51
|
Chen Y, Zhu WG. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:603-16. [PMID: 27217472 DOI: 10.1093/abbs/gmw050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR.
Collapse
Affiliation(s)
- Yongcan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
52
|
|
53
|
Zhang L, Miao XJ, Wang X, Pan HH, Li P, Ren H, Jia YR, Lu C, Wang HB, Yuan L, Zhang GL. Antiproliferation of berberine is mediated by epigenetic modification of constitutive androstane receptor (CAR) metabolic pathway in hepatoma cells. Sci Rep 2016; 6:28116. [PMID: 27311637 PMCID: PMC4911599 DOI: 10.1038/srep28116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/26/2016] [Indexed: 01/07/2023] Open
Abstract
Constitutive androstane receptor (CAR) regulates hepatic xenobiotic and energy metabolism, as well as promotes cell growth and hepatocarcinogenesis. Berberine is an ancient multipotent alkaloid drug which derived from Coptis chinensis plants. Here we report that berberine is able to be cellular uptake and accessible to chromatin in human hepatoma HepG2 cells. Berberine induces more apoptosis, cell cycle arrest, but less ROS production in CAR overexpressed mCAR-HepG2 cells. Moreover, berberine inhibits expressions of CAR and its target genes CYP2B6 and CYP3A4. Furthermore, berberine enhances DNA methylation level in whole genome but reduces that in promoter regions CpG sites of CYP2B6 and CYP3A4 genes under the presence of CAR condition. These results indicated that the antiproliferation of berberine might be mediated by the unique epigenetic modifying mechanism of CAR metabolic pathway, suggesting that berberine is a promising candidate in anticancer adjuvant chemotherapy, due to its distinct pharmacological properties in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Jie Miao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hai-Hui Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Pu Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Ren
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Rui Jia
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191, China
| | - Chuang Lu
- Department of Drug Metabolism &Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Hong-Bing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| | - Lan Yuan
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191, China
| | - Guo-Liang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
54
|
The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS One 2016; 11:e0155409. [PMID: 27187594 PMCID: PMC4871326 DOI: 10.1371/journal.pone.0155409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of the function of histone post-translational modifications in metazoans is inferred from their genomic localization and / or extrapolated from yeast studies. For example, acetylation of histone H3 lysine 56 (H3 K56Ac) is assumed to be important for transcriptional regulation in metazoan cells based on its occurrence at promoters and its function in yeast. Here we directly assess the function of H3 K56Ac during chromatin disassembly from gene regulatory regions during transcriptional induction in human cells by using mutations that either mimic or prevent H3 K56Ac. Although there is rapid histone H3 disassembly during induction of some estrogen receptor responsive genes, depletion of the histone chaperone ASF1A/B, which is required for H3 K56 acetylation, has no effect on chromatin disassembly at these regions. During the course of this work, we found that all the commercially available antibodies to H3 K56Ac are non-specific in human cells and in Drosophila. We used H3-YFP fusions to show that the H3 K56Q mutation can promote chromatin disassembly from regulatory regions of some estrogen responsive genes in the context of transcriptional induction. However, neither the H3 K56R nor K56Q mutation significantly altered chromatin disassembly dynamics by FRAP analysis. These results indicate that unlike the situation in yeast, human cells do not use H3 K56Ac to promote chromatin disassembly from regulatory regions or from the genome in general. Furthermore, our work highlights the need for rigorous characterization of the specificity of antibodies to histone post-translational modifications in vivo.
Collapse
|
55
|
Graves HK, Wang P, Lagarde M, Chen Z, Tyler JK. Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenetics Chromatin 2016; 9:9. [PMID: 26933451 PMCID: PMC4772521 DOI: 10.1186/s13072-016-0059-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 01/24/2023] Open
Abstract
Background
Understanding the function of histone post-translational modifications is the key to deciphering how genomic activities are regulated. Among the least well-understood histone modifications in vivo are those that occur on the surface of the globular domain of histones, despite their causing the most profound structural alterations of the nucleosome in vitro. We utilized a Drosophila system to replace the canonical histone genes with mutated histone transgenes. Results Mutations predicted to mimic or prevent acetylation on histone H3 lysine (K) 56, K115, K122, and both K115/K122, or to prevent or mimic phosphorylation on H3 threonine (T) 118 and T80, all caused lethality, with the exception of K122R mutants. T118 mutations caused profound growth defects within wing discs, while K115R, K115Q, K56Q, and the K115/K122 mutations caused more subtle growth defects. The H3 K56R and H3 K122R mutations caused no defects in growth, differentiation, or transcription within imaginal discs, indicating that H3 K56 acetylation and K122 acetylation are dispensable for these functions. In agreement, we found the antibody to H3 K122Ac, which was previously used to imply a role for H3 K122Ac in transcription in metazoans, to be non-specific in vivo. Conclusions Our data suggest that chromatin structural perturbations caused by acetylation of K56, K115, or K122 and phosphorylation of T80 or T118 are important for key developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hillary K Graves
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Pingping Wang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Matthew Lagarde
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Zhihong Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jessica K Tyler
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
56
|
Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells. Sci Rep 2016; 6:21224. [PMID: 26880274 PMCID: PMC4754773 DOI: 10.1038/srep21224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes.
