51
|
Zeidan Q, He F, Zhang F, Zhang H, Jacobson A, Hinnebusch AG. Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo. PLoS Genet 2018; 14:e1007806. [PMID: 30532217 PMCID: PMC6307823 DOI: 10.1371/journal.pgen.1007806] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/27/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
Abstract
Scd6 protein family members are evolutionarily conserved components of translationally silent mRNA granules. Yeast Scd6 interacts with Dcp2 and Dhh1, respectively a subunit and a regulator of the mRNA decapping enzyme, and also associates with translation initiation factor eIF4G to inhibit translation in cell extracts. However, the role of Scd6 in mRNA turnover and translational repression in vivo is unclear. We demonstrate that tethering Scd6 to a GFP reporter mRNA reduces mRNA abundance via Dcp2 and suppresses reporter mRNA translation via Dhh1. Thus, in a dcp2Δ mutant, tethered Scd6 reduces GFP protein expression with little effect on mRNA abundance, whereas tethered Scd6 has no impact on GFP protein or mRNA expression in a dcp2Δ dhh1Δ double mutant. The conserved LSm domain of Scd6 is required for translational repression and mRNA turnover by tethered Scd6. Both functions are enhanced in a ccr4Δ mutant, suggesting that the deadenylase function of Ccr4-Not complex interferes with a more efficient repression pathway enlisted by Scd6. Ribosome profiling and RNA-Seq analysis of scd6Δ and dhh1Δ mutants suggests that Scd6 cooperates with Dhh1 in translational repression and turnover of particular native mRNAs, with both processes dependent on Dcp2. Our results suggest that Scd6 can (i) recruit Dhh1 to confer translational repression and (ii) activate mRNA decapping by Dcp2 with attendant degradation of specific mRNAs in vivo, in a manner dependent on the Scd6 LSm domain and modulated by Ccr4.
Collapse
Affiliation(s)
- Quira Zeidan
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Fan Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Hongen Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alan G. Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
52
|
Charenton C, Graille M. mRNA decapping: finding the right structures. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0164. [PMID: 30397101 DOI: 10.1098/rstb.2018.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, the elimination of the m7GpppN mRNA cap, a process known as decapping, is a critical, largely irreversible and highly regulated step of mRNA decay that withdraws the targeted mRNAs from the pool of translatable templates. The decapping reaction is catalysed by a multi-protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor, a holoenzyme that is poorly active on its own and needs several accessory proteins (Lsm1-7 complex, Pat1, Edc1-2, Edc3 and/or EDC4) to be fully efficient. Here, we discuss the several crystal structures of Dcp2 domains bound to various partners (proteins or small molecules) determined in the last couple of years that have considerably improved our current understanding of how Dcp2, assisted by its various activators, is recruited to its mRNA targets and adopts its active conformation upon substrate recognition. We also describe how, over the years, elegant integrative structural biology approaches combined to biochemistry and genetics led to the identification of the correct structure of the active Dcp1-Dcp2 holoenzyme among the many available conformations trapped by X-ray crystallography.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
53
|
Chicois C, Scheer H, Garcia S, Zuber H, Mutterer J, Chicher J, Hammann P, Gagliardi D, Garcia D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:119-132. [PMID: 29983000 DOI: 10.1111/tpj.14022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
Collapse
Affiliation(s)
- Clara Chicois
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Shahïnez Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
54
|
Bhatter N, Iyyappan R, Rajyaguru PI. Characterizing mutations in and genetic interactions of RGG-motif translation repressor Sbp1. Wellcome Open Res 2018; 3:102. [DOI: 10.12688/wellcomeopenres.14709.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Mechanisms of mRNA fate decisions play an important role in determining if a given mRNA will be translated, stored or degraded upon arrival to cytoplasm. Sbp1 is an important RGG-motif containing protein that is implicated in mRNA fate decisions since it can affect mRNA decapping and translation. Sbp1 represses translation by binding eIF4G1 through its RGG-motif and activates decapping when overexpressed. In order to understand the amino acids important for translation repression activity of Sbp1 we performed mutational analysis of Sbp1 combined with assessing its genetic interaction with another RGG-motif protein Scd6. We created two classes of point mutations a) in aromatic residues of the RGG-motif and b) in residues reported to be phosphorylated. Method: Sequence alignment was performed to identify aromatic residues to be mutated based on conservation. Site-directed mutagenesis approach was used to create several point mutations in Sbp1 expressed under galactose-inducible promoter. The mutants were tested for their ability to cause growth defect upon overexpression. The ability of Sbp1 to affect repression activity of other decapping activators was tested using the same growth assay. Results: Mutation of several aromatic residues in the RGG-motif of Sbp1 led to a weak rescue phenotype. However the phospho-mimetic mutants of Sbp1 did not lead to any kind of growth defect rescue. Deletion of another eIF4G1-binding RGG-motif protein Scd6 does not affect ability of Sbp1 to cause growth defect. On the other hand absence of Sbp1 does not affect ability of Dhh1 and Pat1 to repress translation. Conclusion: Based on our growth assay analysis we conclude that mutated aromatic residues contribute marginally to repression activity of Sbp1 whereas phospho-mimetic mutants do not alter ability of Sbp1 to cause growth defect. Interestingly Scd6 does not affect ability of Sbp1 to repress translation, which in turn does not affect Dhh1 and Pat1.
Collapse
|
55
|
Roy D, Rajyaguru PI. Suppressor of clathrin deficiency (Scd6)-An emerging RGG-motif translation repressor. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1479. [DOI: 10.1002/wrna.1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Debadrita Roy
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | | |
Collapse
|
56
|
Miller D, Brandt N, Gresham D. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen. PLoS Genet 2018; 14:e1007406. [PMID: 29782489 PMCID: PMC5983874 DOI: 10.1371/journal.pgen.1007406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular responses to changing environments frequently involve rapid reprogramming of the transcriptome. Regulated changes in mRNA degradation rates can accelerate reprogramming by clearing or stabilizing extant transcripts. Here, we measured mRNA stability using 4-thiouracil labeling in the budding yeast Saccharomyces cerevisiae during a nitrogen upshift and found that 78 mRNAs are subject to destabilization. These transcripts include Nitrogen Catabolite Repression (NCR) and carbon metabolism mRNAs, suggesting that mRNA destabilization is a mechanism for targeted reprogramming of the transcriptome. To explore the molecular basis of destabilization we implemented a SortSeq approach to screen the pooled deletion collection library for trans factors that mediate rapid GAP1 mRNA repression. We combined low-input multiplexed Barcode sequencing with branched-DNA single-molecule mRNA FISH and Fluorescence-activated cell sorting (BFF) to identify the Lsm1-7p/Pat1p complex and general mRNA decay machinery as important for GAP1 mRNA clearance. We also find that the decapping modulators EDC3 and SCD6, translation factor eIF4G2, and the 5' UTR of GAP1 are factors that mediate rapid repression of GAP1 mRNA, suggesting that translational control may impact the post-transcriptional fate of mRNAs in response to environmental changes.
