(s)
- Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Heïdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Chantal Goubely
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Maria E Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| |
Collapse
|
70
|
DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:E6907-16. [PMID: 26607450 DOI: 10.1073/pnas.1507833112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ.
Collapse
|
71
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
72
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
73
|
Mayle R, Campbell IM, Beck CR, Yu Y, Wilson M, Shaw CA, Bjergbaek L, Lupski JR, Ira G. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science 2015; 349:742-7. [PMID: 26273056 DOI: 10.1126/science.aaa8391] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most spontaneous DNA double-strand breaks (DSBs) result from replication-fork breakage. Break-induced replication (BIR), a genome rearrangement-prone repair mechanism that requires the Pol32/POLD3 subunit of eukaryotic DNA Polδ, was proposed to repair broken forks, but how genome destabilization is avoided was unknown. We show that broken fork repair initially uses error-prone Pol32-dependent synthesis, but that mutagenic synthesis is limited to within a few kilobases from the break by Mus81 endonuclease and a converging fork. Mus81 suppresses template switches between both homologous sequences and diverged human Alu repetitive elements, highlighting its importance for stability of highly repetitive genomes. We propose that lack of a timely converging fork or Mus81 may propel genome instability observed in cancer.
Collapse
Affiliation(s)
- Ryan Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marenda Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Department of Pediatrics, and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Texas Children's Hospital, Houston, TX 77030, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
74
|
Zheng XF, Kalev P, Chowdhury D. Emerging role of protein phosphatases changes the landscape of phospho-signaling in DNA damage response. DNA Repair (Amst) 2015; 32:58-65. [DOI: 10.1016/j.dnarep.2015.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
75
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
76
|
Yin Y, Petes TD. Recombination between homologous chromosomes induced by unrepaired UV-generated DNA damage requires Mus81p and is suppressed by Mms2p. PLoS Genet 2015; 11:e1005026. [PMID: 25738287 PMCID: PMC4349867 DOI: 10.1371/journal.pgen.1005026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/25/2015] [Indexed: 11/18/2022] Open
Abstract
DNA lesions caused by UV radiation are highly recombinogenic. In wild-type cells, the recombinogenic effect of UV partially reflects the processing of UV-induced pyrimidine dimers into DNA gaps or breaks by the enzymes of the nucleotide excision repair (NER) pathway. In this study, we show that unprocessed pyrimidine dimers also potently induce recombination between homologs. In NER-deficient rad14 diploid strains, we demonstrate that unexcised pyrimidine dimers stimulate crossovers, noncrossovers, and break-induced replication events. The same dose of UV is about six-fold more recombinogenic in a repair-deficient strain than in a repair-proficient strain. We also examined the roles of several genes involved in the processing of UV-induced damage in NER-deficient cells. We found that the resolvase Mus81p is required for most of the UV-induced inter-homolog recombination events. This requirement likely reflects the Mus81p-associated cleavage of dimer-blocked replication forks. The error-free post-replication repair pathway mediated by Mms2p suppresses dimer-induced recombination between homologs, possibly by channeling replication-blocking lesions into recombination between sister chromatids. Ultraviolet (UV) light is a ubiquitous agent of exogenous DNA damage. In normal cells, the nucleotide excision repair (NER) pathway is the primary mechanism for repair of UV-induced DNA lesions. Defects in the NER pathway are associated with the human disease xeroderma pigmentosum (XP), and XP patients are prone to skin cancer. Mitotic recombination is strongly stimulated by UV treatment. In this study, we examined whether such stimulation requires the NER pathway. We show that, in the absence of NER, UV is still able to greatly induce recombination. We then characterized a nuclease that is required to generate recombinogenic breaks. Finally, we examined a previously known recombinogenic pathway called the “post-replication repair (PRR) pathway.” Our results suggest that the PRR pathway mainly promotes recombination between sister chromatids, and suppresses recombination between chromosome homologs.
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
77
|
DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. EUKARYOTIC CELL 2015; 14:196-205. [PMID: 25576484 DOI: 10.1128/ec.00207-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.