Collapse
|
57
|
Abstract
The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the "histone code" hypothesis, we reveal a strong influence of adjacent and, surprisingly, distant histone PTMs on the ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes.
Collapse
|
58
|
Mitofusin 2 Downregulation Triggers Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis Imbalance in Rats With Hypoxic Pulmonary Hypertension Via the PI3K/Akt and Mitochondrial Apoptosis Pathways. J Cardiovasc Pharmacol 2016; 67:164-74. [DOI: 10.1097/fjc.0000000000000333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
60
|
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet 2015; 32:42-56. [PMID: 26704082 DOI: 10.1016/j.tig.2015.10.007] [Citation(s) in RCA: 569] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.
Collapse
|
61
|
Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, Dumas M, Cavelier P, Girardot M, Forné T, Feil R, Weber M. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res 2015; 26:192-202. [PMID: 26576615 PMCID: PMC4728372 DOI: 10.1101/gr.198291.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022]
Abstract
The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development.
Collapse
Affiliation(s)
- Ghislain Auclair
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Julie Borgel
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Lionel A Sanz
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Judith Vallet
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Sylvain Guibert
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Michael Dumas
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Patricia Cavelier
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Michael Girardot
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Thierry Forné
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Michael Weber
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| |
Collapse
|
62
|
Zhang X, Huang Y, Shi X. Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 2015; 72:4257-72. [PMID: 26227335 PMCID: PMC11114002 DOI: 10.1007/s00018-015-2001-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaling Huang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Genes and Development and the Epigenetics and Molecular Carcinogenesis Graduate Programs, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
63
|
Simon JM, Parker JS, Liu F, Rothbart SB, Ait-Si-Ali S, Strahl BD, Jin J, Davis IJ, Mosley AL, Pattenden SG. A Role for Widely Interspaced Zinc Finger (WIZ) in Retention of the G9a Methyltransferase on Chromatin. J Biol Chem 2015; 290:26088-102. [PMID: 26338712 PMCID: PMC4646261 DOI: 10.1074/jbc.m115.654459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.
Collapse
Affiliation(s)
- Jeremy M Simon
- From the Carolina Institute for Developmental Disabilities, Department of Cell Biology and Physiology, and the Department of Genetics, Curriculum in Bioinformatics and Computational Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joel S Parker
- the Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Feng Liu
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott B Rothbart
- the Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Slimane Ait-Si-Ali
- the Laboratoire Epigénétique et Destin Cellulaire, UMR7216, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Brian D Strahl
- the Lineberger Comprehensive Cancer Center, the Curriculum in Genetics and Molecular Biology, and the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jian Jin
- the Department of Structural and Chemical Biology, the Department of Oncological Sciences, and the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ian J Davis
- the Department of Genetics, the Lineberger Comprehensive Cancer Center, the Department of Pediatrics, and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Amber L Mosley
- the Department of Biochemistry and Molecular Biology and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Samantha G Pattenden
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
64
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
65
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
66
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
67
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
68
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
69
|
Kim KB, Son HJ, Choi S, Hahm JY, Jung H, Baek HJ, Kook H, Hahn Y, Kook H, Seo SB. H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation. Nucleic Acids Res 2015; 43:3509-23. [PMID: 25765655 PMCID: PMC4402520 DOI: 10.1093/nar/gkv183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hye-Ju Son
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Sulji Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hee Jo Baek
- Environmental Health Center for Childhood Leukemia and Cancer, Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun 519-809
| | - Hoon Kook
- Environmental Health Center for Childhood Leukemia and Cancer, Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun 519-809
| | - Yoonsoo Hahn
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| | - Hyun Kook
- Medical Research Center for Gene Regulation and Department of Pharmacology, Chonnam National University, Gwangju 501-746, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756
| |
Collapse
|
70
|
Che J, Smith S, Kim YJ, Shim EY, Myung K, Lee SE. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis. PLoS Genet 2015; 11:e1004990. [PMID: 25705897 PMCID: PMC4338291 DOI: 10.1371/journal.pgen.1004990] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022] Open
Abstract
Break-induced replication (BIR) has been implicated in restoring eroded telomeres and collapsed replication forks via single-ended invasion and extensive DNA synthesis on the recipient chromosome. Unlike other recombination subtypes, DNA synthesis in BIR likely relies heavily on mechanisms enabling efficient fork progression such as chromatin modification. Herein we report that deletion of HST3 and HST4, two redundant de-acetylases of histone H3 Lysine 56 (H3K56), inhibits BIR, sensitizes checkpoint deficient cells to deoxyribonucleotide triphosphate pool depletion, and elevates translocation-type gross chromosomal rearrangements (GCR). The basis for deficiency in BIR and gene conversion with long gap synthesis in hst3Δ hst4Δ cells can be traced to a defect in extensive DNA synthesis. Distinct from other cellular defects associated with deletion of HST3 and HST4 including thermo-sensitivity and elevated spontaneous mutagenesis, the BIR defect in hst3Δ hst4Δ cannot be offset by the deletion of RAD17 or MMS22, but rather by the loss of RTT109 or ASF1, or in combination with the H3K56R mutation, which also restores tolerance to replication stress in mrc1 mutants. Our studies suggest that acetylation of H3K56 limits extensive repair synthesis and interferes with efficient fork progression in BIR. Chromatin poses a barrier to the recombination process. Chromatin modification is therefore a prerequisite factor for the efficient execution of the recombination event. Chromatin remodeling and several unique histone modifications at or near DNA double strand breaks (DSBs) facilitate early recombination processes, but little is known how chromatin state impinges on post-invasion steps of recombination, such as repair synthesis through homologous template, particularly recombination subtypes such as break-induced replication (BIR) involving extensive repair synthesis. Here, we investigated the effect of deletions in chromatin modification and remodeling genes on BIR and discovered that hyper-acetylation of H3K56 selectively impairs BIR and gene conversion associated with long DNA gap synthesis. We also found that hyper-acetylation of H3K56 interferes with the recovery from replication stress in checkpoint deficient cells and induces translocation-type gross chromosomal rearrangements (GCRs). The results provide a basic understanding of how histone modification facilitates efficient fork progression in recombination, controls the types of the repair products and sustains chromosome integrity upon induction of genotoxic stress.
