51
|
Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors. J Neurosci 2015; 34:13516-34. [PMID: 25274828 DOI: 10.1523/jneurosci.2069-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
Collapse
|
52
|
Oaks J, Ogretmen B. Regulation of PP2A by Sphingolipid Metabolism and Signaling. Front Oncol 2015; 4:388. [PMID: 25642418 PMCID: PMC4295541 DOI: 10.3389/fonc.2014.00388] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/27/2014] [Indexed: 12/21/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein.
Collapse
Affiliation(s)
- Joshua Oaks
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina , Charleston, SC , USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
53
|
Haesen D, Sents W, Lemaire K, Hoorne Y, Janssens V. The Basic Biology of PP2A in Hematologic Cells and Malignancies. Front Oncol 2014; 4:347. [PMID: 25566494 PMCID: PMC4263090 DOI: 10.3389/fonc.2014.00347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022] Open
Abstract
Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Ward Sents
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| |
Collapse
|
54
|
Li J, Yang XF, Ren XH, Meng XJ, Huang HY, Zhao QH, Yuan JH, Hong WX, Xia B, Huang XF, Zhou L, Liu JJ, Zou F. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion. Biochem Biophys Res Commun 2014; 453:7-12. [PMID: 25234598 DOI: 10.1016/j.bbrc.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jie Li
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi-fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-hu Ren
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-jing Meng
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Hai-yan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiong-hui Zhao
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jian-hui Yuan
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Wen-xu Hong
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bo Xia
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xin-feng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jian-jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
55
|
Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. J Neurosci 2014; 34:7361-74. [PMID: 24849368 DOI: 10.1523/jneurosci.3658-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation.
Collapse
|
56
|
Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies. Blood 2013; 122:1923-34. [PMID: 23926298 DOI: 10.1182/blood-2013-03-492181] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)-activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2(V617F) oncogene. PP2A inactivation occurs in a Jak2(V617F) dose/kinase-dependent manner through the PI-3Kγ-PKC-induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2(V617F) inactivation/downregulation and impairs clonogenic potential of Jak2(V617F) cell lines and PV but not normal CD34(+) progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2(V617F) leukemic mice without adverse effects. Mechanistically, we show that in Jak2(V617F) cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2(V617F) also utilizes an alternative sphingosine kinase-1-mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET-mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2(V617F) MPNs.
Collapse
|
57
|
Li GB, Cheng Q, Liu L, Zhou T, Shan CY, Hu XY, Zhou J, Liu EH, Li P, Gao N. Mitochondrial translocation of cofilin is required for allyl isothiocyanate-mediated cell death via ROCK1/PTEN/PI3K signaling pathway. Cell Commun Signal 2013; 11:50. [PMID: 23895248 PMCID: PMC3734051 DOI: 10.1186/1478-811x-11-50] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022] Open
Abstract
Background Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family, which regulates actin dynamics. Increasing evidence suggests that mitochondrial translocation of cofilin appears necessary for the regulation of apoptosis. Results We report that allyl isothiocyanate (AITC) potently induces mitochondria injury and apoptosis. These events were accompanied by a loss of polymerized filamentous actin (F-actin) and increase in unpolymerized globular actin (G-actin). AITC also induces dephosphorylation of cofilin through activation of PP1 and PP2A. Only dephosphorylated cofilin binds to G-actin and translocates to mitochondria during AITC-mediated apoptosis. Mechanistic study revealed that interruption of ROCK1/PTEN/PI3K signaling pathway plays a critical role in AITC-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. Our in vivo study also showed that AITC-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with dephosphorylation of cofilin. Conclusions These findings support a model in which induction of apoptosis by AITC stems primarily from activation of ROCK1 and PTEN, and inactivation of PI3K, leading in turn to activation of PP1 and PP2A, resulting in dephosphorylation of cofilin, which binds to G-actin and translocates to mitochondria, culminating in the dysfunction of mitochondria, release of cytochrome c and apoptosis.