Collapse
Affiliation(s)
- Darach Miller
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
57
|
Brandmann T, Fakim H, Padamsi Z, Youn JY, Gingras AC, Fabian MR, Jinek M. Molecular architecture of LSM14 interactions involved in the assembly of mRNA silencing complexes. EMBO J 2018; 37:embj.201797869. [PMID: 29510985 DOI: 10.15252/embj.201797869] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/09/2022] Open
Abstract
The LSM domain-containing protein LSM14/Rap55 plays a role in mRNA decapping, translational repression, and RNA granule (P-body) assembly. How LSM14 interacts with the mRNA silencing machinery, including the eIF4E-binding protein 4E-T and the DEAD-box helicase DDX6, is poorly understood. Here we report the crystal structure of the LSM domain of LSM14 bound to a highly conserved C-terminal fragment of 4E-T. The 4E-T C-terminus forms a bi-partite motif that wraps around the N-terminal LSM domain of LSM14. We also determined the crystal structure of LSM14 bound to the C-terminal RecA-like domain of DDX6. LSM14 binds DDX6 via a unique non-contiguous motif with distinct directionality as compared to other DDX6-interacting proteins. Together with mutational and proteomic studies, the LSM14-DDX6 structure reveals that LSM14 has adopted a divergent mode of binding DDX6 in order to support the formation of mRNA silencing complexes and P-body assembly.
Collapse
Affiliation(s)
- Tobias Brandmann
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Hana Fakim
- Department of Oncology, McGill University, Montreal, QC, Canada.,Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Zoya Padamsi
- Department of Oncology, McGill University, Montreal, QC, Canada.,Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marc R Fabian
- Department of Oncology, McGill University, Montreal, QC, Canada .,Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
58
|
Hara M, Lourido S, Petrova B, Lou HJ, Von Stetina JR, Kashevsky H, Turk BE, Orr-Weaver TL. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition. eLife 2018; 7:33150. [PMID: 29480805 PMCID: PMC5826265 DOI: 10.7554/elife.33150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors.
Collapse
Affiliation(s)
| | | | | | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | | | | | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
59
|
Abstract
Processing bodies (P-bodies) are cytoplasmic ribonucleoprotein (RNP) granules primarily composed of translationally repressed mRNAs and proteins related to mRNA decay, suggesting roles in post-transcriptional regulation. P-bodies are conserved in eukaryotic cells and exhibit properties of liquid droplets. However, the function of P-bodies in translational repression and/or mRNA decay remains contentious. Here we review recent advances in our understanding of the molecular composition of P-bodies, the interactions and processes that regulate P-body liquid-liquid phase separation (LLPS), and the cellular localization of mRNA decay machinery, in the context of how these discoveries refine models of P-body function.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Zhenkun Na
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Sarah A Slavoff
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06529 , United States
| |
Collapse
|
60
|
Brandariz-Núñez A, Zeng F, Lam QN, Jin H. Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. RNA (NEW YORK, N.Y.) 2018; 24:43-55. [PMID: 28986506 PMCID: PMC5733569 DOI: 10.1261/rna.062547.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
RNA-binding protein Sbp1 facilitates the decapping pathway in mRNA metabolism and inhibits global mRNA translation by an unclear mechanism. Here we report molecular interactions responsible for Sbp1-mediated translation inhibition of mRNA encoding the polyadenosine-binding protein (Pab1), an essential translation factor that stimulates mRNA translation and inhibits mRNA decapping in eukaryotic cells. We demonstrate that the two distal RRMs of Sbp1 bind to the poly(A) sequence in the 5'UTR of the Pab1 mRNA specifically and cooperatively while the central RGG domain of the protein interacts directly with Pab1. Furthermore, methylation of arginines in the RGG domain abolishes the protein-protein interaction and the inhibitory effect of Sbp1 on translation initiation of Pab1 mRNA. Based on these results, the underlying mechanism for Sbp1-specific translational regulation is proposed. The functional differences of Sbp1 and RGG repeats alone on transcript-specific translation were observed, and a comparison of the results suggests the importance of remodeling the 5'UTR by RNA-binding proteins in mRNA translation.
Collapse
Affiliation(s)
- Alberto Brandariz-Núñez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Quan Ngoc Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
61
|
Nocua PA, Ramirez CA, Requena JM, Puerta CJ. Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasit Vectors 2017; 10:610. [PMID: 29258569 PMCID: PMC5735676 DOI: 10.1186/s13071-017-2557-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The study of RNA binding proteins (RBPs) is of great relevance for understanding processes like post-transcriptional control of gene expression. The post-transcriptional mechanisms are particularly important in Leishmania parasites and related trypanosomatids since transcriptional regulation is almost absent in them. Thus, RBPs should be essential during the development of these parasites and for survival strategies against the adverse conditions that they face during their life-cycle. This work was aimed to do a structural and biochemical characterization of two Leishmania braziliensis proteins, which were previously found in pull-down assays using an HSP70 RNA as bait. At that time, these proteins were annotated as hypothetical proteins (LbrM.25.2210 and LbrM.30.3080) in the GeneDB database. RESULTS Structural analysis indicated that these two proteins belong to evolutionarily conserved families; thus, they have been renamed accordingly as LbSCD6 (LbrM.25.2210) and LbRBP42 (LbrM.30.3080). We have demonstrated experimentally that these proteins are RBPs, in agreement with their structural features. Both proteins were able to bind to the complete 3' UTR-II region of HSP70-type II mRNA, and to an A + U rich element (ARE) present in that UTR. Cellular localization assays suggested that both proteins are mainly distributed in the cytoplasm of promastigotes growing at 26 °C, but they accumulate in foci around the nucleus when the parasites are under heat-shock conditions. Also, our study showed that steady-state levels of LbSCD6 and LbRBP42 transcripts decreased significantly during incubation of L. braziliensis promastigotes at heat-shock temperatures. However, in these conditions, the cellular content of both proteins remained unaltered. CONCLUSIONS Our data suggest that LbSCD6 and LbRBP42, as occurs for their orthologues in other organisms, are involved in mRNA regulation, and probably they have a relevant role facing the stress conditions that L. braziliensis encounters during insect-to-mammalian transmission.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cesar A Ramirez
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
62
|
Ozdilek BA, Thompson VF, Ahmed NS, White CI, Batey RT, Schwartz JC. Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res 2017; 45:7984-7996. [PMID: 28575444 PMCID: PMC5570134 DOI: 10.1093/nar/gkx460] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
RGG/RG domains are the second most common RNA binding domain in the human genome, yet their RNA-binding properties remain poorly understood. Here, we report a detailed analysis of the RNA binding characteristics of intrinsically disordered RGG/RG domains from Fused in Sarcoma (FUS), FMRP and hnRNPU. For FUS, previous studies defined RNA binding as mediated by its well-folded domains; however, we show that RGG/RG domains are the primary mediators of binding. RGG/RG domains coupled to adjacent folded domains can achieve affinities approaching that of full-length FUS. Analysis of RGG/RG domains from FUS, FMRP and hnRNPU against a spectrum of contrasting RNAs reveals that each display degenerate binding specificity, while still displaying different degrees of preference for RNA.