Collapse
Affiliation(s)
- Jun Che
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Program of Radiation Biology, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoo Jung Kim
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eun Yong Shim
- Program of Radiation Biology, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, Institute of Biotechnology, Universsity of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sang Eun Lee
- Program of Radiation Biology, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, Institute of Biotechnology, Universsity of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
71
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
72
|
Mauger O, Klinck R, Chabot B, Muchardt C, Allemand E, Batsché E. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions. Nucleic Acids Res 2015; 43:1869-82. [PMID: 25605796 PMCID: PMC4330376 DOI: 10.1093/nar/gkv013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing factors control their splicing profiles. Based on this evidence, we have assessed the link between the inclusion of these exons and the activity of both enzymes. We document that these HMTase genes yield several protein isoforms, which are likely issued from alternative splicing regulation. We demonstrate that inclusion of SUV39H2 exon 3 is a determinant of the stability, the sub-nuclear localization, and the HMTase activity. Genome-wide expression analysis further revealed that alternative inclusion of SUV39H2 exon 3 differentially modulates the expression of target genes. Our data also suggest that a variant of G9A may display a function that is independent of H3K9 methylation. Our work emphasizes that expression and function of genes are not collinear; therefore alternative splicing must be taken into account in any functional study.
Collapse
Affiliation(s)
- Oriane Mauger
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 6, IFD, 4 Place Jussieu, 75252 PARIS cedex 05, France Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Roscoe Klinck
- Laboratory of Functional Genomics of the Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Benoit Chabot
- Laboratory of Functional Genomics of the Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke. Québec, J1E 4K8, Canada
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Eric Allemand
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| |
Collapse
|
73
|
Hynd PI, Edwards NM, Weaver S, Chenoweth K, Stobart R, Heberle N. Biological defleecing: intravenous infusion of amino acid mixtures lacking lysine and methionine creates a weakened zone in the wool staple, which is amenable to mechanical wool harvesting. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional shearing of sheep is labour-intensive, expensive and presents significant occupational health and safety risks. The only alternative at present is based on injection of epidermal growth factor, which severs the fibre at the follicle level. This technology cannot be used in pregnant animals and requires application of a net to retain the severed fleece. An alternative is to create a weakened zone within the wool staple, which would be sufficiently strong to retain the fleece on the sheep while a protective covering regrows, but sufficiently weak as to allow painless and automated removal of the fleece. We demonstrate that this approach is possible using mixtures of amino acids lacking lysine and methionine. Initially we demonstrate the relationships between staple strength, a subjective ‘harvestability’ score and a subjective ‘pain’ score, using fleeces from animals treated with varying levels of cortisol to create a wide range of strengths of wool attachment. We assigned a score to the ease with which we could manually break the staples, and also to the animal’s response to breaking the staples still attached to the skin. The relationships between these variables indicated that a staple was considered harvestable and could be removed with minimal skin flinch response at a staple strength of ~10–13 N/kTex. Staples within this range were then produced by intravenous infusion of mixtures of amino acids lacking in lysine and methionine for a 5-day period. The weak point was uniformly created across the entire fleece and when a prototype roller-pin device was applied to the weakened wool, it uniformly broke the fleece of the three sheep tested. The mode of action of the amino acid treatment on wool growth was studied. There was no effect of unbalanced amino acids on the rate of follicle bulb cell division, the number of active wool follicles, or the length of the keratinisation zone in the wool follicle. Fibre diameter was reduced by ~4 microns by treatment, and intrinsic fibre strength (strength relative to cross-sectional area of the wool fibres), was reduced by ~50%. Results of these trials are encouraging but further work is required to develop a practical, on-farm method of altering systemic amino acid supply and to design an automated, high-throughput system of severing the weakened wool.
