51
|
Zhang P, Chaturvedi CP, Tremblay V, Cramet M, Brunzelle JS, Skiniotis G, Brand M, Shilatifard A, Couture JF. A phosphorylation switch on RbBP5 regulates histone H3 Lys4 methylation. Genes Dev 2015; 29:123-8. [PMID: 25593305 PMCID: PMC4298132 DOI: 10.1101/gad.254870.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The methyltransferase activity of MLL1 is allosterically regulated by a four-subunit complex composed of WDR5, RbBP5, Ash2L, and DPY30 (also referred to as WRAD). Zhang et al. show that in WRAD, a concave surface of the Ash2L SPRY domain binds to RbBP5. This Ash2L/RbBP5 interface is important for heterodimer formation, stimulation of MLL1 catalytic activity, and erythroid cell terminal differentiation. A phosphorylation switch on RbBP5 stimulates WRAD complex formation and significantly increases KMT2 enzyme methylation rates. The methyltransferase activity of the trithorax group (TrxG) protein MLL1 found within its COMPASS (complex associated with SET1)-like complex is allosterically regulated by a four-subunit complex composed of WDR5, RbBP5, Ash2L, and DPY30 (also referred to as WRAD). We report structural evidence showing that in WRAD, a concave surface of the Ash2L SPIa and ryanodine receptor (SPRY) domain binds to a cluster of acidic residues, referred to as the D/E box, in RbBP5. Mutational analysis shows that residues forming the Ash2L/RbBP5 interface are important for heterodimer formation, stimulation of MLL1 catalytic activity, and erythroid cell terminal differentiation. We also demonstrate that a phosphorylation switch on RbBP5 stimulates WRAD complex formation and significantly increases KMT2 (lysine [K] methyltransferase 2) enzyme methylation rates. Overall, our findings provide structural insights into the assembly of the WRAD complex and point to a novel regulatory mechanism controlling the activity of the KMT2/COMPASS family of lysine methyltransferases.
Collapse
Affiliation(s)
- Pamela Zhang
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Chandra-Prakash Chaturvedi
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H 8L6, Canada
| | - Veronique Tremblay
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Myriam Cramet
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Joseph S Brunzelle
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Georgios Skiniotis
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H 8L6, Canada
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois 60611, USA
| | - Jean-François Couture
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
52
|
Wijeweera A, Haj M, Feldman A, Pnueli L, Luo Z, Melamed P. Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:328-41. [DOI: 10.1016/j.bbagrm.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 12/12/2022]
|
53
|
Shinsky SA, Monteith KE, Viggiano S, Cosgrove MS. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. J Biol Chem 2015; 290:6361-75. [PMID: 25561738 DOI: 10.1074/jbc.m114.627646] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo.
Collapse
Affiliation(s)
- Stephen A Shinsky
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Kelsey E Monteith
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Susan Viggiano
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Michael S Cosgrove
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
54
|
Joo HY, Dai Q, Jones AE, Zhai L, Wang H. In vitro and in vivo assays for studying histone ubiquitination and deubiquitination. Methods Mol Biol 2015; 1288:213-30. [PMID: 25827882 DOI: 10.1007/978-1-4939-2474-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Posttranslational histone modifications play important roles in regulating chromatin structure and function (Rando, Curr Opin Genet Dev 22:148-155, 2012; Zentner and Henikoff, Nat Struct Mol Biol 20:259-266, 2013). One example of such modifications is histone ubiquitination, which occurs predominately on H2A and H2B. Recent studies have highlighted important regulatory roles of H2A ubiquitination in Polycomb group protein-mediated gene silencing and DNA damage repair (de Napoles et al., Dev Cell 7:663-676, 2004; Wang et al., Nature 431:873-878, 2004; Doil et al., Cell 136:435-446, 2009; Gatti et al., Cell Cycle 11:2538-2544, 2012; Mattiroli et al., Cell 150:1182-1195, 2012; Stewart et al., Cell 136:420-434, 2009; Bergink et al., Genes Dev 20:1343-1352, 2006; Facchino et al., J Neurosci 30:10096-10111, 2010; Ginjala et al., Mol Cell Biol 31:1972-1982, 2011; Ismail et al., J Cell Biol 191:45-60, 2010), H2B ubiquitination in transcription initiation and elongation (Xiao et al., Mol Cell Biol 25:637-651, 2005; Kao et al., Genes Dev 18:184-195, 2004; Pavri et al., Cell 125:703-717, 2006; Kim et al., Cell 137:459-471, 2009), pre-mRNA splicing (Jung et al. Genome Res 22:1026-1035, 2012; Shieh et al., BMC Genomics 12:627, 2011; Zhang et al., Genes Dev 27:1581-1595, 2013), nucleosome stabilities (Fleming et al., Mol Cell 31:57-66, 2008; Chandrasekharan et al., Proc Natl Acad Sci U S A 106:16686-16691, 2009), H3 methylation (Sun and Allis, Nature 418:104-108, 2002; Briggs et al., Nature 418:498, 2002; Dover et al., J Biol Chem 277:28368-28371, 2002; Ng et al., J Biol Chem 277:34655-34657, 2002), and DNA methylation (Sridhar et al., Nature 447:735-738, 2007). Here we describe methods for in vitro histone ubiquitination and deubiquitination assays. We also describe approaches to investigate the in vivo function of putative histone ubiquitin ligase(s) and deubiquitinase(s). These experimental procedures are largely based on our studies in mammalian cells. These methods should provide useful tools for studying this bulky histone modification.
Collapse
Affiliation(s)
- Heui-Yun Joo
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 20th Street South, Birmingham, 35294, AL, USA
| | | | | | | | | |
Collapse
|
55
|
Ballabio E, Milne TA. Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins. Mol Cell Oncol 2014; 1:e955330. [PMID: 27308325 PMCID: PMC4905190 DOI: 10.1080/23723548.2014.955330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers.