Collapse
|
78
|
Mus81-Mms4 and Yen1 resolve a novel anaphase bridge formed by noncanonical Holliday junctions. Nat Commun 2014; 5:5652. [PMID: 25466415 DOI: 10.1038/ncomms6652] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023] Open
Abstract
Downregulation of separase, condensin, Smc5/6, topoisomerase II and Cdc14 in Saccharomyces cerevisiae yields anaphase bridges formed by unresolved sister chromatids (SCBs). Here we report that the overlapping actions of the structure-selective endonucleases (SSEs) Mus81-Mms4/EME1 and Yen1/GEN1, but not Slx1-Slx4, are also essential to prevent the formation of spontaneous SCBs that depend on the homologous recombination pathway. We further show that the frequency of SCBs is boosted after mild replication stress and that they contain joint molecules enriched in non-canonical forms of the Holliday junction (HJ), including nicked-HJ (nHJ). We show that SCBs are mostly reversible upon activation of either Mus81-Mms4 or Yen1 in late anaphase, which is concomitant with the disappearance of non-canonical HJs and restoration of viable progeny. On the basis of these findings, we propose a model where unresolved recombination intermediates are a source of mitotic SCBs, and Mus81-Mms4 and Yen1 play a central role in their resolution in vivo.
Collapse
|
79
|
Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases. Genetics 2014; 198:935-45. [PMID: 25205745 DOI: 10.1534/genetics.114.168096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several helicases function during repair of double-strand breaks and handling of blocked or stalled replication forks to promote pathways that prevent formation of crossovers. Among these are the Bloom syndrome helicase BLM and the Fanconi anemia group M (FANCM) helicase. To better understand functions of these helicases, we compared phenotypes of Drosophila melanogaster Blm and Fancm mutants. As previously reported for BLM, FANCM has roles in responding to several types of DNA damage in preventing mitotic and meiotic crossovers and in promoting the synthesis-dependent strand annealing pathway for repair of a double-strand gap. In most assays, the phenotype of Fancm mutants is less severe than that of Blm mutants, and the phenotype of Blm Fancm double mutants is more severe than either single mutant, indicating both overlapping and unique functions. It is thought that mitotic crossovers arise when structure-selective nucleases cleave DNA intermediates that would normally be unwound or disassembled by these helicases. When BLM is absent, three nucleases believed to function as Holliday junction resolvases--MUS81-MMS4, MUS312-SLX1, and GEN--become essential. In contrast, no single resolvase is essential in mutants lacking FANCM, although simultaneous loss of GEN and either of the others is lethal in Fancm mutants. Since Fancm mutants can tolerate loss of a single resolvase, we were able to show that spontaneous mitotic crossovers that occur when FANCM is missing are dependent on MUS312 and either MUS81 or SLX1.
Collapse
|
80
|
Gritenaite D, Princz LN, Szakal B, Bantele SCS, Wendeler L, Schilbach S, Habermann BH, Matos J, Lisby M, Branzei D, Pfander B. A cell cycle-regulated Slx4-Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes Dev 2014; 28:1604-19. [PMID: 25030699 PMCID: PMC4102767 DOI: 10.1101/gad.240515.114] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A key function of the DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. However, the regulation of JM resolution is poorly understood. Pfander and colleagues elucidate a mechanism in yeast that critically controls JM resolution by the Mus81–Mms4 endonuclease. The data show that the conserved complex comprising scaffold proteins Dbp11 and Slx4 integrates cellular inputs and regulates the activation of the JM-resolving nuclease Mus81. A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by the Mus81–Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the Dpb11–Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the additional association of Mus81–Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA damage checkpoint counteracts Mus81–Mms4 binding to the Dpb11–Slx4 complex. Thus, Dpb11–Slx4 integrates several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.
Collapse
Affiliation(s)
- Dalia Gritenaite
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Lissa N Princz
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Susanne C S Bantele
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Lina Wendeler
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sandra Schilbach
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca H Habermann
- Computational Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Michael Lisby
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
81
|
Abstract
Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes.
Collapse
Affiliation(s)
- Haley D M Wyatt
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Stephen C West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
82
|
Bauknecht M, Kobbe D. AtGEN1 and AtSEND1, two paralogs in Arabidopsis, possess holliday junction resolvase activity. PLANT PHYSIOLOGY 2014; 166:202-16. [PMID: 25037209 PMCID: PMC4149707 DOI: 10.1104/pp.114.237834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/10/2014] [Indexed: 05/02/2023]
Abstract
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.