Collapse
|
74
|
Ruan WM, Li YL, Nie G, Zhou WX, Zou XM. Differential expression of glycoprotein non-metastatic melanoma protein B (GPNMB) involved in trichostatin A-induced apoptosis in gastric cancer. Int J Clin Exp Med 2014; 7:4857-4866. [PMID: 25663982 PMCID: PMC4307429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
In this study, we investigated the effect of trichostatin A (TSA) on the gastric cancer cell line BGC-823. The effect of TSA on growth inhibition and apoptosis of BGC-823 cells was examined. The gene expression profile was determined by microarray. Western blotting was used to study the levels of acetylated histone H4 and Glycoprotein non-metastatic melanoma protein B (GPNMB) proteins. GPNMB gene expression was measured by real-time PCR. GPNMB protein levels in gastric adenocarcinoma tissues and adjoining normal tissues were detected by immunohistochemistry. The results showed that a significant decrease in cell population following treatment with 75 ng/mL TSA for 48 h (0.87 ± 0.04) as compared to control (1.14 ± 0.06) (P = 0.02). Apoptotic cells were increased in TSA (75 ng/mL for 48 h) treated group as compared to the control group (from 2.02% to 19.74%) by flow cytometry. The expression of acetylated histone H4 was increased in TSA treated (75 ng/mL for 48 h) group (from 1.00 ± 0.26 to 1.87 ± 0.33, F = 5.862, P = 0.0038) as compared to the control group by Western blotting. After 48 h TSA treatment (75 ng/mL), BGC-823 cells showed decrease in GPNMB gene expression (from 1.00 ± 0.21 to 0.59 ± 0.11, F = 6.214, P = 0.0018). Immunohistochemistry showed that GPNMB expression in gastric adenocarcinoma was significantly higher than the adjoining normal tissues (P = 0.000). To conclusion, our results support that TSA can induce apoptosis, and increase acetylated histone H4 in BGC-823 cells. GPNMB expression is decreased in BGC-823 cells after TSA treatment. GPNMB is overexpressed in gastric adenocarcinoma tissue. GPNMB involved in TSA-induced apoptosis might participate in gastric cancer.
Collapse
Affiliation(s)
- Wei-Min Ruan
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang Province, China
| | - Yun-Long Li
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang Province, China
| | - Gang Nie
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang Province, China
| | - Wen-Xue Zhou
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang Province, China
| | - Xiao-Ming Zou
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang Province, China
| |
Collapse
|
75
|
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 2014; 15:703-8. [PMID: 25315270 DOI: 10.1038/nrm3890] [Citation(s) in RCA: 707] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-translational modifications of histones regulate all DNA-templated processes, including replication, transcription and repair. These modifications function as platforms for the recruitment of specific effector proteins, such as transcriptional regulators or chromatin remodellers. Recent data suggest that histone modifications also have a direct effect on nucleosomal architecture. Acetylation, methylation, phosphorylation and citrullination of the histone core may influence chromatin structure by affecting histone-histone and histone-DNA interactions, as well as the binding of histones to chaperones.
Collapse
Affiliation(s)
- Peter Tessarz
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK; and the Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
76
|
Kebede AF, Schneider R, Daujat S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 2014; 282:1658-74. [DOI: 10.1111/febs.13047] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Adam F. Kebede
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Sylvain Daujat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| |
Collapse
|
77
|
Xu YM, Du JY, Lau ATY. Posttranslational modifications of human histone H3: an update. Proteomics 2014; 14:2047-60. [PMID: 25044606 DOI: 10.1002/pmic.201300435] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 02/05/2023]
Abstract
Histone proteins, the fundamental components of chromatin, are highly conserved proteins that present in eukaryotic nuclei. They organize genomic DNA to form nucleosomes, the basic units of chromatin. PTMs of histones play essential roles in many biological processes, such as chromatin condensation, gene expression, cell differentiation, and apoptosis. With the advancement of proteomic technology, a growing number of histone PTMs have been identified, including ADP-ribosylation, biotinylation, citrullination, crotonylation, O-GlcNAcylation, glutathionylation, succinylation, and so on. Because of the fast growing list of these PTMs in just a few years, the functions of these marks are being studied intensively. As histone H3 has the most number of PTMs among the histone members, in this review, we would like to present the overall concepts of the more familiar PTMs as well as discussing all the recently identified yet less well-known PTMs on human histone H3.
Collapse
Affiliation(s)
- Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| | | | | |
Collapse
|
78
|
Lyons DB, Lomvardas S. Repressive histone methylation: a case study in deterministic versus stochastic gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1373-84. [PMID: 24859457 DOI: 10.1016/j.bbagrm.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
Abstract
Transcriptionally repressive histone lysine methylation is used by eukaryotes to tightly control cell fate. Here we explore the importance of this form of regulation in the control of clustered genes in the genome. Two distinctly regulated gene families with important roles in vertebrates are discussed, namely the Hox genes and olfactory receptor genes. Major recent advances in these two fields are compared and contrasted, with an emphasis on the roles of the two different forms of histone trimethylation. We discuss how this repression may impact both the transcriptional output of these loci and the way higher-order chromatin organization is related to their unique control.
