51
|
Abstract
The E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the β2-strand and the α1-helix parallel to the β2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule.
Collapse
|
52
|
Blakeslee WW, Wysoczynski CL, Fritz KS, Nyborg JK, Churchill MEA, McKinsey TA. Class I HDAC inhibition stimulates cardiac protein SUMOylation through a post-translational mechanism. Cell Signal 2014; 26:2912-20. [PMID: 25220405 DOI: 10.1016/j.cellsig.2014.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022]
Abstract
Lysine residues are subject to a multitude of reversible post-translational modifications, including acetylation and SUMOylation. In the heart, enhancement of lysine acetylation or SUMOylation using histone deacetylase (HDAC) inhibitors or SUMO-1 gene transfer, respectively, has been shown to be cardioprotective. Here, we addressed whether there is crosstalk between lysine acetylation and SUMOylation in the heart. Treatment of cardiomyocytes and cardiac fibroblasts with pharmacological inhibitors of HDAC catalytic activity robustly increased conjugation of SUMO-1, but not SUMO-2/3, to several high molecular weight proteins in both cell types. The use of a battery of selective HDAC inhibitors and short hairpin RNAs demonstrated that HDAC2, which is a class I HDAC, is the primary HDAC isoform that controls cardiac protein SUMOylation. HDAC inhibitors stimulated protein SUMOylation in the absence of de novo gene transcription or protein synthesis, revealing a post-translational mechanism of HDAC inhibitor action. HDAC inhibition did not suppress the activity of de-SUMOylating enzymes, suggesting that increased protein SUMOylation in HDAC inhibitor-treated cells is due to stimulation of SUMO-1 conjugation rather than blockade of SUMO-1 cleavage. Consistent with this, multiple components of the SUMO conjugation machinery were capable of being acetylated in vitro. These findings reveal a novel role for reversible lysine acetylation in the control of SUMOylation in the heart, and suggest that cardioprotective actions of HDAC inhibitors are in part due to stimulation of protein SUMO-1-ylation in myocytes and fibroblasts.
Collapse
Affiliation(s)
- Weston W Blakeslee
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina L Wysoczynski
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Nyborg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Mair E A Churchill
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
53
|
Nayak A, Viale-Bouroncle S, Morsczeck C, Muller S. The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Mol Cell 2014; 55:47-58. [PMID: 24930734 DOI: 10.1016/j.molcel.2014.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/02/2013] [Accepted: 04/22/2014] [Indexed: 01/22/2023]
Abstract
The ubiquitin-like SUMO system regulates gene expression, but the molecular insights into this process are incomplete. We show that the SUMO-specific isopeptidase SENP3 controls H3K4 methylation by regulating histone-modifying SET1/MLL complexes. SET1/MLL complexes are composed of a histone methyltransferase and the regulatory components WDR5, RbBP5, Ash2L, and DPY-30. MLL1/MLL2 complexes contain menin as additional component and are particularly important for the activation of HOX genes. We demonstrate that SENP3 is associated with MLL1/MLL2 complexes and catalyzes deSUMOylation of RbBP5. This is required for activation of a subset of HOX genes, including the developmental regulator DLX3. In the absence of SENP3, the association of menin and Ash2L with the DLX3 gene is impaired, leading to decreased H3K4 methylation and reduced recruitment of active RNA polymerase II. Importantly, the SENP3-DLX3 pathway dictates osteogenic differentiation of human stem cells, thus delineating the importance of balanced SUMOylation for epigenetic control of gene expression programs.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Sandra Viale-Bouroncle
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Stefan Muller
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
54
|
Yao Q, Liu BQ, Li H, McGarrigle D, Xing BW, Zhou MT, Wang Z, Zhang JJ, Huang XY, Guo L. C-terminal Src kinase (Csk)-mediated phosphorylation of eukaryotic elongation factor 2 (eEF2) promotes proteolytic cleavage and nuclear translocation of eEF2. J Biol Chem 2014; 289:12666-78. [PMID: 24648518 DOI: 10.1074/jbc.m113.546481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinase C-terminal Src kinase (Csk) was originally purified as a kinase for phosphorylating Src and other Src family kinases. The phosphorylation of a C-terminal tyrosine residue of Src family kinases suppresses their kinase activity. Therefore, most physiological studies regarding Csk function have been focused on Csk as a negative regulator of Src family tyrosine kinases and as a potential tumor suppressor. Paradoxically, the protein levels of Csk were elevated in some human carcinomas. In this report, we show that eukaryotic elongation factor 2 (eEF2) is a new protein substrate of Csk and could locate in the nucleus. We demonstrate that Csk-mediated phosphorylation of eEF2 has no effect on its cytoplasmic function in regulating protein translation. However, phosphorylation of eEF2 enhances its proteolytic cleavage and the nuclear translocation of the cleaved eEF2 through a SUMOylation-regulated process. Furthermore, we show that cleaved fragments of eEF2 can induce nuclear morphological changes and aneuploidy similar to those in cancer cells, suggesting that there is an additional mechanism for Csk in tumorigenesis through regulation of eEF2 subcellular localization.