Collapse
Affiliation(s)
- Guo-bing Li
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Vasudevan NT, Mohan ML, Gupta MK, Martelli EE, Hussain AK, Qin Y, Chandrasekharan UM, Young D, Feldman AM, Sen S, Dorn GW, Dicorleto PE, Naga Prasad SV. Gβγ-independent recruitment of G-protein coupled receptor kinase 2 drives tumor necrosis factor α-induced cardiac β-adrenergic receptor dysfunction. Circulation 2013; 128:377-87. [PMID: 23785004 DOI: 10.1161/circulationaha.113.003183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proinflammatory cytokine tumor necrosis factor-α (TNFα) induces β-adrenergic receptor (βAR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known. METHODS AND RESULTS Two different proinflammatory transgenic mouse models with cardiac overexpression of myotrophin (a prohypertrophic molecule) or TNFα showed that TNFα alone is sufficient to mediate βAR desensitization as measured by cardiac adenylyl cyclase activity. M-mode echocardiography in these mouse models showed cardiac dysfunction paralleling βAR desensitization independent of sympathetic overdrive. TNFα-mediated βAR desensitization that precedes cardiac dysfunction is associated with selective upregulation of G-protein coupled receptor kinase 2 (GRK2) in both mouse models. In vitro studies in β2AR-overexpressing human embryonic kidney 293 cells showed significant βAR desensitization, GRK2 upregulation, and recruitment to the βAR complex following TNFα. Interestingly, inhibition of phosphoinositide 3-kinase abolished GRK2-mediated βAR phosphorylation and GRK2 recruitment on TNFα. Furthermore, TNFα-mediated βAR phosphorylation was not blocked with βAR antagonist propranolol. Additionally, TNFα administration in transgenic mice with cardiac overexpression of Gβγ-sequestering peptide βARK-ct could not prevent βAR desensitization or cardiac dysfunction showing that GRK2 recruitment to the βAR is Gβγ independent. Small interfering RNA knockdown of GRK2 resulted in the loss of TNFα-mediated βAR phosphorylation. Consistently, cardiomyocytes from mice with cardiac-specific GRK2 ablation normalized the TNFα-mediated loss in contractility, showing that TNFα-induced βAR desensitization is GRK2 dependent. CONCLUSIONS TNFα-induced βAR desensitization is mediated by GRK2 and is independent of Gβγ, uncovering a hitherto unknown cross-talk between TNFα and βAR function, providing the underpinnings of inflammation-mediated cardiac dysfunction.
Collapse
Affiliation(s)
- Neelakantan T Vasudevan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wassmann K. Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle 2013; 12:1352-9. [PMID: 23574717 DOI: 10.4161/cc.24600] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiotic divisions (meiosis I and II) are specialized cell divisions to generate haploid gametes. The first meiotic division with the separation of chromosomes is named reductional division. The second division, which takes place immediately after meiosis I without intervening S-phase, is equational, with the separation of sister chromatids, similar to mitosis. This meiotic segregation pattern requires the two-step removal of the cohesin complex holding sister chromatids together: cohesin is removed from chromosome arms that have been subjected to homologous recombination in meiosis I and from the centromere region in meiosis II. Cohesin in the centromere region is protected from removal in meiosis I, but this protection has to be removed--deprotected--for sister chromatid segregation in meiosis II. Whereas the mechanisms of cohesin protection are quite well understood, the mechanisms of deprotection have been largely unknown until recently. In this review I summarize our current knowledge on cohesin deprotection.
Collapse
|
60
|
Abstract
One of the key features of meiosis is that shugoshin in complex with protein phosphatase 2A (PP2A) protects centromeric cohesin during meiosis I, but not during meiosis II. A new model suggests that a PP2A inhibitor mediates deprotection of centromeric cohesin during meiosis II.