Collapse
Affiliation(s)
- David B Lyons
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stavros Lomvardas
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California San Francisco, CA 94920, USA.
| |
Collapse
|
79
|
Getting down to the core of histone modifications. Chromosoma 2014; 123:355-71. [PMID: 24789118 DOI: 10.1007/s00412-014-0465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The identification of an increasing number of posttranslationally modified residues within histone core domains is furthering our understanding of how nucleosome dynamics are regulated. In this review, we first discuss how the targeting of specific histone H3 core residues can directly influence the nucleosome structure and then apply this knowledge to provide functional reasoning for their localization to distinct genomic regions. While we focus mainly on transcriptional implications, the principles discussed in this review can also be applied to their roles in other cellular processes. Finally, we highlight some examples of how aberrant modifications of core histone residues can facilitate the pathogenesis of some diseases.
Collapse
|
80
|
Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life 2014; 66:240-56. [PMID: 24706538 DOI: 10.1002/iub.1264] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
The mammalian genome is packaged into chromatin that is further compacted into three-dimensional structures consisting of distinct functional domains. The higher order structure of chromatin is in part dictated by enzymatic DNA methylation and histone modifications to establish epigenetic layers controlling gene expression and cellular functions, without altering the underlying DNA sequences. Apart from DNA and histone modifications, non-coding RNAs can also regulate the dynamics of the mammalian gene expression and various physiological functions including cell division, differentiation, and apoptosis. Aberrant epigenetic signatures are associated with abnormal developmental processes and diseases such as cancer. In this review, we will discuss the different layers of epigenetic regulation, including writer enzymes for DNA methylation, histone modifications, non-coding RNA, and chromatin conformation. We will highlight the combinatorial role of these structural and chemical modifications along with their partners in various cellular processes in mammalian cells. We will also address the cis and trans interacting "reader" proteins that recognize these modifications and "eraser" enzymes that remove these marks. Furthermore, an attempt will be made to discuss the interplay between various epigenetic writers, readers, and erasures in the establishment of mammalian epigenetic mechanisms.
Collapse
|
81
|
DeNizio JE, Elsässer SJ, Black BE. DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res 2014; 42:4318-31. [PMID: 24493739 PMCID: PMC3985662 DOI: 10.1093/nar/gku090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023] Open
Abstract
Histone chaperones are a diverse class of proteins that facilitate chromatin assembly. Their ability to stabilize highly abundant histone proteins in the cellular environment prevents non-specific interactions and promotes nucleosome formation, but the various mechanisms for doing so are not well understood. We now focus on the dynamic features of the DAXX histone chaperone that have been elusive from previous structural studies. Using hydrogen/deuterium exchange coupled to mass spectrometry (H/DX-MS), we elucidate the concerted binding-folding of DAXX with histone variants H3.3/H4 and H3.2/H4 and find that high local stability at the variant-specific recognition residues rationalizes its known selectivity for H3.3. We show that the DAXX histone binding domain is largely disordered in solution and that formation of the H3.3/H4/DAXX complex induces folding and dramatic global stabilization of both histone and chaperone. Thus, DAXX uses a novel strategy as a molecular chaperone that paradoxically couples its own folding to substrate recognition and binding. Further, we propose a model for the chromatin assembly reaction it mediates, including a stepwise folding pathway that helps explain the fidelity of DAXX in associating with the H3.3 variant, despite an extensive and nearly identical binding surface on its counterparts, H3.1 and H3.2.
Collapse
Affiliation(s)
- Jamie E. DeNizio
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA and MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Simon J. Elsässer
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA and MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA and MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
82
|
Moore KE, Gozani O. An unexpected journey: lysine methylation across the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1395-403. [PMID: 24561874 DOI: 10.1016/j.bbagrm.2014.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
The dynamic modification of histone proteins by lysine methylation has emerged over the last decade as a key regulator of chromatin functions. In contrast, our understanding of the biological roles for lysine methylation of non-histone proteins has progressed more slowly. Though recently it has attracted less attention, ε-methyl-lysine in non-histone proteins was first observed over 50 years ago. In that time, it has become clear that, like the case for histones, non-histone methylation represents a key and common signaling process within the cell. Recent work suggests that non-histone methylation occurs on hundreds of proteins found in both the nucleus and the cytoplasm, and with important biomedical implications. Technological advances that allow us to identify lysine methylation on a proteomic scale are opening new avenues in the non-histone methylation field, which is poised for dramatic growth. Here, we review historical and recent findings in non-histone lysine methylation signaling, highlight new methods that are expanding opportunities in the field, and discuss outstanding questions and future challenges about the role of this fundamental post-translational modification (PTM).