Collapse
Affiliation(s)
- Markus Bauknecht
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
83
|
Braberg H, Alexander R, Shales M, Xu J, Franks-Skiba KE, Wu Q, Haber JE, Krogan NJ. Quantitative analysis of triple-mutant genetic interactions. Nat Protoc 2014; 9:1867-81. [PMID: 25010907 DOI: 10.1038/nprot.2014.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The quantitative analysis of genetic interactions between pairs of gene mutations has proven to be effective for characterizing cellular functions, but it can miss important interactions for functionally redundant genes. To address this limitation, we have developed an approach termed triple-mutant analysis (TMA). The procedure relies on a query strain that contains two deletions in a pair of redundant or otherwise related genes, which is crossed against a panel of candidate deletion strains to isolate triple mutants and measure their growth. A central feature of TMA is to interrogate mutants that are synthetically sick when two other genes are deleted but interact minimally with either single deletion. This approach has been valuable for discovering genes that restore critical functions when the principal actors are deleted. TMA has also uncovered double-mutant combinations that produce severe defects because a third protein becomes deregulated and acts in a deleterious fashion, and it has revealed functional differences between proteins presumed to act together. The protocol is optimized for Singer ROTOR pinning robots, takes 3 weeks to complete and measures interactions for up to 30 double mutants against a library of 1,536 single mutants.
Collapse
Affiliation(s)
- Hannes Braberg
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Richard Alexander
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Michael Shales
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Jiewei Xu
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Kathleen E Franks-Skiba
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA
| | - Qiuqin Wu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Nevan J Krogan
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences (QB3), San Francisco, California, USA. [3] J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
84
|
High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae. Genetics 2014; 198:181-92. [PMID: 24990991 PMCID: PMC4174931 DOI: 10.1534/genetics.114.167395] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution.
Collapse
|
85
|
Kramarz K, Litwin I, Cal-Bąkowska M, Szakal B, Branzei D, Wysocki R, Dziadkowiec D. Swi2/Snf2-like protein Uls1 functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress. DNA Repair (Amst) 2014; 21:24-35. [PMID: 25091157 DOI: 10.1016/j.dnarep.2014.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/05/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2/Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here we show that Uls1 is implicated in DNA repair independently of the replication stress response pathways mediated by the endonucleases Mus81 and Yen1 and the helicases Mph1 and Srs2. Uls1 works together with Sgs1 and we demonstrate that the attenuation of replication stress-related defects in sgs1Δ by deletion of ULS1 depends on a functional of Rad51 recombinase and post-replication repair pathway mediated by Rad18 and Rad5, but not on the translesion polymerase, Rev3. The higher resistance of sgs1Δ uls1Δ mutants to genotoxic stress compared to single sgs1Δ cells is not the result of decreased formation or accelerated resolution of recombination-dependent DNA structures. Instead, deletion of ULS1 restores stability of the rDNA region in sgs1Δ cells. Our data suggest that Uls1 may contribute to genomic stability during DNA synthesis and channel the repair of replication lesions into the Sgs1-dependent pathway, with DNA translocase and SUMO binding activities of Uls1 as well as a RING domain being essential for its functions in replication stress response.
Collapse
Affiliation(s)
- Karol Kramarz
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Ireneusz Litwin
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Robert Wysocki
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Dorota Dziadkowiec
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland.
| |
Collapse
|
86
|
Mukherjee S, Wright WD, Ehmsen KT, Heyer WD. The Mus81-Mms4 structure-selective endonuclease requires nicked DNA junctions to undergo conformational changes and bend its DNA substrates for cleavage. Nucleic Acids Res 2014; 42:6511-22. [PMID: 24744239 PMCID: PMC4041439 DOI: 10.1093/nar/gku265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mus81-Mms4/EME1 is a DNA structure-selective endonuclease that cleaves joint DNA molecules that form during homologous recombination in mitotic and meiotic cells. Here, we demonstrate by kinetic analysis using physically tethered DNA substrates that budding yeast Mus81-Mms4 requires inherent rotational flexibility in DNA junctions for optimal catalysis. Förster Resonance Energy Transfer experiments further reveal that recognition of 3′-flap and nicked Holliday junction substrates by Mus81-Mms4 involves induction of a sharp bend with a 100° angle between two duplex DNA arms. In addition, thiol crosslinking of Mus81-Mms4 bound to DNA junctions demonstrates that the heterodimer undergoes a conformational change induced by joint DNA molecules with preferred structural properties. The results from all three approaches suggest a model for catalysis by Mus81-Mms4 in which initial DNA binding is based on minimal structural requirements followed by a rate-limiting conformational transition of the substrate and protein. This leads to a sharply kinked DNA molecule that may fray the DNA four base pairs away from the junction point to position the nuclease for cleavage between the fourth and fifth nucleotide. These data suggest that mutually compatible conformational changes of Mus81-Mms4 and its substrates tailor its incision activity to nicked junction molecules.