Collapse
Affiliation(s)
- Bagdeser A Ozdilek
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | - Valery F Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Nasiha S Ahmed
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Connor I White
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Campus Box 596, Boulder, CO 80309, USA
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
63
|
Olson JS, Lubner JM, Meyer DJ, Grant JE. An in silico analysis of primary and secondary structure specificity determinants for human peptidylarginine deiminase types 2 and 4. Comput Biol Chem 2017; 70:107-115. [PMID: 28850877 DOI: 10.1016/j.compbiolchem.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/23/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Human peptidylarginine deiminases (hPADs) are a family of five calcium-dependent enzymes that facilitate citrullination, which is the post-translational modification of peptidyl arginine to peptidyl citrulline. The isozymes hPAD2 and hPAD4 have been implicated in the development and progression of several autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. To better characterize the primary and secondary structure determinants of citrullination specificity, we mined the literature for protein sequences susceptible to citrullination by hPAD2 or hPAD4. First, protein secondary structure classification (α-helix, β-sheet, or coil) was predicted using the PSIPRED software. Next, we used motif-x and pLogo to extract and visualize statistically significant motifs within each data set. Within the data sets of peptides predicted to lie in coil regions, both hPAD2 and hPAD4 appear to favor citrullination of glycine-containing motifs, while distinct hydrophobic motifs were identified for hPAD2 citrullination sites predicted to reside within α-helical and β-sheet regions. Additionally, we identified potential substrate overlap between coil region citrullination and arginine methylation. Together, these results confirm the importance and offer some insight into the role of secondary structure elements for citrullination specificity, and provide biological context for the existing hPAD specificity and arginine post-translational modification literature.
Collapse
Affiliation(s)
- Justin S Olson
- Department of Biology, University of Wisconsin - Stout, 410 10th Avenue E., Menomonie, WI 54751, United States
| | - Joshua M Lubner
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, United States
| | - Dylan J Meyer
- Department of Biology, University of Wisconsin - Stout, 410 10th Avenue E., Menomonie, WI 54751, United States
| | - Jennifer E Grant
- Department of Biology, University of Wisconsin - Stout, 410 10th Avenue E., Menomonie, WI 54751, United States.
| |
Collapse
|
64
|
Woo HH, Lee SC, Gibson SJ, Chambers SK. Expression of the cytoplasmic nucleolin for post-transcriptional regulation of macrophage colony-stimulating factor mRNA in ovarian and breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:337-348. [PMID: 28131007 DOI: 10.1016/j.bbagrm.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/08/2017] [Accepted: 01/08/2017] [Indexed: 01/21/2023]
Abstract
The formation of the mRNP complex is a critical component of translational regulation and mRNA decay. Both the 5' and 3'UTRs of CSF-1 mRNA are involved in post-transcriptional regulation. In CSF-1 mRNA, a small hairpin loop structure is predicted to form at the extreme 5' end (2-21nt) of the 5'UTR. Nucleolin binds the hairpin loop structure in the 5'UTR of CSF-1 mRNA and enhances translation, while removal of this hairpin loop nucleolin binding element dramatically represses translation. Thus in CSF-1 mRNA, the hairpin loop nucleolin binding element is critical for translational regulation. In addition, nucleolin interacts with the 3'UTR of CSF-1 mRNA and facilitates the miRISC formation which results in poly (A) tail shortening. The overexpression of nucleolin increases the association of CSF-1 mRNA containing short poly (A)n≤26, with polyribosomes. Nucleolin both forms an mRNP complex with the eIF4G and CSF-1 mRNA, and is co-localized with the eIF4G in the cytoplasm further supporting nucleolin's role in translational regulation. The distinct foci formation of nucleolin in the cytoplasm of ovarian and breast cancer cells implicates the translational promoting role of nucleolin in these cancers.
Collapse
Affiliation(s)
- Ho-Hyung Woo
- University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Sang C Lee
- University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
65
|
Jungfleisch J, Blasco-Moreno B, Díez J. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses. Viruses 2016; 8:v8120340. [PMID: 28009841 PMCID: PMC5192400 DOI: 10.3390/v8120340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Bernat Blasco-Moreno
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Juana Díez
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
66
|
Lien PTK, Izumikawa K, Muroi K, Irie K, Suda Y, Irie K. Analysis of the Physiological Activities of Scd6 through Its Interaction with Hmt1. PLoS One 2016; 11:e0164773. [PMID: 27776129 PMCID: PMC5077174 DOI: 10.1371/journal.pone.0164773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023] Open
Abstract
Scd6, a yeast homologue of human RAP55, is a component of messenger ribonucleoproteins (mRNPs) that repress translation by binding to translation initiation factors, and also is a decapping activator along with the binding partners Edc3 and Dhh1. Herein, we report that Scd6 is a substrate of the intrinsic protein arginine methyltransferase, Hmt1, in budding yeast Saccharomyces cerevisiae. Mass spectrometric analysis revealed that several arginine residues within the Scd6 RGG motif, which is important for mRNA binding, were methylated in Hmt1 dependent manner. Under stress conditions such as glucose starvation, Scd6 localized to cytoplasmic processing bodies (P-bodies) wherein translationally repressed mRNPs and untranslated mRNAs accumulate. Localization of Scd6 to P-bodies was impaired in hmt1 deletion mutant and in the presence of methylation-deficient substitution of Scd6. In addition, deletion of scd6 and dhh1 led to severe synthetic growth defect at high temperature. Methylation-deficient mutation of Scd6 suppressed the phenotypic defects of scd6 dhh1 double mutant, whereas methylation-mimic mutation did not, suggesting that the arginine methylation might negatively regulate Scd6 function relating to Dhh1. Therefore, the present data suggest that Hmt1-based arginine methylation is required for Scd6 localization and function.
Collapse
Affiliation(s)
- Pham Thi Kim Lien
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiichi Izumikawa
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kei Muroi
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
- * E-mail:
| | - Kenji Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
67
|
Poornima G, Shah S, Vignesh V, Parker R, Rajyaguru PI. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res 2016; 44:9358-9368. [PMID: 27613419 PMCID: PMC5100564 DOI: 10.1093/nar/gkw762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity.