Collapse
Affiliation(s)
- Kaitlyn E Moore
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
83
|
Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U, Dröge P. Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep 2014; 6:684-97. [PMID: 24508460 DOI: 10.1016/j.celrep.2014.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/26/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022] Open
Abstract
Maintaining genome integrity requires the accurate and complete replication of chromosomal DNA. This is of the utmost importance for embryonic stem cells (ESCs), which differentiate into cells of all lineages, including germ cells. However, endogenous and exogenous factors frequently induce stalling of replication forks in every cell cycle, which can trigger mutations and chromosomal instabilities. We show here that the oncofetal, nonhistone chromatin factor HMGA2 equips cells with a highly effective first-line defense mechanism against endonucleolytic collapse of stalled forks. This fork-stabilizing function most likely employs scaffold formation at branched DNA via multiple DNA-binding domains. Moreover, HMGA2 works independently of other human factors in two heterologous cell systems to prevent DNA strand breaks. This fork chaperone function seemingly evolved to preserve ESC genome integrity. It is hijacked by tumor (stem) cells to also guard their genomes against DNA-damaging agents widely used to treat cancer patients.
Collapse
Affiliation(s)
- Haojie Yu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Bioprocessing Technology Institute, 20 Biopolis Way, 6-01 Centros, Singapore 138668, Singapore
| | - Natalia O Tjokro
- Division of Biomedical Sciences, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90089, USA
| | - Padmapriya Sathiyanathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tian Wei Chew
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Steven D Goodman
- Division of Biomedical Sciences, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90089, USA
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
84
|
Comoglio F, Paro R. Combinatorial modeling of chromatin features quantitatively predicts DNA replication timing in Drosophila. PLoS Comput Biol 2014; 10:e1003419. [PMID: 24465194 PMCID: PMC3900380 DOI: 10.1371/journal.pcbi.1003419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/18/2013] [Indexed: 01/14/2023] Open
Abstract
In metazoans, each cell type follows a characteristic, spatio-temporally regulated DNA replication program. Histone modifications (HMs) and chromatin binding proteins (CBPs) are fundamental for a faithful progression and completion of this process. However, no individual HM is strictly indispensable for origin function, suggesting that HMs may act combinatorially in analogy to the histone code hypothesis for transcriptional regulation. In contrast to gene expression however, the relationship between combinations of chromatin features and DNA replication timing has not yet been demonstrated. Here, by exploiting a comprehensive data collection consisting of 95 CBPs and HMs we investigated their combinatorial potential for the prediction of DNA replication timing in Drosophila using quantitative statistical models. We found that while combinations of CBPs exhibit moderate predictive power for replication timing, pairwise interactions between HMs lead to accurate predictions genome-wide that can be locally further improved by CBPs. Independent feature importance and model analyses led us to derive a simplified, biologically interpretable model of the relationship between chromatin landscape and replication timing reaching 80% of the full model accuracy using six model terms. Finally, we show that pairwise combinations of HMs are able to predict differential DNA replication timing across different cell types. All in all, our work provides support to the existence of combinatorial HM patterns for DNA replication and reveal cell-type independent key elements thereof, whose experimental investigation might contribute to elucidate the regulatory mode of this fundamental cellular process.
Collapse
Affiliation(s)
- Federico Comoglio
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
85
|
Zhang C, Gao S, Molascon AJ, Liu Y, Andrews PC. Quantitative proteomics reveals histone modifications in crosstalk with H3 lysine 27 methylation. Mol Cell Proteomics 2014; 13:749-59. [PMID: 24382802 DOI: 10.1074/mcp.m113.029025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methylation at histone H3 lysine 27 (H3K27me) is an evolutionarily conserved epigenetic mark associated with transcriptional repression and replication elongation. We have previously shown that in Tetrahymena thermophila, a unicellular eukaryote, the histone methyltransferases (HMTs) TXR1 and EZL2 are primarily responsible for H3K27 mono-methylation (H3K27me1) and di-/tri-methylation (H3K27me2/3), respectively. Using (15)N metabolically labeled histones as the internal reference, we quantified global changes in histone post-translational modifications in ΔTXR1 and ΔEZL2 cells, to systematically identify potential crosstalk between H3K27 methylation and other PTMs across all four core histones as well as their variants. Most prominently, we observed hyper-acetylation of histones H2A, H2A.Z, and H4 in their N-terminal domains in response to decreased H3K27 methylation. We also provide additional evidence implicating hyper-acetylation in the DNA damage response pathway in replication-defective ΔTXR1 cells, in apparent contrast to the transcriptional role of hyper-acetylation in ΔEZL2 cells.