Collapse
|
61
|
Gehret AU, Hinkle PM. siRNA screen identifies the phosphatase acting on the G protein-coupled thyrotropin-releasing hormone receptor. ACS Chem Biol 2013; 8:588-98. [PMID: 23215350 DOI: 10.1021/cb3004513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are an ubiquitously expressed class of transmembrane proteins involved in the signal transduction of neurotransmitters, hormones and various other ligands. Their signaling output is desensitized by mechanisms involving phosphorylation, internalization, and dissociation from G proteins and resensitized by mechanisms involving dephosphorylation, but details about the phosphatases responsible are generally lacking. We describe here the use of an siRNA-based library to knock down expression of specific phosphatase subunits to identify protein phosphatase 1-α (PP1α) as important for the thyrotropin-releasing hormone (TRH) receptor. Inhibition of PP1α synthesis and overexpression of dominant negative PP1α preserved receptor phosphorylation under conditions favoring dephosphorylation, whereas overexpression of PP1α accelerated dephosphorylation. Knockdown of all three PP1 catalytic subunits inhibited TRH receptor phosphorylation much more powerfully than knockdown of PP1α alone, suggesting that different PP1 isoforms function redundantly. Knockdown of a structural subunit of PP2A, a second potential hit in the library screen, was ineffective. Calyculin A, a potent inhibitor of PP1 family phosphatases, strongly inhibited dephosphorylation of transfected TRH receptors and endogenous receptors in pituitary cells, but fostriecin, which is selective for PP2A family phosphatases, did not. We conclude that the PP1 class of phosphatases is essential for TRH receptor dephosphorylation.
Collapse
Affiliation(s)
- Austin U. Gehret
- Department of Science and Mathematics,
National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York 14623,
United States
| | - Patricia M. Hinkle
- Department
of Pharmacology and
Physiology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
62
|
Alteration of cell membrane proteoglycans impairs FSH receptor/Gs coupling and ERK activation through PP2A-dependent mechanisms in immature rat Sertoli cells. Biochim Biophys Acta Gen Subj 2013; 1830:3466-75. [PMID: 23500014 DOI: 10.1016/j.bbagen.2013.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND During the pre-pubertal life, the cessation of Sertoli cell proliferation and the onset of differentiation are associated with a shift in the FSH-mediated signaling leading to inhibition of the ERK-mitogenic pathway and to a concomitant sensitization of cAMP/PKA pathway. METHODS To highlight the role of cell proteoglycans (PGs) in the shift of FSH signaling, both FSH-induced cAMP production and ERK1/2 inactivation were studied in untreated and sodium chlorate PG-depleted cultured Sertoli cells from 20day-old rats. RESULTS Depletion of cell membrane PGs by sodium chlorate reduced FSH-, but not cholera toxin-stimulated cAMP production as well as basal ERK phosphorylation through an okadaic acid (OA)-sensitive mechanism. Involvement of PP2A was further substantiated by a marked decrease in membrane- associated PP2A activity under SC conditions and by the OA-induced restoration of PKA-dependent ERK inactivation in SC-treated cells. CONCLUSIONS In 20-day-old rat Sertoli cells, transmembrane cell PGs, through tethering/activation of PP2A activity exerts regulatory control on both FSH receptor/Gs coupling and ERK phosphorylation. GENERAL SIGNIFICANCE Besides their antiproliferative roles, cell PGs such as syndecan-1, could be involved in the increase in cAMP response to FSH occurring in Sertoli cells at the time of transition between proliferative and differentiated states.
Collapse
|
63
|
The PP2A inhibitor I2PP2A is essential for sister chromatid segregation in oocyte meiosis II. Curr Biol 2013; 23:485-90. [PMID: 23434280 DOI: 10.1016/j.cub.2013.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/02/2013] [Accepted: 02/01/2013] [Indexed: 11/20/2022]
Abstract
Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model organisms, centromeric cohesin is protected from separase-dependent removal in meiosis I through the activity of PP2A-B56 phosphatase, which is recruited to centromeres by shugoshin/MEI-S332 (Sgo) [2-5]. How this protection of centromeric cohesin is removed in meiosis II is not entirely clear; we find that all the PP2A subunits remain colocalized with the cohesin subunit Rec8 at the centromere of metaphase II chromosomes. Here, we show that sister chromatid separation in oocytes depends on a PP2A inhibitor, namely I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centromeres at metaphase II, independently of bipolar attachment. When I2PP2A is depleted, sister chromatids fail to segregate during meiosis II. Our findings demonstrate that in oocytes I2PP2A is essential for faithful sister chromatid segregation by mediating deprotection of centromeric cohesin in meiosis II.