Collapse
Affiliation(s)
- Gopalakrishna Poornima
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | - Shanaya Shah
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | | | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| |
Collapse
|
68
|
The C-Terminal RGG Domain of Human Lsm4 Promotes Processing Body Formation Stimulated by Arginine Dimethylation. Mol Cell Biol 2016; 36:2226-35. [PMID: 27247266 DOI: 10.1128/mcb.01102-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/23/2016] [Indexed: 12/31/2022] Open
Abstract
Processing bodies (PBs) are conserved cytoplasmic aggregations of translationally repressed mRNAs assembled with mRNA decay factors. The aggregation of mRNA-protein (mRNP) complexes into PBs involves interactions between low-complexity regions of protein components of the mRNPs. In Saccharomyces cerevisiae, the carboxy (C)-terminal Q/N-rich domain of the Lsm4 subunit of the Lsm1-7 complex plays an important role in PB formation, but the C-terminal domain of Lsm4 in most eukaryotes is an RGG domain rather than Q/N rich. Here we show that the Lsm4 RGG domain promotes PB accumulation in human cells and that symmetric dimethylation of arginines within the RGG domain stimulates this process. A mutant Lsm4 protein lacking the RGG domain failed to rescue PB formation in cells depleted of endogenous Lsm4, although this mutant protein retained the ability to assemble with Lsm1-7, associate with decapping factors, and promote mRNA decay and translational repression. Mutation of the symmetrically dimethylated arginines within the RGG domain impaired the ability of Lsm4 to promote PB accumulation. Depletion of PRMT5, the primary protein arginine methyltransferase responsible for symmetric arginine dimethylation, including Lsm4, resulted in loss of PBs. We also uncovered the histone acetyltransferase 1 (HAT1)-RBBP7 lysine acetylase complex as an interaction partner of the Lsm4 RGG domain but found no evidence of a role for this complex in PB metabolism. Together, our findings suggest a stimulatory role for posttranslational modifications in PB accumulation and raise the possibility that mRNP dynamics are posttranslationally regulated.
Collapse
|
69
|
Wang X, Xi W, Toomey S, Chiang YC, Hasek J, Laue TM, Denis CL. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation. PLoS One 2016; 11:e0150616. [PMID: 26953568 PMCID: PMC4783044 DOI: 10.1371/journal.pone.0150616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 01/06/2023] Open
Abstract
Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Wen Xi
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Shaun Toomey
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Yueh-Chin Chiang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of ASCR, Prague, Videnska 1083, Czech Republic
| | - Thomas M. Laue
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Clyde L. Denis
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
- * E-mail:
| |
Collapse
|
70
|
Fu R, Olsen MT, Webb K, Bennett EJ, Lykke-Andersen J. Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements. RNA (NEW YORK, N.Y.) 2016; 22:373-382. [PMID: 26763119 PMCID: PMC4748815 DOI: 10.1261/rna.054833.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The zinc finger protein tristetraprolin (TTP) promotes translation repression and degradation of mRNAs containing AU-rich elements (AREs). Although much attention has been directed toward understanding the decay process and machinery involved, the translation repression role of TTP has remained poorly understood. Here we identify the cap-binding translation repression 4EHP-GYF2 complex as a cofactor of TTP. Immunoprecipitation and in vitro pull-down assays demonstrate that TTP associates with the 4EHP-GYF2 complex via direct interaction with GYF2, and mutational analyses show that this interaction occurs via conserved tetraproline motifs of TTP. Mutant TTP with diminished 4EHP-GYF2 binding is impaired in its ability to repress a luciferase reporter ARE-mRNA. 4EHP knockout mouse embryonic fibroblasts (MEFs) display increased induction and slower turnover of TTP-target mRNAs as compared to wild-type MEFs. Our work highlights the function of the conserved tetraproline motifs of TTP and identifies 4EHP-GYF2 as a cofactor in translational repression and mRNA decay by TTP.
Collapse
Affiliation(s)
- Rui Fu
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Myanna T Olsen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Kristofor Webb
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
71
|
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7:78-87. [PMID: 26981197 PMCID: PMC4768126 DOI: 10.4331/wjbc.v7.i1.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
Collapse
|
72
|
Hubstenberger A, Cameron C, Noble SL, Keenan S, Evans TC. Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. J Cell Biol 2015; 211:703-16. [PMID: 26527741 PMCID: PMC4639854 DOI: 10.1083/jcb.201504044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
Modifiers of aberrant solid RNP granules suggest new insights into pathways that control dynamics of large-scale RNP bodies and mRNAs during C. elegans oogenesis. Ribonucleoproteins (RNPs) often coassemble into supramolecular bodies with regulated dynamics. The factors controlling RNP bodies and connections to RNA regulation are unclear. During Caenorhabditis elegans oogenesis, cytoplasmic RNPs can transition among diffuse, liquid, and solid states linked to mRNA regulation. Loss of CGH-1/Ddx6 RNA helicase generates solid granules that are sensitive to mRNA regulators. Here, we identified 66 modifiers of RNP solids induced by cgh-1 mutation. A majority of genes promote or suppress normal RNP body assembly, dynamics, or metabolism. Surprisingly, polyadenylation factors promote RNP coassembly in vivo, suggesting new functions of poly(A) tail regulation in RNP dynamics. Many genes carry polyglutatmine (polyQ) motifs or modulate polyQ aggregation, indicating possible connections with neurodegenerative disorders induced by CAG/polyQ expansion. Several RNP body regulators repress translation of mRNA subsets, suggesting that mRNAs are repressed by multiple mechanisms. Collectively, these findings suggest new pathways of RNP modification that control large-scale coassembly and mRNA activity during development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Pierre-and-Marie-Curie University, University Paris 06, 75005 Paris, France
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Graduate Program in Molecular Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean Keenan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
73
|
Thandapani P, Song J, Gandin V, Cai Y, Rouleau SG, Garant JM, Boisvert FM, Yu Z, Perreault JP, Topisirovic I, Richard S. Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. eLife 2015; 4. [PMID: 26267306 PMCID: PMC4561382 DOI: 10.7554/elife.06234] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/11/2015] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes (G4) are extremely stable secondary structures forming stacks of guanine tetrads. DNA G4 structures have been extensively studied, however, less is known about G4 motifs in mRNAs, especially in their coding sequences. Herein, we show that Aven stimulates the mRNA translation of the mixed lineage leukemia (MLL) proto-oncogene in an arginine methylation-dependent manner. The Aven RGG/RG motif bound G4 structures within the coding regions of the MLL1 and MLL4 mRNAs increasing their polysomal association and translation, resulting in the induction of transcription of leukemic genes. The DHX36 RNA helicase associated with the Aven complex and was required for optimal translation of G4 mRNAs. Depletion of Aven led to a decrease in synthesis of MLL1 and MLL4 proteins resulting in reduced proliferation of leukemic cells. These findings identify an Aven-centered complex that stimulates the translation of G4 harboring mRNAs, thereby promoting survival of leukemic cells. DOI:http://dx.doi.org/10.7554/eLife.06234.001 To make a protein, the DNA sequence that encodes it is first copied to make a molecule of messenger RNA (or mRNA for short). The mRNA is then used as a set of instructions to assemble a protein in a process called translation. Both DNA and RNA molecules can fold into particular shapes. One such structure is known as a G-quartet and involves the DNA or RNA folding back on itself to form a highly stable planar structure. Stacks of G-quartets can form structures known as G-quadruplexes, but little is known about the G-quadruplexes that form in mRNA molecules. Leukemia affects cells in the bone marrow and causes blood cells to develop abnormally. A protein called Aven is often found in increased amounts in certain types of leukemic cells, but it was not clear how Aven affects how leukemia develops. Thandapani, Song et al. have now found that in leukemic cells, Aven binds to G-quadruplexes found in two mRNA molecules that encode proteins that are linked to leukemia. This binding increases the translation of these mRNAs, with translation occurring most efficiently when a particular enzyme called a helicase—which remodels RNA—also bound to Aven. Reducing the amount of Aven in cells caused fewer of the leukemic proteins to be produced, which also reduced the growth and multiplcation of leukemic cells. These findings raise the possibility that drugs that disrupt how Aven works could form part of treatments for leukemia. The next challenge will be to identify the signaling pathways that communicate with Aven and to define all the G-quadruplex mRNAs that are regulated by Aven. DOI:http://dx.doi.org/10.7554/eLife.06234.002