Collapse
|
86
|
Labbé RM, Holowatyj A, Yang ZQ. Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res 2013; 6:1-15. [PMID: 24349617 PMCID: PMC3853420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
KDM4 histone demethylases catalyze the removal of methyl marks from histone lysine residues to epigenetically regulate chromatin structure and gene expression. KDM4 expression is tightly regulated to insure proper function in diverse biological processes, such as cellular differentiation. Mounting evidence has shown that disrupting KDM4 expression is implicated in the establishment and progression of multiple diseases including cancer. In particular, genomic regions encoding the KDM4A, B and C genes are often amplified, disrupting normal cellular proliferation. Furthermore, KDM4 demethylases are promising druggable targets. In this review, we highlight the latest advances in characterizing the structures and regulatory mechanisms of KDM4 proteins, as well as our current understanding of their alterations and roles in tumorigenesis. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Roselyne M Labbé
- Karmanos Cancer Institute, Department of Oncology, Wayne State University Detroit, MI 48201, USA
| | - Andreana Holowatyj
- Karmanos Cancer Institute, Department of Oncology, Wayne State University Detroit, MI 48201, USA
| | - Zeng-Quan Yang
- Karmanos Cancer Institute, Department of Oncology, Wayne State University Detroit, MI 48201, USA
| |
Collapse
|
87
|
Li B, Su T, Ferrari R, Li JY, Kurdistani SK. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells. Epigenetics 2013; 9:257-67. [PMID: 24172870 DOI: 10.4161/epi.26870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Biological Chemistry; University of California; Los Angeles, CA USA
| | - Trent Su
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Division of Oral Biology and Medicine; School of Dentistry; University of California; Los Angeles, CA USA
| | - Roberto Ferrari
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Jing-Yu Li
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Molecular Biology Institute; University of California; Los Angeles, CA USA; Department of Pathology and Laboratory Medicine; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| |
Collapse
|
88
|
Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 2013; 38:621-39. [PMID: 24148750 DOI: 10.1016/j.tibs.2013.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
89
|
Sirbu BM, McDonald WH, Dungrawala H, Badu-Nkansah A, Kavanaugh GM, Chen Y, Tabb DL, Cortez D. Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J Biol Chem 2013; 288:31458-67. [PMID: 24047897 DOI: 10.1074/jbc.m113.511337] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both DNA and chromatin need to be duplicated during each cell division cycle. Replication happens in the context of defects in the DNA template and other forms of replication stress that present challenges to both genetic and epigenetic inheritance. The replication machinery is highly regulated by replication stress responses to accomplish this goal. To identify important replication and stress response proteins, we combined isolation of proteins on nascent DNA (iPOND) with quantitative mass spectrometry. We identified 290 proteins enriched on newly replicated DNA at active, stalled, and collapsed replication forks. Approximately 16% of these proteins are known replication or DNA damage response proteins. Genetic analysis indicates that several of the newly identified proteins are needed to facilitate DNA replication, especially under stressed conditions. Our data provide a useful resource for investigators studying DNA replication and the replication stress response and validate the use of iPOND combined with mass spectrometry as a discovery tool.
Collapse
|
90
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 2013; 20:657-61. [PMID: 23739170 DOI: 10.1038/nsmb.2581] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
Histones have two structurally and functionally distinct domains: globular domains forming the nucleosomal core around which DNA is wrapped and unstructured tails protruding from the nucleosomal core. Whereas post-translational modifications (PTMs) in histone tails are well studied, much less is currently known about histone-core PTMs. Many core PTMs map to residues located on the lateral surface of the histone octamer, close to the DNA, and they have the potential to alter intranucleosomal histone-DNA interactions. Here we discuss recent advances in understanding the function of lateral-surface PTMs. Whereas modifications in the histone tails might have limited structural impact on the nucleosome itself and function as signals to recruit specific binding proteins, PTMs in the lateral surface can have a direct structural effect on nucleosome and chromatin dynamics, even in the absence of specific binding proteins, which adds a twist to the debate on the functionality and causality of PTMs.
Collapse
|
92
|
Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 2013; 33:2810-6. [PMID: 23716588 DOI: 10.1128/mcb.00205-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.
Collapse
|
93
|
A small molecule inhibitor of fungal histone acetyltransferase Rtt109. Bioorg Med Chem Lett 2013; 23:2853-9. [PMID: 23587423 DOI: 10.1016/j.bmcl.2013.03.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022]
Abstract
The histone acetyltransferase Rtt109 is the sole enzyme responsible for acetylation of histone H3 lysine 56 (H3K56) in fungal organisms. Loss of Rtt109 renders fungal cells extremely sensitive to genotoxic agents, and prevents pathogenesis in several clinically important species. Here, via a high throughput chemical screen of >300,000 compounds, we discovered a chemical inhibitor of Rtt109 that does not inhibit other acetyltransferase enzymes. This compound inhibits Rtt109 regardless of which histone chaperone cofactor protein (Asf1 or Vps75) is present, and appears to inhibit Rtt109 via a tight-binding, uncompetitive mechanism.