Collapse
|
64
|
Shi T, Moravec CS, Perez DM. Novel proteins associated with human dilated cardiomyopathy: selective reduction in α(1A)-adrenergic receptors and increased desensitization proteins. J Recept Signal Transduct Res 2013; 33:96-106. [PMID: 23384050 DOI: 10.3109/10799893.2013.764897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Therapeutics to treat human heart failure (HF) and the identification of proteins associated with HF are still limited. We analyzed α(1)-adrenergic receptor (AR) subtypes in human HF and performed proteomic analysis on more uniform samples to identify novel proteins associated with human HF. Six failing hearts with end-stage dilated cardiomyopathy (DCM) and four non-failing heart controls were subjected to proteomic analysis. Out of 48 identified proteins, 26 proteins were redundant between samples. Ten of these 26 proteins were previously reported to be associated with HF. Of the newly identified proteins, we found several muscle proteins and mitochondrial/electron transport proteins, while novel were functionally similar to previous reports. However, we also found novel proteins involved in functional classes such as β-oxidation and G-protein coupled receptor signaling and desensitization not previously associated with HF. We also performed radioligand-binding studies on the heart samples and not only confirmed a large loss of β(1)-ARs in end-stage DCM, but also found a selective decrease in the α(1A)-AR subtype not previously reported. We have identified new proteins and functional categories associated with end-stage DCM. We also report that similar to the previously characterized loss of β(1)-AR in HF, there is also a concomitant loss of α(1A)-ARs, which are considered cardioprotective proteins.
Collapse
Affiliation(s)
- Ting Shi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, OH, USA
| | | | | |
Collapse
|
65
|
Lam BD, Hordijk PL. The Rac1 hypervariable region in targeting and signaling: a tail of many stories. Small GTPases 2013; 4:78-89. [PMID: 23354415 DOI: 10.4161/sgtp.23310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cellular signaling by small GTPases is critically dependent on proper spatio-temporal orchestration of activation and output. In addition to their core G (guanine nucleotide binding)-domain, small GTPases comprise a hypervariable region (HVR) and a lipid anchor that are generally accepted to control subcellullar localization. The HVR encodes in many small GTPases a polybasic region (PBR) that permits charge-mediated association to the inner leaflet of the plasma membrane or to intracellular organelles. Over the past 15-20 years, evidence has accumulated for specific protein-protein interactions, mediated by the HVR, that control both targeting and signaling specificity of small GTPases. Using the RhoGTPase Rac1 as a paradigm we here review a series of protein partners that require the Rac1 HVR for association and that control various aspects of localized Rac1 signaling. Some of these proteins represent Rac1 activators, whereas others mediate Rac1 inactivation and degradation and yet others potentiate Rac1 downstream signaling. Finally, evidence is discussed which shows that the HVR of Rac1 also contributes to effector interactions, co-operating with the N-terminal effector domain. The complexity of localized Rac1 signaling, reviewed here, is most likely exemplary for many other small GTPases as well, representing a challenge to identify and define similar mechanisms controlling the specific signaling induced by small GTPases.
Collapse
Affiliation(s)
- B Daniel Lam
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
66
|
Mohan ML, Jha BK, Gupta MK, Vasudevan NT, Martelli EE, Mosinski JD, Naga Prasad SV. Phosphoinositide 3-kinase γ inhibits cardiac GSK-3 independently of Akt. Sci Signal 2013; 6:ra4. [PMID: 23354687 DOI: 10.1126/scisignal.2003308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of cardiac phosphoinositide 3-kinase α (PI3Kα) by growth factors, such as insulin, or activation of PI3Kγ downstream of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors stimulates the activity of the kinase Akt, which phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). We found that PI3Kγ inhibited GSK-3 independently of the insulin-PI3Kα-Akt axis. Although insulin treatment activated Akt in PI3Kγ knockout mice, phosphorylation of GSK-3 was decreased compared to control mice. GSK-3 is activated when dephosphorylated by the protein phosphatase 2A (PP2A), which is activated when methylated by the PP2A methyltransferase PPMT-1. PI3Kγ knockout mice showed increased activity of PPMT-1 and PP2A and enhanced nuclear export of the GSK-3 substrate NFATc3. GSK-3 inhibits cardiac hypertrophy, and the hearts of PI3Kγ knockout mice were smaller compared to those of wild-type mice. Cardiac overexpression of a catalytically inactive PI3Kγ (PI3Kγ(inact)) transgene in PI3Kγ knockout mice reduced the activities of PPMT-1 and PP2A and increased phosphorylation of GSK-3. Furthermore, PI3Kγ knockout mice expressing the PI3Kγ(inact) transgene had larger hearts than wild-type or PI3Kγ knockout mice. Our studies show that a kinase-independent function of PI3Kγ could directly inhibit GSK-3 function by preventing the PP2A-PPMT-1 interaction and that this inhibition of GSK-3 was independent of Akt.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Niu M, Klingler-Hoffmann M, Brazzatti JA, Forbes B, Akekawatchai C, Hoffmann P, McColl SR. Comparative proteomic analysis implicates eEF2 as a novel target of PI3Kγ in the MDA-MB-231 metastatic breast cancer cell line. Proteome Sci 2013; 11:4. [PMID: 23320409 PMCID: PMC3564858 DOI: 10.1186/1477-5956-11-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/23/2012] [Indexed: 11/30/2022] Open
Abstract
Background Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R) and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE) and identified the proteins by mass spectrometry. Results These experiments identified eukaryotic elongation factor 2 (eEF2) as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity. Conclusions Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.