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Jingwen Song
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Valentina Gandin
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Yutian Cai
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Samuel G Rouleau
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Francois-Michel Boisvert
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Canada
| | - Zhenbao Yu
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group, Segal Cancer Center, Jewish General Hospital, Montréal, Canada
| |
Collapse
|
74
|
Steffens A, Bräutigam A, Jakoby M, Hülskamp M. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization. PLoS Biol 2015; 13:e1002188. [PMID: 26133670 PMCID: PMC4489804 DOI: 10.1371/journal.pbio.1002188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the highly conserved class of BEACH domain containing proteins (BDCPs) have been established as broad facilitators of protein-protein interactions and membrane dynamics in the context of human diseases like albinism, bleeding diathesis, impaired cellular immunity, cancer predisposition, and neurological dysfunctions. Also, the Arabidopsis thaliana BDCP SPIRRIG (SPI) is important for membrane integrity, as spi mutants exhibit split vacuoles. In this work, we report a novel molecular function of the BDCP SPI in ribonucleoprotein particle formation. We show that SPI interacts with the P-body core component DECAPPING PROTEIN 1 (DCP1), associates to mRNA processing bodies (P-bodies), and regulates their assembly upon salt stress. The finding that spi mutants exhibit salt hypersensitivity suggests that the local function of SPI at P-bodies is of biological relevance. Transcriptome-wide analysis revealed qualitative differences in the salt stress-regulated transcriptional response of Col-0 and spi. We show that SPI regulates the salt stress-dependent post-transcriptional stabilization, cytoplasmic agglomeration, and localization to P-bodies of a subset of salt stress-regulated mRNAs. Finally, we show that the PH-BEACH domains of SPI and its human homolog FAN (Factor Associated with Neutral sphingomyelinase activation) interact with DCP1 isoforms from plants, mammals, and yeast, suggesting the evolutionary conservation of an association of BDCPs and P-bodies.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- * E-mail:
| |
Collapse
|
75
|
The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. PLoS Genet 2015; 11:e1005233. [PMID: 25973932 PMCID: PMC4431810 DOI: 10.1371/journal.pgen.1005233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5'cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3' UTR motif. Caf20p binds all tested motif-containing 3' UTRs. Caf20p and the 3'UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3'UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E.
Collapse
|
76
|
Zadorsky SP, Sopova YV, Andreichuk DY, Startsev VA, Medvedeva VP, Inge-Vechtomov SG. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae. Yeast 2015; 32:479-97. [PMID: 25874850 DOI: 10.1002/yea.3074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023] Open
Abstract
The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.
Collapse
Affiliation(s)
- S P Zadorsky
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - Y V Sopova
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - D Y Andreichuk
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V A Startsev
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V P Medvedeva
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - S G Inge-Vechtomov
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
77
|
Rodríguez-Romero J, Franceschetti M, Bueno E, Sesma A. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi. Nucleic Acids Res 2014; 43:179-95. [PMID: 25514925 PMCID: PMC4288187 DOI: 10.1093/nar/gku1297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs.
Collapse
Affiliation(s)
- J Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - M Franceschetti
- Disease & Stress Biology Department, John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - E Bueno
- Disease & Stress Biology Department, John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - A Sesma
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
78
|
Spike CA, Coetzee D, Nishi Y, Guven-Ozkan T, Oldenbroek M, Yamamoto I, Lin R, Greenstein D. Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans. Genetics 2014; 198:1513-33. [PMID: 25261697 PMCID: PMC4256769 DOI: 10.1534/genetics.114.168823] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023] Open
Abstract
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
79
|
Guerreiro A, Deligianni E, Santos JM, Silva PAGC, Louis C, Pain A, Janse CJ, Franke-Fayard B, Carret CK, Siden-Kiamos I, Mair GR. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol 2014; 15:493. [PMID: 25418785 PMCID: PMC4234863 DOI: 10.1186/s13059-014-0493-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. RESULTS We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5' untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. CONCLUSIONS Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.
Collapse
Affiliation(s)
- Ana Guerreiro
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Elena Deligianni
- />Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), N. Plastira 100, Heraklio, Crete P.C. 71110 Greece
| | - Jorge M Santos
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Patricia AGC Silva
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Christos Louis
- />Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), N. Plastira 100, Heraklio, Crete P.C. 71110 Greece
| | - Arnab Pain
- />Pathogen Genomics Laboratory, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal-Jeddah, Saudi Arabia
| | - Chris J Janse
- />Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Celine K Carret
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Inga Siden-Kiamos
- />Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), N. Plastira 100, Heraklio, Crete P.C. 71110 Greece
| | - Gunnar R Mair
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- />Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
80
|
Mitchell SF, Parker R. Principles and properties of eukaryotic mRNPs. Mol Cell 2014; 54:547-58. [PMID: 24856220 DOI: 10.1016/j.molcel.2014.04.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
The proper processing, export, localization, translation, and degradation of mRNAs are necessary for regulation of gene expression. These processes are controlled by mRNA-specific regulatory proteins, noncoding RNAs, and core machineries common to most mRNAs. These factors bind the mRNA in large complexes known as messenger ribonucleoprotein particles (mRNPs). Herein, we review the components of mRNPs, how they assemble and rearrange, and how mRNP composition differentially affects mRNA biogenesis, function, and degradation. We also describe how properties of the mRNP "interactome" lead to emergent principles affecting the control of gene expression.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
81
|
Huch S, Nissan T. Interrelations between translation and general mRNA degradation in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:747-63. [PMID: 24944158 PMCID: PMC4285117 DOI: 10.1002/wrna.1244] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 12/31/2022]
Abstract
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. How to cite this article: WIREs RNA 2014, 5:747–763. doi: 10.1002/wrna.1244
Collapse
Affiliation(s)
- Susanne Huch
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
82
|
Zhang C, Wang X, Park S, Chiang YC, Xi W, Laue TM, Denis CL. Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes. Protein Sci 2014; 23:1036-49. [PMID: 24838188 DOI: 10.1002/pro.2490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 01/02/2023]
Abstract
We have previously identified 55 nonribosomal proteins in PAB1-mRNP complexes in Saccharomyces cerevisiae using mass spectrometric analysis. Because one of the inherent limitations of mass spectrometry is that it does not inform as to the size or type of complexes in which the proteins are present, we consequently used analytical ultracentrifugation with fluorescent detection system (AU-FDS) to determine which proteins are present in the 77S monosomal translation complex that contains minimally the closed-loop structure components (eIF4E, eIF4G, and PAB1), mRNA, and the 40S and 60S ribosomes. We assayed by AU-FDS analysis 33 additional PAB1-mRNP factors but found that only five of these proteins were present in the 77S translation complex: eRF1, SLF1, SSD1, PUB1, and SBP1. eRF1 is involved in translation termination, SBP1 is a translational repressor, and SLF1, SSD1, and PUB1 are known mRNA binding proteins. Many of the known P body/stress granule proteins that associate with the PAB1-mRNP were not present in the 77S translation complex, implying that P body/stress granules result from significant protein additions after translational cessation. These data inform that AU-FDS can clarify protein complex identification that remains undetermined after typical immunoprecipitation and mass spectrometric analyses.