Collapse
Affiliation(s)
- Sucheta Mukherjee
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| | - William Douglass Wright
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| | - Kirk Tevebaugh Ehmsen
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA Department of Molecular & Cellular Biology, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| |
Collapse
|
87
|
Blanco MG, Matos J, West SC. Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability. Mol Cell 2014; 54:94-106. [PMID: 24631285 PMCID: PMC3988869 DOI: 10.1016/j.molcel.2014.02.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/04/2014] [Accepted: 02/03/2014] [Indexed: 02/01/2023]
Abstract
The careful orchestration of cellular events such as DNA replication, repair, and segregation is essential for equal distribution of the duplicated genome into two daughter cells. To ensure that persistent recombination intermediates are resolved prior to cell division, the Yen1 Holliday junction resolvase is activated at anaphase. Here, we show that the master cell-cycle regulators, cyclin-dependent kinase (Cdk) and Cdc14 phosphatase, control the actions of Yen1. During S phase, Cdk-mediated phosphorylation of Yen1 promotes its nuclear exclusion and inhibits catalytic activity by reducing the efficiency of DNA binding. Later in the cell cycle, at anaphase, Cdc14 drives Yen1 dephosphorylation, leading to its nuclear relocalization and enzymatic activation. Using a constitutively activated form of Yen1, we show that uncontrolled Yen1 activity is detrimental to the cell: spatial and temporal restriction of Yen1 protects against genotoxic stress and, by avoiding competition with the noncrossover-promoting repair pathways, prevents loss of heterozygosity.
Collapse
Affiliation(s)
- Miguel G Blanco
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Joao Matos
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Stephen C West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK.
| |
Collapse
|
88
|
Eissler CL, Mazón G, Powers BL, Savinov SN, Symington LS, Hall MC. The Cdk/cDc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability. Mol Cell 2014; 54:80-93. [PMID: 24631283 DOI: 10.1016/j.molcel.2014.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Faithful genome transmission during cell division requires precise, coordinated action of DNA metabolic enzymes, including proteins responsible for DNA damage detection and repair. Dynamic phosphorylation plays an important role in controlling repair enzymes during the DNA damage response (DDR). Cdc14 phosphatases oppose cyclin-dependent kinase (Cdk) phosphorylation and have been implicated in the DDR in several model systems. Here, we have refined the substrate specificity of budding yeast Cdc14 and, using this insight, identified the Holliday junction resolvase Yen1 as a DNA repair target of Cdc14. Cdc14 activation at anaphase triggers nuclear accumulation and enzymatic activation of Yen1, likely to resolve persistent recombinational repair intermediates. Consistent with this, expression of a phosphomimetic Yen1 mutant increased sister chromatid nondisjunction. In contrast, lack of Cdk phosphorylation resulted in constitutive activity and elevated crossover-associated repair. The precise timing of Yen1 activation, governed by core cell-cycle regulators, helps coordinate DNA repair with chromosome segregation and safeguards against genome destabilization.
Collapse
Affiliation(s)
- Christie L Eissler
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Gerard Mazón
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Brendan L Powers
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey N Savinov
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
89
|
García-Luis J, Clemente-Blanco A, Aragón L, Machín F. Cdc14 targets the Holliday junction resolvase Yen1 to the nucleus in early anaphase. Cell Cycle 2014; 13:1392-9. [PMID: 24626187 DOI: 10.4161/cc.28370] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The only canonical Holliday junction (HJ) resolvase identified in eukaryotes thus far is Yen1/GEN1. Nevertheless, Yen1/GEN1 appears to have a minor role in HJ resolution, and, instead, other structure-specific endonucleases (SSE) that recognize branched DNA play the leading roles, Mus81-Mms4/EME1 being the most important in budding yeast. Interestingly, cells tightly regulate the activity of each HJ resolvase during the yeast cell cycle. Thus, Mus81-Mms4 is activated in G 2/M, while Yen1 gets activated shortly afterwards. Nevertheless, cytological studies have shown that Yen1 is sequestered out of the nucleus when cyclin-dependent kinase activity is high, i.e., all of the cell cycle but G 1. We here show that the mitotic master phosphatase Cdc14 targets Yen1 to the nucleus in early anaphase through the FEAR network. We will further show that this FEAR-mediated Cdc14-driven event is sufficient to back-up Mus81-Mms4 in removing branched DNA structures, which are especially found in the long chromosome arms upon replication stress. Finally, we found that MEN-driven Cdc14 re-activation in late anaphase is essential to keep Yen1 in the nucleus until the next G 1. Our results highlight the essential role that early-activated Cdc14, i.e., through the FEAR network, has in removing all kind of non-proteinaceous linkages that preclude faithful sister chromatid segregation in anaphase. In addition, our results support the general idea of Yen1 acting as a last resource endonuclease to deal with any remaining HJ that might compromise genetic stability during chromosome segregation.