Collapse
Affiliation(s)
- Qi Yao
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Gamell C, Jan Paul P, Haupt Y, Haupt S. PML tumour suppression and beyond: Therapeutic implications. FEBS Lett 2014; 588:2653-62. [DOI: 10.1016/j.febslet.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/24/2023]
|
56
|
Abstract
Posttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.
Collapse
Affiliation(s)
- Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH, Heidelberg D-69120, Germany.
| | | |
Collapse
|
57
|
Santiago A, Li D, Zhao LY, Godsey A, Liao D. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Mol Biol Cell 2013; 24:2739-52. [PMID: 23825024 PMCID: PMC3756925 DOI: 10.1091/mbc.e12-10-0771] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022] Open
Abstract
Chromosomal region maintenance 1 (CRM1) mediates p53 nuclear export. Although p53 SUMOylation promotes its nuclear export, the underlying mechanism is unclear. Here we show that tethering of a small, ubiquitin-like modifier (SUMO) moiety to p53 markedly increases its cytoplasmic localization. SUMO attachment to p53 does not affect its oligomerization, suggesting that subunit dissociation required for exposing p53's nuclear export signal (NES) is unnecessary for p53 nuclear export. Surprisingly, SUMO-mediated p53 nuclear export depends on the SUMO-interacting motif (SIM)-binding pocket of SUMO-1. The CRM1 C-terminal domain lacking the NES-binding groove interacts with tetrameric p53, and the proper folding of the p53 core domain, rather than the presence of the N- or C-terminal tails, appears to be important for p53-CRM1 interaction. The CRM1 Huntington, EF3, a subunit of PP2A, and TOR1 9 (HEAT9) loop, which regulates GTP-binding nuclear protein Ran binding and cargo release, contains a prototypical SIM. Remarkably, disruption of this SIM in conjunction with a mutated SIM-binding groove of SUMO-1 markedly enhances the binding of CRM1 to p53-SUMO-1 and their accumulation in the nuclear pore complexes (NPCs), as well as their persistent association in the cytoplasm. We propose that SUMOylation of a CRM1 cargo such as p53 at the NPCs unlocks the HEAT9 loop of CRM1 to facilitate the disassembly of the transporting complex and cargo release to the cytoplasm.
Collapse
Affiliation(s)
- Aleixo Santiago
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Dawei Li
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
- Department of Urology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Adam Godsey
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
58
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
59
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
60
|
The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 2013; 122:475-85. [DOI: 10.1007/s00412-013-0429-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
61
|
Watts FZ. Starting and stopping SUMOylation. What regulates the regulator? Chromosoma 2013; 122:451-63. [PMID: 23812602 DOI: 10.1007/s00412-013-0422-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/17/2022]
Abstract
A large number of proteins are modified post-translationally by the ubiquitin-like protein (Ubl) SUMO. This process, known as sumoylation, regulates the function, localisation and activity of target proteins as part of normal cellular metabolism, e.g., during development, and through the cell cycle, as well as in response to a range of stresses. In order to be effective, the sumoylation pathway itself must also be regulated. This review describes how the SUMOylation process is regulated. In particular, regulation of the SUMO conjugation and deconjugation machinery at the level of transcription and by post-translational modifications is discussed.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK,
| |
Collapse
|
62
|
Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, Johnson ES, Brown GW, Andrews BJ, Boone C, Giaever G, Nislow C, Raught B. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. ACTA ACUST UNITED AC 2013; 201:145-63. [PMID: 23547032 PMCID: PMC3613684 DOI: 10.1083/jcb.201210019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple large-scale analyses in yeast implicate SUMO chain function in the
maintenance of higher-order chromatin structure and transcriptional repression
of environmental stress response genes. Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form
oligomeric “chains,” but the biological functions of these
superstructures are not well understood. Here, we created mutant yeast strains
unable to synthesize SUMO chains (smt3allR) and
subjected them to high-content microscopic screening, synthetic genetic array
(SGA) analysis, and high-density transcript profiling to perform the first
global analysis of SUMO chain function. This comprehensive assessment identified
144 proteins with altered localization or intensity in
smt3allR cells, 149 synthetic genetic
interactions, and 225 mRNA transcripts (primarily consisting of stress- and
nutrient-response genes) that displayed a >1.5-fold increase in
expression levels. This information-rich resource strongly implicates SUMO
chains in the regulation of chromatin. Indeed, using several different
approaches, we demonstrate that SUMO chains are required for the maintenance of
normal higher-order chromatin structure and transcriptional repression of
environmental stress response genes in budding yeast.