Collapse
Affiliation(s)
- Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | | | | | | | | | | | | |
Collapse
|
83
|
The C-terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment. PLoS One 2014; 9:e96828. [PMID: 24830408 PMCID: PMC4022514 DOI: 10.1371/journal.pone.0096828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/11/2014] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m7G) cap and a poly(A) tail at their 5′ and 3′ extremities, respectively. The hydrolysis of the m7G cap structure, known as decapping, is performed by the complex composed of the Dcp2 catalytic subunit and its partner Dcp1. The Dcp1-Dcp2 decapping complex has a low intrinsic activity and requires accessory factors to be fully active. Among these factors, Pat1 is considered to be a central scaffolding protein involved in Dcp2 activation but also in inhibition of translation initiation. Here, we present the structural and functional study of the C-terminal domain from S. cerevisiae Pat1 protein. We have identified two conserved and functionally important regions located at both extremities of the domain. The first region is involved in binding to Lsm1-7 complex. The second patch is specific for fungal proteins and is responsible for Pat1 interaction with Edc3. These observations support the plasticity of the protein interaction network involved in mRNA decay and show that evolution has extended the C-terminal alpha-helical domain from fungal Pat1 proteins to generate a new binding platform for protein partners.
Collapse
|
84
|
Abstract
The storage of translationally inactive mRNAs in cytosolic granules enables cells to react flexibly to environmental changes. In eukaryotes, Scd6 (suppressor of clathrin deficiency 6)/Rap55 (RNA-associated protein 55), a member of the LSm14 (like-Sm14) family, is an important factor in the formation and activity of P-bodies, where mRNA decay factors accumulate, in stress granules that store mRNAs under adverse conditions and in granules that store developmentally regulated mRNAs. SCD6 from Trypanosoma brucei (TbSCD6) shares the same domain architecture as orthologous proteins in other organisms and is also present in cytosolic granules (equivalent to P-bodies). We show that TbSCD6 is a general repressor of translation and that its depletion by RNAi results in a global increase in protein synthesis. With few exceptions, the steady-state levels of proteins are unchanged. TbSCD6 is not required for the formation of starvation-induced granules in trypanosomes, and unlike Scd6 from yeast, Plasmodium and all multicellular organisms analysed to date, it does not form a complex with the helicase Dhh1 (DExD/H-box helicase 1). In common with Xenopus laevis RAP55, TbSCD6 co-purifies with two arginine methyltransferases; moreover, TbSCD6 itself is methylated on three arginine residues. Finally, a detailed analysis identified roles for the Lsm and N-rich domains in both protein localization and translational repression.
Collapse
|
85
|
Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 2014; 27:2628-41. [PMID: 24352420 PMCID: PMC3877753 DOI: 10.1101/gad.227843.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Removal of the 5′ cap structure is a critical step in mRNA turnover, yet key questions regarding the assembly and regulation of decapping complexes remain unanswered. This review provides comprehensive insight into the structural and biochemical properties of decapping factors. Jonas and Izaurralde highlight the plasticity of the decapping network and cover recent advances that reveal how short linear motifs (SliMs) in disordered regions help maintain interactions between decapping network members. The removal of the 5′ cap structure by the decapping enzyme DCP2 inhibits translation and generally commits the mRNA to irreversible 5′-to-3′ exonucleolytic degradation by XRN1. DCP2 catalytic activity is stimulated by DCP1, and these proteins form the conserved core of the decapping complex. Additional decapping factors orchestrate the recruitment and activity of this complex in vivo. These factors include enhancer of decapping 3 (EDC3), EDC4, like Sm14A (LSm14A), Pat, the LSm1–7 complex, and the RNA helicase DDX6. Decapping factors are often modular and feature folded domains flanked or connected by low-complexity disordered regions. Recent studies have made important advances in understanding how these disordered regions contribute to the assembly of decapping complexes and promote phase transitions that drive RNP granule formation. These studies have also revealed that the decapping network is governed by interactions mediated by short linear motifs (SLiMs) in these disordered regions. Consequently, the network has rapidly evolved, and although decapping factors are conserved, individual interactions between orthologs have been rewired during evolution. The plasticity of the network facilitates the acquisition of additional subunits or domains in pre-existing subunits, enhances opportunities for regulating mRNA degradation, and eventually leads to the emergence of novel functions.
Collapse
Affiliation(s)
- Stefanie Jonas
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
86
|
Sun M, Schwalb B, Pirkl N, Maier KC, Schenk A, Failmezger H, Tresch A, Cramer P. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol Cell 2013; 52:52-62. [PMID: 24119399 DOI: 10.1016/j.molcel.2013.09.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/30/2013] [Accepted: 09/06/2013] [Indexed: 02/08/2023]
Abstract
The rates of mRNA synthesis and degradation determine cellular mRNA levels and can be monitored by comparative dynamic transcriptome analysis (cDTA) that uses nonperturbing metabolic RNA labeling. Here we present cDTA data for 46 yeast strains lacking genes involved in mRNA degradation and metabolism. In these strains, changes in mRNA degradation rates are generally compensated by changes in mRNA synthesis rates, resulting in a buffering of mRNA levels. We show that buffering of mRNA levels requires the RNA exonuclease Xrn1. The buffering is rapidly established when mRNA synthesis is impaired, but is delayed when mRNA degradation is impaired, apparently due to Xrn1-dependent transcription repressor induction. Cluster analysis of the data defines the general mRNA degradation machinery, reveals different substrate preferences for the two mRNA deadenylase complexes Ccr4-Not and Pan2-Pan3, and unveils an interwoven cellular mRNA surveillance network.