Collapse
|
94
|
Jack APM, Bussemer S, Hahn M, Pünzeler S, Snyder M, Wells M, Csankovszki G, Solovei I, Schotta G, Hake SB. H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization. PLoS One 2013; 8:e51765. [PMID: 23451023 PMCID: PMC3579866 DOI: 10.1371/journal.pone.0051765] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Histone lysine (K) methylation has been shown to play a fundamental role in modulating chromatin architecture and regulation of gene expression. Here we report on the identification of histone H3K56, located at the pivotal, nucleosome DNA entry/exit point, as a novel methylation site that is evolutionary conserved. We identify trimethylation of H3K56 (H3K56me3) as a modification that is present during all cell cycle phases, with the exception of S-phase, where it is underrepresented on chromatin. H3K56me3 is a novel heterochromatin mark, since it is enriched at pericentromeres but not telomeres and is thereby similar, but not identical, to the localization of H3K9me3 and H4K20me3. Possibly due to H3 sequence similarities, Suv39h enzymes, responsible for trimethylation of H3K9, also affect methylation of H3K56. Similarly, we demonstrate that trimethylation of H3K56 is removed by members of the JMJD2 family of demethylases that also target H3K9me3. Furthermore, we identify and characterize mouse mJmjd2E and its human homolog hKDM4L as novel, functionally active enzymes that catalyze the removal of two methyl groups from trimethylated H3K9 and K56. H3K56me3 is also found in C. elegans, where it co-localizes with H3K9me3 in most, but not all, tissues. Taken together, our findings raise interesting questions regarding how methylation of H3K9 and H3K56 is regulated in different organisms and their functional roles in heterochromatin formation and/or maintenance.
Collapse
Affiliation(s)
- Antonia P. M. Jack
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Silva Bussemer
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Hahn
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Pünzeler
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martha Snyder
- Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Wells
- Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gyorgyi Csankovszki
- Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Irina Solovei
- LMU Biozentrum, Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Gunnar Schotta
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra B. Hake
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
95
|
Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R. G9a, a multipotent regulator of gene expression. Epigenetics 2012; 8:16-22. [PMID: 23257913 DOI: 10.4161/epi.23331] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation of histone and non-histone substrates by the methyltransferase G9a is mostly associated with transcriptional repression. Recent studies, however, have highlighted its role as an activator of gene expression through mechanisms that are independent of its methyltransferase activity. Here we review the growing repertoire of molecular mechanisms and substrates through which G9a regulates gene expression. We also discuss emerging evidence for its wide-ranging functions in development, pluripotency, cellular differentiation and cell cycle regulation that underscore the complexity of its functions. The deregulated expression of G9a in cancers and other human pathologies suggests that it may be a viable therapeutic target in various diseases.
Collapse
Affiliation(s)
- Shilpa Rani Shankar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
96
|
Green EM, Morrison AJ, Gozani O. New marks on the block: Set5 methylates H4 lysines 5, 8 and 12. Nucleus 2012; 3:335-9. [PMID: 22688645 DOI: 10.4161/nucl.20695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The methylation of lysine residues in the N-terminal tails of histones is a highly conserved mechanism that regulates critical functions of chromatin, such as the control of gene expression. Using a biochemical approach, we recently identified new methylation marks on the histone H4 tail in budding yeast at lysines 5, 8 and 12, catalyzed by the previously-uncharacterized enzyme Set5. Genetic studies revealed that Set5 functions in cellular processes that also rely on the global chromatin modifying complexes COMPASS and NuA4, which methylate H3 lysine 4 and acetylate H4 lysines 5, 8 and 12, respectively. The identification of new methylation events on the H4 tail raises many intriguing questions regarding their function and their interaction with known histone modifications. Here, we analyze the insights gained about the new enzyme Set5 and the implications for new functionality added to the H4 tail.
Collapse
Affiliation(s)
- Erin M Green
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
97
|
Abstract
In the current issue of Molecular Cell, Yu et al. (2012) establish H3K56 monomethylation (H3K56me1) as a new mammalian chromatin mark, imposed by the G9a methyltransferase and recognized by the replication clamp PCNA.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
98
|
Niimi A, Chambers AL, Downs JA, Lehmann AR. A role for chromatin remodellers in replication of damaged DNA. Nucleic Acids Res 2012; 40:7393-403. [PMID: 22638582 PMCID: PMC3424576 DOI: 10.1093/nar/gks453] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In eukaryotic cells, replication past damaged sites in DNA is regulated by the ubiquitination of proliferating cell nuclear antigen (PCNA). Little is known about how this process is affected by chromatin structure. There are two isoforms of the Remodels the Structure of Chromatin (RSC) remodelling complex in yeast. We show that deletion of RSC2 results in a dramatic reduction in the level of PCNA ubiquitination after DNA-damaging treatments, whereas no such effect was observed after deletion of RSC1. Similarly, depletion of the BAF180 component of the corresponding PBAF (Polybromo BRG1 (Brahma-Related Gene 1) Associated Factor) complex in human cells led to a similar reduction in PCNA ubiquitination. Remarkably, we found that depletion of BAF180 resulted after UV-irradiation, in a reduction not only of ubiquitinated PCNA but also of chromatin-associated unmodified PCNA and Rad18 (the E3 ligase that ubiquitinates PCNA). This was accompanied by a modest decrease in fork progression. We propose a model to account for these findings that postulates an involvement of PBAF in repriming of replication downstream from replication forks blocked at sites of DNA damage. In support of this model, chromatin immunoprecipitation data show that the RSC complex in yeast is present in the vicinity of the replication forks, and by extrapolation, this is also likely to be the case for the PBAF complex in human cells.
Collapse
Affiliation(s)
- Atsuko Niimi
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | | | | | | |
Collapse
|