Collapse
Affiliation(s)
- Tharan Srikumar
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Everett RD, Boutell C, Hale BG. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 2013; 11:400-11. [PMID: 23624814 DOI: 10.1038/nrmicro3015] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modification by members of the small ubiquitin-like modifier (SUMO) family of proteins is important for the regulation of many cellular proteins and pathways. As obligate parasites, viruses must engage with the host cell throughout their replication cycles, and it is therefore unsurprising that there are many examples of interplay between viral proteins and the host sumoylation system. This article reviews recent advances in this field, summarizing information on sumoylated viral proteins, the varied ways in which viruses engage with SUMO-related pathways, and the consequences of these interactions for viral replication and engagement with innate and intrinsic immunity.
Collapse
Affiliation(s)
- Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK.
| | | | | |
Collapse
|
64
|
Monribot-Villanueva J, Juárez-Uribe RA, Palomera-Sánchez Z, Gutiérrez-Aguiar L, Zurita M, Kennison JA, Vázquez M. TnaA, an SP-RING protein, interacts with Osa, a subunit of the chromatin remodeling complex BRAHMA and with the SUMOylation pathway in Drosophila melanogaster. PLoS One 2013; 8:e62251. [PMID: 23620817 PMCID: PMC3631182 DOI: 10.1371/journal.pone.0062251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Tonalli A (TnaA) is a Drosophila melanogaster protein with an XSPRING domain. The XSPRING domain harbors an SP-RING zinc-finger, which is characteristic of proteins with SUMO E3 ligase activity. TnaA is required for homeotic gene expression and is presumably involved in the SUMOylation pathway. Here we analyzed some aspects of the TnaA location in embryo and larval stages and its genetic and biochemical interaction with SUMOylation pathway proteins. We describe that there are at least two TnaA proteins (TnaA130 and TnaA123) differentially expressed throughout development. We show that TnaA is chromatin-associated at discrete sites on polytene salivary gland chromosomes of third instar larvae and that tna mutant individuals do not survive to adulthood, with most dying as third instar larvae or pupae. The tna mutants that ultimately die as third instar larvae have an extended life span of at least 4 to 15 days as other SUMOylation pathway mutants. We show that TnaA physically interacts with the SUMO E2 conjugating enzyme Ubc9, and with the BRM complex subunit Osa. Furthermore, we show that tna and osa interact genetically with SUMOylation pathway components and individuals carrying mutations for these genes show a phenotype that can be the consequence of misexpression of developmental-related genes.
Collapse
Affiliation(s)
- Juan Monribot-Villanueva
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - R. Alejandro Juárez-Uribe
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Zoraya Palomera-Sánchez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lucía Gutiérrez-Aguiar
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - James A. Kennison
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
65
|
Multiple crosstalks between mRNA biogenesis and SUMO. Chromosoma 2013; 122:387-99. [PMID: 23584125 DOI: 10.1007/s00412-013-0408-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/10/2013] [Accepted: 03/13/2013] [Indexed: 12/26/2022]
Abstract
mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.
Collapse
|
66
|
Tang MK, Liang YJ, Chan JYH, Wong SW, Chen E, Yao Y, Gan J, Xiao L, Leung HC, Kung HF, Wang H, Lee KKH. Promyelocytic leukemia (PML) protein plays important roles in regulating cell adhesion, morphology, proliferation and migration. PLoS One 2013; 8:e59477. [PMID: 23555679 PMCID: PMC3605454 DOI: 10.1371/journal.pone.0059477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation.