Collapse
Affiliation(s)
- Mai Sun
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Schwartz JC, Wang X, Podell ER, Cech TR. RNA seeds higher-order assembly of FUS protein. Cell Rep 2013; 5:918-25. [PMID: 24268778 PMCID: PMC3925748 DOI: 10.1016/j.celrep.2013.11.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022] Open
Abstract
The abundant nuclear RNA binding protein FUS binds the C-terminal domain (CTD) of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here, we examine the mechanism of this process and find that RNA binding nucleates the formation of higher-order FUS ribonucleoprotein assemblies that bind the CTD. Both the low-complexity domain and the arginine-glycine rich domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of β zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as amyotrophic lateral sclerosis may occur via the exaggeration of functionally important assemblies of RNA binding proteins.
Collapse
Affiliation(s)
- Jacob C Schwartz
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Elaine R Podell
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
88
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
89
|
Zhang M, Zhang J, Chen X, Cho SJ, Chen X. Glycogen synthase kinase 3 promotes p53 mRNA translation via phosphorylation of RNPC1. Genes Dev 2013; 27:2246-58. [PMID: 24142875 PMCID: PMC3814645 DOI: 10.1101/gad.221739.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022]
Abstract
The RNPC1 RNA-binding protein, also called Rbm38, is a target of p53 and a repressor of p53 mRNA translation. Thus, the p53-RNPC1 loop is critical for modulating p53 tumor suppression, but it is not clear how the loop is regulated. Here, we showed that RNPC1 is phosphorylated at Ser195 by glycogen synthase kinase 3 (GSK3). We also showed that GSK3 promotes p53 mRNA translation through phosphorylation of RNPC1. Interestingly, we found that the phosphor-mimetic mutant S195D and the deletion mutant Δ189-204, which lacks the GSK3 phosphorylation site, are unable to repress p53 mRNA translation due to loss of interaction with eukaryotic translation factor eIF4E on p53 mRNA. Additionally, we found that phosphorylated RNPC1, RNPC1-S195D, and RNPC1(Δ189-204) promote p53 mRNA translation through interaction with eukaryotic translation factor eIF4G, which then facilitates the assembly of the eIF4F complex on p53 mRNA. Furthermore, we showed that upon inhibition of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, GSK3 is activated, leading to increased RNPC1 phosphorylation and increased p53 expression in a RNPC1-dependent manner. Together, we postulate that the p53-RNPC1 loop can be explored to increase or decrease p53 activity for cancer therapy.
Collapse
Affiliation(s)
- Min Zhang
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Xiangling Chen
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Seong-Jun Cho
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
90
|
Monosome formation during translation initiation requires the serine/arginine-rich protein Npl3. Mol Cell Biol 2013; 33:4811-23. [PMID: 24100011 DOI: 10.1128/mcb.00873-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast shuttling serine/arginine-rich protein Npl3 is required for the export of mRNAs and pre-60S ribosomal subunits from the nucleus to the cytoplasm. Here, we report a novel function of Npl3 in translation initiation. A mutation in its C terminus that prevents its dimerization (npl3Δ100) is lethal to cells and leads to translational defects, as shown by [(35)S]methionine incorporation assays and a hypersensitivity to the translational inhibitor cycloheximide. Moreover, this Npl3 mutant shows halfmers in polysomal profiles that are indicative of defects in monosome formation. Strikingly, the loss of the ability of Npl3 to dimerize does not affect mRNA and pre-60S export. In fact, the mRNA and rRNA binding capacities of npl3Δ100 and wild-type Npl3 are similar. Intriguingly, overexpression of the dimerization domain of Npl3 disturbs dimer formation and results in a dominant-negative effect, reflected in growth defects and a halfmer formation phenotype. In addition, we found specific genetic interactions with the ribosomal subunit joining factors Rpl10 and eukaryotic translation initiation factor 5B/Fun12 and detected a substantially decreased binding of npl3Δ100 to the Rpl10-containing complex. These findings indicate an essential novel function for Npl3 in the cytoplasm, which supports monosome formation for translation initiation.
Collapse
|
91
|
Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet 2013; 29:691-9. [PMID: 24091060 DOI: 10.1016/j.tig.2013.09.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
The decay rate of an mRNA and the efficiency with which it is translated are key determinants of eukaryotic gene expression. Although it was once thought that mRNA stability and translational efficiency were directly linked, the interrelationships between the two processes are considerably more complex. The decay of individual mRNAs can be triggered or antagonized by translational impairment, and alterations in the half-life of certain mRNAs can even alter translational fidelity. In this review we consider whether mRNA translation and turnover are distinct or overlapping phases of an mRNA life cycle, and then address some of the many ways in which the two processes influence each other in eukaryotic cells.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Microbiology and Physiological Systems, Albert Sherman Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
92
|
Baron DM, Kaushansky LJ, Ward CL, Sama RRK, Chian RJ, Boggio KJ, Quaresma AJC, Nickerson JA, Bosco DA. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol Neurodegener 2013; 8:30. [PMID: 24090136 PMCID: PMC3766239 DOI: 10.1186/1750-1326-8-30] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS)-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is concentrated within cytoplasmic stress granules under conditions of induced stress. Since only the mutants, but not the endogenous wild-type FUS, are associated with stress granules under most of the stress conditions reported to date, the relationship between FUS and stress granules represents a mutant-specific phenotype and thus may be of significance in mutant-induced pathogenesis. While the association of mutant-FUS with stress granules is well established, the effect of the mutant protein on stress granules has not been examined. Here we investigated the effect of mutant-FUS on stress granule formation and dynamics under conditions of oxidative stress. RESULTS We found that expression of mutant-FUS delays the assembly of stress granules. However, once stress granules containing mutant-FUS are formed, they are more dynamic, larger and more abundant compared to stress granules lacking FUS. Once stress is removed, stress granules disassemble more rapidly in cells expressing mutant-FUS. These effects directly correlate with the degree of mutant-FUS cytoplasmic localization, which is induced by mutations in the nuclear localization signal of the protein. We also determine that the RGG domains within FUS play a key role in its association to stress granules. While there has been speculation that arginine methylation within these RGG domains modulates the incorporation of FUS into stress granules, our results demonstrate that this post-translational modification is not involved. CONCLUSIONS Our results indicate that mutant-FUS alters the dynamic properties of stress granules, which is consistent with a gain-of-toxic mechanism for mutant-FUS in stress granule assembly and cellular stress response.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Motifs rich in arginines and glycines were recognized several decades ago to play functional roles and were termed glycine-arginine-rich (GAR) domains and/or RGG boxes. We review here the evolving functions of the RGG box along with several sequence variations that we collectively term the RGG/RG motif. Greater than 1,000 human proteins harbor the RGG/RG motif, and these proteins influence numerous physiological processes such as transcription, pre-mRNA splicing, DNA damage signaling, mRNA translation, and the regulation of apoptosis. In particular, we discuss the role of the RGG/RG motif in mediating nucleic acid and protein interactions, a function that is often regulated by arginine methylation and partner-binding proteins. The physiological relevance of the RGG/RG motif is highlighted by its association with several diseases including neurological and neuromuscular diseases and cancer. Herein, we discuss the evidence for the emerging diverse functionality of this important motif.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
94
|
Emerging roles for ribonucleoprotein modification and remodeling in controlling RNA fate. Trends Cell Biol 2013; 23:504-10. [PMID: 23756094 DOI: 10.1016/j.tcb.2013.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
Abstract
In the cell, mRNAs and non-coding RNAs exist in association with proteins to form ribonucleoprotein (RNP) complexes. Regulation of RNP stability and function is achieved by alterations to the RNP through poorly understood mechanisms into which recent studies have now begun to provide insight. This emerging body of work points to chemical modification of RNPs at the RNA or protein level and ATP-dependent RNP remodeling by RNA helicases/RNA-dependent ATPases as central events that dictate RNA fate. Some RNP modifications serve as tags for recruitment of regulatory proteins, with RNP modifiers and recruited proteins analogous to the writers and readers of chromatin modification, respectively. This review highlights examples in which RNP modification and ATP-dependent remodeling play key roles in the control of eukaryotic RNA fate, suggesting that we are only at the beginning of uncovering the multitude of ways in which RNP modification and remodeling impact RNA regulation.