Collapse
Affiliation(s)
- Meizhi Niu
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Julie A Brazzatti
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,Current address: Immunology Group, Paterson Institute for cancer research, The University of Manchester, Manchester, M20 4BX, England
| | - Briony Forbes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Chareeporn Akekawatchai
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,Current address: Department of Medical Technology, Thammasat University, Patumtani, 121212, Thailand
| | - Peter Hoffmann
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaun R McColl
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
68
|
Avet C, Garrel G, Denoyelle C, Laverrière JN, Counis R, Cohen-Tannoudji J, Simon V. SET protein interacts with intracellular domains of the gonadotropin-releasing hormone receptor and differentially regulates receptor signaling to cAMP and calcium in gonadotrope cells. J Biol Chem 2012; 288:2641-54. [PMID: 23233674 DOI: 10.1074/jbc.m112.388876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals, the receptor of the neuropeptide gonadotropin-releasing hormone (GnRHR) is unique among the G protein-coupled receptor (GPCR) family because it lacks the carboxyl-terminal tail involved in GPCR desensitization. Therefore, mechanisms involved in the regulation of GnRHR signaling are currently poorly known. Here, using immunoprecipitation and GST pull-down experiments, we demonstrated that SET interacts with GnRHR and targets the first and third intracellular loops. We delineated, by site-directed mutagenesis, SET binding sites to the basic amino acids (66)KRKK(69) and (246)RK(247), located next to sequences required for receptor signaling. The impact of SET on GnRHR signaling was assessed by decreasing endogenous expression of SET with siRNA in gonadotrope cells. Using cAMP and calcium biosensors in gonadotrope living cells, we showed that SET knockdown specifically decreases GnRHR-mediated mobilization of intracellular cAMP, whereas it increases its intracellular calcium signaling. This suggests that SET influences signal transfer between GnRHR and G proteins to enhance GnRHR signaling to cAMP. Accordingly, complexing endogenous SET by introduction of the first intracellular loop of GnRHR in αT3-1 cells significantly reduced GnRHR activation of the cAMP pathway. Furthermore, decreasing SET expression prevented cAMP-mediated GnRH stimulation of Gnrhr promoter activity, highlighting a role of SET in gonadotropin-releasing hormone regulation of gene expression. In conclusion, we identified SET as the first direct interacting partner of mammalian GnRHR and showed that SET contributes to a switch of GnRHR signaling toward the cAMP pathway.
Collapse
Affiliation(s)
- Charlotte Avet
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Equipe Physiologie de l'Axe Gonadotrope, Case Courrier 7007, CNRS-EAC 4413, 4 Rue MA Lagroua Weill Hallé, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
69
|
Lam BD, Anthony EC, Hordijk PL. Cytoplasmic targeting of the proto-oncogene SET promotes cell spreading and migration. FEBS Lett 2012. [PMID: 23195690 DOI: 10.1016/j.febslet.2012.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The RhoGTPase Rac1 is activated in a polarised fashion and controls cell motility. We previously showed that Rac1 binds the PP2A inhibitor SET and recruits nuclear SET to the cytosol. We show that a SET mutant, lacking a nuclear localization signal, SET(ΔNLS), promotes cell spreading and motility. This was accompanied by an increase in the number and frequency of membrane ruffles. Pharmacological inhibition of PP2A did not mimic the effects of SET(ΔNLS), however, we found that expression of SET and SET(ΔNLS) increases the levels of the MAP kinases ERK1 and ERK2.