Collapse
Affiliation(s)
- Mei Kuen Tang
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- * E-mail: (MKT); (KKHL)
| | - Yong Jia Liang
- Joint JNU-CUHK Key Laboratories for Regenerative Medicine, Ministry of Education, JiNan University, Guangzhou, China
| | - John Yeuk Hon Chan
- Joint JNU-CUHK Key Laboratories for Regenerative Medicine, Ministry of Education, JiNan University, Guangzhou, China
| | - Sing Wan Wong
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Elve Chen
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yao Yao
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Jingyi Gan
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lihai Xiao
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hin Cheung Leung
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hsiang Fu Kung
- Division of Infectious Diseases, School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hua Wang
- Division of Infectious Diseases, School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kenneth Ka Ho Lee
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- Joint JNU-CUHK Key Laboratories for Regenerative Medicine, Ministry of Education, JiNan University, Guangzhou, China
- * E-mail: (MKT); (KKHL)
| |
Collapse
|
67
|
Abstract
A major challenge in nuclear organization is the packaging of DNA into dynamic chromatin structures that can respond to changes in the transcriptional requirements of the cell. Posttranslational protein modifications, of histones and other chromatin-associated factors, are essential regulators of chromatin dynamics. In this Review, we summarize studies demonstrating that posttranslational modification of proteins by small ubiquitin-related modifiers (SUMOs) regulates chromatin structure and function at multiple levels and through a variety of mechanisms to influence gene expression and maintain genome integrity.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
68
|
A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol Cell Biol 2013; 33:1487-502. [PMID: 23382074 DOI: 10.1128/mcb.00971-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although many functions and targets have been attributed to the histone and protein deacetylase SIRT1, a comprehensive analysis of SIRT1 binding proteins yielding a high-confidence interaction map has not been established. Using a comparative statistical analysis of binding partners, we have assembled a high-confidence SIRT1 interactome. Employing this method, we identified the deubiquitinating enzyme ubiquitin-specific protease 22 (USP22), a component of the deubiquitinating module (DUBm) of the SAGA transcriptional coactivating complex, as a SIRT1-interacting partner. We found that this interaction is highly specific, requires the ZnF-UBP domain of USP22, and is disrupted by the inactivating H363Y mutation within SIRT1. Moreover, we show that USP22 is acetylated on multiple lysine residues and that alteration of a single lysine (K129) within the ZnF-UBP domain is sufficient to alter interaction of the DUBm with the core SAGA complex. Furthermore, USP22-mediated recruitment of SIRT1 activity promotes the deacetylation of individual SAGA complex components. Our results indicate an important role of SIRT1-mediated deacetylation in regulating the formation of DUBm subcomplexes within the larger SAGA complex.
Collapse
|
69
|
Cheng X, Kao HY. Post-translational modifications of PML: consequences and implications. Front Oncol 2013; 2:210. [PMID: 23316480 PMCID: PMC3539660 DOI: 10.3389/fonc.2012.00210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/16/2012] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) predominantly resides in a structurally distinct sub-nuclear domain called PML nuclear bodies. Emerging evidences indicated that PML actively participates in many aspects of cellular processes, but the molecular mechanisms underlying PML regulation in response to stress and environmental cues are not complete. Post-translational modifications, such as SUMOylation, phosphorylation, acetylation, and ubiquitination of PML add a complex layer of regulation to the physiological function of PML. In this review, we discuss the fast-moving horizon of post-translational modifications targeting PML.
Collapse
Affiliation(s)
- Xiwen Cheng
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- University Hospital of Cleveland, Case Western Reserve UniversityCleveland, OH, USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- University Hospital of Cleveland, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
70
|
Schmitz ML, Grishina I. Regulation of the tumor suppressor PML by sequential post-translational modifications. Front Oncol 2012; 2:204. [PMID: 23293771 PMCID: PMC3533183 DOI: 10.3389/fonc.2012.00204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023] Open
Abstract
Post-translational modifications (PTMs) regulate multiple biological functions of the promyelocytic leukemia (PML) protein and also the fission, disassembly, and rebuilding of PML nuclear bodies (PML-NBs) during the cell cycle. Pathway-specific PML modification patterns ensure proper signal output from PML-NBs that suit the specific functional requirements. Here we comprehensively review the signaling pathways and enzymes that modify PML and also the oncogenic PML-RARα fusion protein. Many PTMs occur in a hierarchical and timely organized fashion. Phosphorylation or acetylation constitutes typical starting points for many PML modifying events, while degradative ubiquitination is an irreversible end point of the modification cascade. As this hierarchical organization of PTMs frequently turns phosphorylation events as primordial events, kinases or phosphatases regulating PML phosphorylation may be interesting drug targets to manipulate the downstream modifications and thus the stability and function of PML or PML-RARα.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Department of Biochemistry, Medical Faculty, Justus Liebig University, German Center for Lung Research Giessen, Germany
| | | |
Collapse
|
71
|
Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 2012; 151:807-820. [PMID: 23122649 DOI: 10.1016/j.cell.2012.10.021] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/14/2012] [Accepted: 10/10/2012] [Indexed: 01/01/2023]
Abstract
Protein modification by SUMO affects a wide range of protein substrates. Surprisingly, although SUMO pathway mutants display strong phenotypes, the function of individual SUMO modifications is often enigmatic, and SUMOylation-defective mutants commonly lack notable phenotypes. Here, we use DNA double-strand break repair as an example and show that DNA damage triggers a SUMOylation wave, leading to simultaneous multisite modifications of several repair proteins of the same pathway. Catalyzed by a DNA-bound SUMO ligase and triggered by single-stranded DNA, SUMOylation stabilizes physical interactions between the proteins. Notably, only wholesale elimination of SUMOylation of several repair proteins significantly affects the homologous recombination pathway by considerably slowing down DNA repair. Thus, SUMO acts synergistically on several proteins, and individual modifications only add up to efficient repair. We propose that SUMOylation may thus often target a protein group rather than individual proteins, whereas localized modification enzymes and highly specific triggers ensure specificity.