Collapse
|
95
|
Krüger T, Hofweber M, Kramer S. SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell 2013; 24:2098-111. [PMID: 23676662 PMCID: PMC3694794 DOI: 10.1091/mbc.e13-01-0068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trypanosomes lack many core components of ribonucleoprotein (RNP) granules identified in yeast and humans (e.g., DCP1/2). This study provides evidence for SCD6 being the core RNP granule component in trypanosomes: overexpression induces granules independent of translation, and even when SCD6 is targeted to the nucleus. Granule type and granule number are dependent on the RGG domain. Ribonucleoprotein (RNP) granules are cytoplasmic, microscopically visible structures composed of RNA and protein with proposed functions in mRNA decay and storage. Trypanosomes have several types of RNP granules, but lack most of the granule core components identified in yeast and humans. The exception is SCD6/Rap55, which is essential for processing body (P-body) formation. In this study, we analyzed the role of trypanosome SCD6 in RNP granule formation. Upon overexpression, the majority of SCD6 aggregates to multiple granules enriched at the nuclear periphery that recruit both P-body and stress granule proteins, as well as mRNAs. Granule protein composition depends on granule distance to the nucleus. In contrast to findings in yeast and humans, granule formation does not correlate with translational repression and can also take place in the nucleus after nuclear targeting of SCD6. While the SCD6 Lsm domain alone is both necessary and sufficient for granule induction, the RGG motif determines granule type and number: the absence of an intact RGG motif results in the formation of fewer granules that resemble P-bodies. The differences in granule number remain after nuclear targeting, indicating translation-independent functions of the RGG domain. We propose that, in trypanosomes, a local increase in SCD6 concentration may be sufficient to induce granules by recruiting mRNA. Proteins that bind selectively to the RGG and/or Lsm domain of SCD6 could be responsible for regulating granule type and number.
Collapse
Affiliation(s)
- Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
96
|
Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013; 33:2285-301. [PMID: 23547259 DOI: 10.1128/mcb.01517-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stress granules (SG) are cytoplasmic multimeric RNA bodies that form under stress conditions known to inhibit cap-dependent translation. SG contain translation initiation factors, RNA binding proteins, and signaling molecules. SG are known to inhibit apoptotic pathways, thus contributing to chemo- and radioresistance in tumor cells. However, whether stress granule formation involves oncogenic signaling pathways is currently unknown. Here, we report a novel role of the mTORC1-eukaryotic translation initiation factor 4E (eIF4E) pathway, a key regulator of cap-dependent translation initiation of oncogenic factors, in SG formation. mTORC1 specifically drives the eIF4E-mediated formation of SG through the phosphorylation of 4E-BP1, a key factor known to inhibit formation of the mTORC1-dependent eIF4E-eIF4GI interactions. Disrupting formation of SG by inactivation of mTOR with its specific inhibitor pp242 or by depletion of eIF4E or eIF4GI blocks the SG-associated antiapoptotic p21 pathway. Finally, pp242 sensitizes cancer cells to death in vitro and inhibits the growth of chemoresistant tumors in vivo. This work therefore highlights a novel role of the oncogenic mTORC1-eIF4E pathway, namely, the promotion of formation of antiapoptotic SG.
Collapse
|
97
|
Hooper C, Hilliker A. Packing them up and dusting them off: RNA helicases and mRNA storage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:824-34. [PMID: 23528738 DOI: 10.1016/j.bbagrm.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Cytoplasmic mRNA can be translated, translationally repressed, localized or degraded. Regulation of translation is an important step in control of gene expression and the cell can change whether and to what extent an mRNA is translated. If an mRNA is not translating, it will associate with translation repression factors; the mRNA can be stored in these non-translating states. The movement of mRNA into storage and back to translation is dictated by the recognition of the mRNA by trans factors. So, remodeling the factors that bind mRNA is critical for changing the fate of mRNA. RNA helicases, which have the ability to remodel RNA or RNA-protein complexes, are excellent candidates for facilitating such rearrangements. This review will focus on the RNA helicases implicated in translation repression and/or mRNA storage and how their study has illuminated mechanisms of mRNA regulation. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Christopher Hooper
- Department of Neonatology, Vanderbilt Children's Hospital, Nashville, TN, USA
| | | |
Collapse
|
98
|
Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 2013; 425:3750-75. [PMID: 23467123 DOI: 10.1016/j.jmb.2013.02.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/15/2023]
Abstract
mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.
Collapse
|
99
|
Abstract
Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and rRNA-metabolism factors. These proteins show dynamic subcellular localization during stress, including assembly into stress granules and processing bodies (P bodies). Cross-linking and immunoprecipitation (CLIP) analyses of the P-body components Pat1, Lsm1, Dhh1 and Sbp1 identified sites of interaction on specific mRNAs, revealing positional binding preferences and co-assembly preferences. When taken together, this work defines the major yeast mRNP proteins, reveals widespread changes in their subcellular location during stress and begins to define assembly rules for P-body mRNPs.
Collapse
|
100
|
Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012; 4:a012286. [PMID: 22763747 DOI: 10.1101/cshperspect.a012286] [Citation(s) in RCA: 566] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721-0206, USA
| | | |
Collapse
|