Collapse
Affiliation(s)
- B Daniel Lam
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
70
|
Mandavia C, Sowers JR. Phosphoprotein Phosphatase PP2A Regulation of Insulin Receptor Substrate 1 and Insulin Metabolic Signaling. Cardiorenal Med 2012; 2:308-313. [PMID: 23381670 DOI: 10.1159/000343889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/24/2012] [Indexed: 12/19/2022] Open
Abstract
Insulin (INS) metabolic signaling is important for normal cardiovascular and renal function as well as for exerting the classic actions of INS, such as glucose uptake in skeletal muscle tissue. There is emerging evidence that tyrosine phosphatases as well as protein kinases have important modulating roles in INS metabolic signaling in both cardiovascular and classically INS- sensitive tissues. For example, increases in phosphatase activity may partially explain how angiotensin II and aldosterone attenuate activation of the INS receptor substrate protein 1 (IRS-1)-phosphatidylinositol 3 kinase-protein kinase B pathway, thereby promoting INS resistance. On the other hand, phosphatase activation may also exert beneficial and cardiovascular protective effects in conditions such as overnutrition by blocking serine phosphorylation of IRS-1, thereby improving downstream INS metabolic signaling. Both the beneficial and the detrimental effects exerted by the activation of phosphatases will be covered in this report.
Collapse
Affiliation(s)
- Chirag Mandavia
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | | |
Collapse
|
71
|
Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol 2012; 166:1225-43. [PMID: 22364165 DOI: 10.1111/j.1476-5381.2012.01917.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs)] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system.
Collapse
Affiliation(s)
- A Rietz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
72
|
Abstract
Transforming growth factor-β (TGF-β) and phosphatidylinositol-3-kinase (PI3 K) isoforms contribute to glomerular disease. Finer and colleagues define a temporal and selective role for the p110γ catalytic isoform of PI3 K, normally expressed by hematopoietic cells, and TGF-β in adriamycin-mediated glomerular injury. Early ectopic upregulation of p110γ by podocytes drives initial injury and proteinuria, whereas late upregulation of TGF-β drives fibrogenesis. Thus, proteinuria and renal fibrogenesis involve distinct signaling activated by p110γ and TGF-β, respectively.
Collapse
|
73
|
Mohan ML, Vasudevan NT, Gupta MK, Martelli EE, Naga Prasad SV. G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol 2012:CMP-EPUB-20120530-2. [PMID: 22697395 PMCID: PMC4607669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 06/01/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used β-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195.
| | | | | | | | | |
Collapse
|
74
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
75
|
Vasudevan NT, Mohan ML, Goswami SK, Naga Prasad SV. Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle 2011; 10:3684-91. [PMID: 22041711 DOI: 10.4161/cc.10.21.18042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors are the largest family of cell surface receptors regulating multiple cellular processes. β-adrenergic receptor (βAR) is a prototypical member of GPCR family and has been one of the most well studied receptors in determining regulation of receptor function. Agonist activation of βAR leads to conformational change resulting in coupling to G protein generating cAMP as secondary messenger. The activated βAR is phosphorylated resulting in binding of β-arrestin that physically interdicts further G protein coupling leading to receptor desensitization. The phosphorylated βAR is internalized and undergoes resensitization by dephosphorylation mediated by protein phosphatase 2A in the early endosomes. Although desensitization and resensitization are two sides of the same coin maintaining the homeostatic functioning of the receptor, significant interest has revolved around understanding mechanisms of receptor desensitization while little is known about resensitization. In our current review we provide an overview on regulation of βAR function with a special emphasis on receptor resensitization and its functional relevance in the context of fine tuning receptor signaling.
Collapse
Affiliation(s)
- Neelakantan T Vasudevan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | |
Collapse
|