Collapse
Affiliation(s)
- Jonay García-Luis
- Genomic Instability & Cancer Group; Unidad de Investigación; Hospital Universitario Nuestra Señora de Candelaria; Santa Cruz de Tenerife, Spain
| | | | - Luis Aragón
- Cell Cycle Group; MRC Clinical Sciences Centre; Imperial College London; London, UK
| | - Félix Machín
- Genomic Instability & Cancer Group; Unidad de Investigación; Hospital Universitario Nuestra Señora de Candelaria; Santa Cruz de Tenerife, Spain
| |
Collapse
|
90
|
Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 2014; 196:1017-28. [PMID: 24496010 PMCID: PMC3982708 DOI: 10.1534/genetics.114.162297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) that have only one end with homology to a donor duplex undergo repair by strand invasion followed by replication to the chromosome terminus (break-induced replication, BIR). Using a transformation-based assay system, it was previously shown that BIR could occur by several rounds of strand invasion, DNA synthesis, and dissociation. Here we describe a modification of the transformation-based assay to facilitate detection of switching between donor templates during BIR by genetic selection in diploid yeast. In addition to the expected recovery of template switch products, we found a high frequency of recombination between chromosome homologs during BIR, suggesting transfer of the DSB from the transforming linear DNA to the donor chromosome, initiating secondary recombination events. The frequency of BIR increased in the mph1Δ mutant, but the percentage of template switch events was significantly decreased, revealing an important role for Mph1 in promoting BIR-associated template switching. In addition, we show that the Mus81, Rad1, and Yen1 structure-selective nucleases act redundantly to facilitate BIR.
Collapse
|
91
|
Covo S, Puccia CM, Argueso JL, Gordenin DA, Resnick MA. The sister chromatid cohesion pathway suppresses multiple chromosome gain and chromosome amplification. Genetics 2014; 196:373-84. [PMID: 24298060 PMCID: PMC3914611 DOI: 10.1534/genetics.113.159202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Gain or loss of chromosomes resulting in aneuploidy can be important factors in cancer and adaptive evolution. Although chromosome gain is a frequent event in eukaryotes, there is limited information on its genetic control. Here we measured the rates of chromosome gain in wild-type yeast and sister chromatid cohesion (SCC) compromised strains. SCC tethers the newly replicated chromatids until anaphase via the cohesin complex. Chromosome gain was measured by selecting and characterizing copper-resistant colonies that emerged due to increased copies of the metallothionein gene CUP1. Although all defective SCC diploid strains exhibited increased rates of chromosome gain, there were 15-fold differences between them. Of all mutants examined, a hypomorphic mutation at the cohesin complex caused the highest rate of chromosome gain while disruption of WPL1, an important regulator of SCC and chromosome condensation, resulted in the smallest increase in chromosome gain. In addition to defects in SCC, yeast cell type contributed significantly to chromosome gain, with the greatest rates observed for homozygous mating-type diploids, followed by heterozygous mating type, and smallest in haploids. In fact, wpl1-deficient haploids did not show any difference in chromosome gain rates compared to wild-type haploids. Genomic analysis of copper-resistant colonies revealed that the "driver" chromosome for which selection was applied could be amplified to over five copies per diploid cell. In addition, an increase in the expected driver chromosome was often accompanied by a gain of a small number of other chromosomes. We suggest that while chromosome gain due to SCC malfunction can have negative effects through gene imbalance, it could also facilitate opportunities for adaptive changes. In multicellular organisms, both factors could lead to somatic diseases including cancer.