Collapse
|
72
|
Cremona CA, Sarangi P, Zhao X. Sumoylation and the DNA damage response. Biomolecules 2012; 2:376-388. [PMID: 24926426 PMCID: PMC4030838 DOI: 10.3390/biom2030376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 02/07/2023] Open
Abstract
The cellular response to DNA damage involves multiple pathways that work together to promote survival in the face of increased genotoxic lesions. Proteins in these pathways are often posttranslationally modified, either by small groups such as phosphate, or by protein modifiers such as ubiquitin or SUMO. The recent discovery of many more SUMO substrates that are modified at higher levels in damage conditions adds weight to the accumulated evidence suggesting that sumoylation plays an important functional role in the DNA damage response. Here we discuss the significance of DNA damage-induced sumoylation, the effects of sumoylation on repair proteins, sumoylation dynamics, and crosstalk with other posttranslational modifications in the DNA damage response.
Collapse
Affiliation(s)
- Catherine A. Cremona
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (C.A.C.); (P.S.)
| | - Prabha Sarangi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (C.A.C.); (P.S.)
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (C.A.C.); (P.S.)
- Author to whom correspondence should be addressed; ; Tel.: +1-212-639-5582; Fax: +1-646-422-2062
| |
Collapse
|
73
|
Mazur MJ, van den Burg HA. Global SUMO Proteome Responses Guide Gene Regulation, mRNA Biogenesis, and Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2012. [PMID: 23060889 DOI: 10.3389/fpls.2012.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Small Ubiquitin-like MOdifier (SUMO) is a key regulator of abiotic stress, disease resistance, and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins (HSPs), transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (de)acetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by plant transcription factors (TFs) containing an (ERF)-associated Amphiphilic Repression (EAR) motif. These TFs are not necessarily themselves a SUMO target. Conversely, SUMO acetylation (Ac) prevents binding of downstream partners by blocking binding of their SUMO-interaction peptide motifs to Ac-SUMO. In addition, SUMO acetylation has emerged as a mechanism to recruit specifically bromodomains. Bromodomains are generally linked with gene activation. These findings strengthen the idea of a bi-directional sumo-acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (a)biotic stress in plants.
Collapse
Affiliation(s)
- Magdalena J Mazur
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | | |
Collapse
|
74
|
Mazur MJ, van den Burg HA. Global SUMO Proteome Responses Guide Gene Regulation, mRNA Biogenesis, and Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2012; 3:215. [PMID: 23060889 PMCID: PMC3443746 DOI: 10.3389/fpls.2012.00215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/23/2012] [Indexed: 05/13/2023]
Abstract
Small Ubiquitin-like MOdifier (SUMO) is a key regulator of abiotic stress, disease resistance, and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins (HSPs), transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (de)acetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by plant transcription factors (TFs) containing an (ERF)-associated Amphiphilic Repression (EAR) motif. These TFs are not necessarily themselves a SUMO target. Conversely, SUMO acetylation (Ac) prevents binding of downstream partners by blocking binding of their SUMO-interaction peptide motifs to Ac-SUMO. In addition, SUMO acetylation has emerged as a mechanism to recruit specifically bromodomains. Bromodomains are generally linked with gene activation. These findings strengthen the idea of a bi-directional sumo-acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (a)biotic stress in plants.
Collapse
Affiliation(s)
- Magdalena J. Mazur
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- *Correspondence: Harrold A. van den Burg, Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. box 94215, 1090 GE Amsterdam, Netherlands. e-mail:
| |
Collapse
|