Collapse
Affiliation(s)
- Shay Covo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher M. Puccia
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Dmitry A. Gordenin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael A. Resnick
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
92
|
Abstract
Two papers in this issue, Castor et al. (2013) and Wyatt et al. (2013), and a third in Cell Reports, Garner et al. (2013), demonstrate that the scaffold protein SLX4 coordinates multiple nucleases in order to effectively resolve Holliday junctions and repair interstrand crosslinks (ICLs) in mammalian cells.
Collapse
Affiliation(s)
- Steven J Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
93
|
Lieberman-Lazarovich M, Melamed-Bessudo C, de Pater S, Levy AA. Epigenetic alterations at genomic loci modified by gene targeting in Arabidopsis thaliana. PLoS One 2013; 8:e85383. [PMID: 24386472 PMCID: PMC3873452 DOI: 10.1371/journal.pone.0085383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022] Open
Abstract
Gene Targeting (GT) is the integration of an introduced vector into a specific chromosomal site, via homologous recombination. It is considered an effective tool for precise genome editing, with far-reaching implications in biological research and biotechnology, and is widely used in mice, with the potential of becoming routine in many species. Nevertheless, the epigenetic status of the targeted allele remains largely unexplored. Using GT-modified lines of the model plant Arabidopsis thaliana, we show that the DNA methylation profile of the targeted locus is changed following GT. This effect is non-directional as methylation can be either completely lost, maintained with minor alterations or show instability in the generations subsequent to GT. As DNA methylation is known to be involved in several cellular processes, GT-related alterations may result in unexpected or even unnoticed perturbations. Our analysis shows that GT may be used as a new tool for generating epialleles, for example, to study the role of gene body methylation. In addition, the analysis of DNA methylation at the targeted locus may be utilized to investigate the mechanism of GT, many aspects of which are still unknown.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| | | | - Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Avraham A. Levy
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
94
|
Mazón G, Symington LS. Mph1 and Mus81-Mms4 prevent aberrant processing of mitotic recombination intermediates. Mol Cell 2013; 52:63-74. [PMID: 24119400 DOI: 10.1016/j.molcel.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Homology-dependent repair of double-strand breaks (DSBs) from nonsister templates has the potential to generate loss of heterozygosity or genome rearrangements. Here we show that the Saccharomyces cerevisiae Mph1 helicase prevents crossovers between ectopic sequences by removing substrates for Mus81-Mms4 or Rad1-Rad10 cleavage. A role for Yen1 is only apparent in the absence of Mus81. Cells lacking Mph1 and the three nucleases are highly defective in the repair of a single DSB, suggesting that the recombination intermediates that accumulate cannot be processed by the Sgs1-Top3-Rmi1 complex (STR). Consistent with this hypothesis, ectopic joint molecules (JMs) accumulate transiently in the mph1Δ mutant and persistently when Mus81 is eliminated. Furthermore, the ectopic JMs formed in the mus81Δ mutant contain a single Holliday junction (HJ) explaining why STR is unable to process them. We suggest that Mph1 and Mus81-Mms4 recognize an early strand exchange intermediate and direct repair to noncrossover or crossover outcomes, respectively.
Collapse
Affiliation(s)
- Gerard Mazón
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
95
|
Bengesser K, Vogt J, Mussotter T, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination. Hum Mutat 2013; 35:215-26. [PMID: 24186807 DOI: 10.1002/humu.22473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Large NF1 deletions are mediated by nonallelic homologous recombination (NAHR). An in-depth analysis of gene conversion operating in the breakpoint-flanking regions of large NF1 deletions was performed to investigate whether the rate of discontinuous gene conversion during NAHR with crossover is increased, as has been previously noted in NAHR-mediated rearrangements. All 20 germline type-1 NF1 deletions analyzed were mediated by NAHR associated with continuous gene conversion within the breakpoint-flanking regions. Continuous gene conversion was also observed in 31/32 type-2 NF1 deletions investigated. In contrast to the meiotic type-1 NF1 deletions, type-2 NF1 deletions are predominantly of post-zygotic origin. Our findings therefore imply that the mitotic as well as the meiotic NAHR intermediates of large NF1 deletions are processed by long-patch mismatch repair (MMR), thereby ensuring gene conversion tract continuity instead of the discontinuous gene conversion that is characteristic of short-patch repair. However, the single type-2 NF1 deletion not exhibiting continuous gene conversion was processed without MMR, yielding two different deletion-bearing chromosomes, which were distinguishable in terms of their breakpoint positions. Our findings indicate that MMR failure during NAHR, followed by post-meiotic/mitotic segregation, has the potential to give rise to somatic mosaicism in human genomic rearrangements by generating breakpoint heterogeneity.
Collapse
|
96
|
Abstract
Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Ranjith P Anand
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | |
Collapse
|
97
|
Rass U. Resolving branched DNA intermediates with structure-specific nucleases during replication in eukaryotes. Chromosoma 2013; 122:499-515. [PMID: 24008669 PMCID: PMC3827899 DOI: 10.1007/s00412-013-0431-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/03/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
Abstract
Genome duplication requires that replication forks track the entire length of every chromosome. When complications occur, homologous recombination-mediated repair supports replication fork movement and recovery. This leads to physical connections between the nascent sister chromatids in the form of Holliday junctions and other branched DNA intermediates. A key role in the removal of these recombination intermediates falls to structure-specific nucleases such as the Holliday junction resolvase RuvC in Escherichia coli. RuvC is also known to cut branched DNA intermediates that originate directly from blocked replication forks, targeting them for origin-independent replication restart. In eukaryotes, multiple structure-specific nucleases, including Mus81-Mms4/MUS81-EME1, Yen1/GEN1, and Slx1-Slx4/SLX1-SLX4 (FANCP) have been implicated in the resolution of branched DNA intermediates. It is becoming increasingly clear that, as a group, they reflect the dual function of RuvC in cleaving recombination intermediates and failing replication forks to assist the DNA replication process.
Collapse
Affiliation(s)
- Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland,
| |
Collapse
|
98
|
Morrish TA, Bekbolysnov D, Velliquette D, Morgan M, Ross B, Wang Y, Chaney B, McQuigg J, Fager N, Maine IP. Multiple Mechanisms Contribute To Telomere Maintenance. JOURNAL OF CANCER BIOLOGY & RESEARCH 2013; 1:1012. [PMID: 25285314 PMCID: PMC4181876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The unlimited growth potential of tumors depends on telomere maintenance and typically depends on telomerase, an RNA-dependent DNA polymerase, which reverse transcribes the telomerase RNA template, synthesizing telomere repeats at the ends of chromosomes. Studies in various model organisms genetically deleted for telomerase indicate that several recombination-based mechanisms also contribute to telomere maintenance. Understanding the molecular basis of these mechanisms is critical since some human tumors form without telomerase, yet the sequence is maintained at the telomeres. Recombination-based mechanisms also likely contribute at some frequency to telomere maintenance in tumors expressing telomerase. Preventing telomere maintenance is predicted to impact tumor growth, yet inhibiting telomerase may select for the recombination-based mechanisms. Telomere recombination mechanisms likely involve altered or unregulated pathways of DNA repair. The use of some DNA damaging agents may encourage the use of these unregulated pathways of DNA repair to be utilized and may allow some tumors to generate resistance to these agents depending on which repair pathways are altered in the tumors. This review will discuss the various telomere recombination mechanisms and will provide rationale regarding the possibility that L1 retrotransposition may contribute to telomere maintenance in tumors lacking telomerase.
Collapse
Affiliation(s)
- Tammy A. Morrish
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Dulat Bekbolysnov
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
- Graduate Program in Microbiology and Immunology, University of Toledo, Toledo, OH 43614 USA
| | - David Velliquette
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Michelle Morgan
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Bryan Ross
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Yongheng Wang
- Department of Biological Sciences, University of Toledo, OH 43614, USA
| | - Benjamin Chaney
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Jessica McQuigg
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Nathan Fager
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Ira P. Maine
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
99
|
Abstract
In this review, we discuss the repair of DNA double-strand breaks (DSBs) using a homologous DNA sequence (i.e., homologous recombination [HR]), focusing mainly on yeast and mammals. We provide a historical context for the current view of HR and describe how DSBs are processed during HR as well as interactions with other DSB repair pathways. We discuss the enzymology of the process, followed by studies on DSB repair in living cells. Whenever possible, we cite both original articles and reviews to aid the reader for further studies.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center New York, New York 10065
| | | |
Collapse
|
100
|
Lukaszewicz A, Howard-Till RA, Loidl J. Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex. Nucleic Acids Res 2013; 41:9296-309. [PMID: 23935123 PMCID: PMC3814389 DOI: 10.1093/nar/gkt703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.
Collapse
Affiliation(s)
| | | | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|