Collapse
Affiliation(s)
- Erica Ballabio
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| | - Thomas A Milne
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| |
Collapse
|
56
|
Vlaming H, van Welsem T, de Graaf EL, Ontoso D, Altelaar AFM, San-Segundo PA, Heck AJR, van Leeuwen F. Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo. EMBO Rep 2014; 15:1077-84. [PMID: 25141862 DOI: 10.15252/embr.201438793] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Histone H2B ubiquitination is a dynamic modification that promotes methylation of histone H3K79 and H3K4. This crosstalk is important for the DNA damage response and has been implicated in cancer. Here, we show that in engineered yeast strains, ubiquitins tethered to every nucleosome promote H3K79 and H3K4 methylation from a proximal as well as a more distal site, but only if in a correct orientation. This plasticity indicates that the exact location of the attachment site, the native ubiquitin-lysine linkage and ubiquitination cycles are not critical for trans-histone crosstalk in vivo. The flexibility in crosstalk also indicates that other ubiquitination events may promote H3 methylation.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik L de Graaf
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre Utrecht University, Utrecht, the Netherlands
| | - David Ontoso
- Instituto de Biología Funcional y Genómica CSIC/University of Salamanca, Salamanca, Spain
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre Utrecht University, Utrecht, the Netherlands
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica CSIC/University of Salamanca, Salamanca, Spain
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre Utrecht University, Utrecht, the Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
57
|
Li L, Wang L, Song P, Geng X, Liang X, Zhou M, Wang Y, Chen C, Jia J, Zeng J. Critical role of histone demethylase RBP2 in human gastric cancer angiogenesis. Mol Cancer 2014; 13:81. [PMID: 24716659 PMCID: PMC4113143 DOI: 10.1186/1476-4598-13-81] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background The molecular mechanisms responsible for angiogenesis and abnormal expression of angiogenic factors in gastric cancer, including vascular endothelial growth factor (VEGF), remain unclear. The histone demethylase retinoblastoma binding protein 2 (RBP2) is involved in gastric tumorgenesis by inhibiting the expression of cyclin-dependent kinase inhibitors (CDKIs). Methods The expression of RBP2, VEGF, CD31, CD34 and Ki67 was assessed in 30 human gastric cancer samples and normal control samples. We used quantitative RT-PCR, western blot analysis, ELISA, tube-formation assay and colony-formation assay to characterize the change in VEGF expression and associated biological activities induced by RBP2 silencing or overexpression. Luciferase assay and ChIP were used to explore the direct regulation of RBP2 on the promoter activity of VEGF. Nude mice and RBP2-targeted mutant mice were used to detect the role of RBP2 in VEGF expression and angiogenesis in vivo. Results RBP2 and VEGF were both overexpressed in human gastric cancer tissue, with greater microvessel density (MVD) and cell proliferation as compared with normal tissue. In gastric epithelial cell lines, RBP2 overexpression significantly promoted the expression of VEGF and the growth and angiogenesis of the cells, while RBP2 knockdown had the reverse effect. RBP2 directly bound to the promoter of VEGF to regulate its expression by histone H3K4 demethylation. The subcutis of nude mice transfected with BGC-823 cells with RBP2 knockdown showed reduced VEGF expression and MVD, with reduced carcinogenesis and cell proliferation. In addition, the gastric epithelia of RBP2 mutant mice with increased H3K4 trimethylation showed reduced VEGF expression and MVD. Conclusions The promotion of gastric tumorigenesis by RBP2 was significantly associated with transactivation of VEGF expression and elevated angiogenesis. Overexpression of RBP2 and activation of VEGF might play important roles in human gastric cancer development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiping Zeng
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, P, R, China.
| |
Collapse
|
58
|
Fierz B. Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 2014; 9:495-504. [PMID: 24497444 DOI: 10.1002/cmdc.201300487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Indexed: 11/11/2022]
Abstract
Posttranslational modifications (PTMs) of chromatin are involved in gene regulation, thereby contributing to cell differentiation, lineage determination, and organism development. Discrete chromatin states are established by the action of a large set of enzymes that catalyze the deposition, propagation, and removal of histone PTMs, thereby modulating gene expression. Given their central role in determining and maintaining cellular phenotype, as well as in controlling chromatin processes such as DNA repair, the dysregulation of these enzymes can have serious consequences, and can result in cancer and neurodegenerative diseases. Thus, such chromatin regulator proteins are promising drug targets. However, they are often present in large, modular protein complexes that specifically recognize target chromatin regions and exhibit intricate regulation through preexisting histone marks. This renders the study of their enzymatic mechanisms complex. Recent developments in the chemical production of defined chromatin substrates show great promise for improving our understanding of the activity of chromatin regulator complexes at the molecular level. Herein I discuss examples highlighting the application of synthetic chromatin to study the enzymatic mechanisms and regulatory pathways of these crucial protein complexes in detail, with potential implications for assay development in pharmacological research.
Collapse
Affiliation(s)
- Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| |
Collapse
|
59
|
Fuchs G, Oren M. Writing and reading H2B monoubiquitylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:694-701. [PMID: 24412854 DOI: 10.1016/j.bbagrm.2014.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 01/27/2023]
Abstract
Monoubiquitylation of histone H2B (H2Bub1), catalyzed by the heterodimeric ubiquitin ligase complex RNF20/40, regulates multiple molecular and biological processes. The addition of a large ubiquitin moiety to the small H2B is believed to change the biochemical features of the chromatin. H2B monoubiquitylation alters nucleosome stability, nucleosome reassembly and higher order compaction of the chromatin. While these effects explain some of the direct roles of H2Bub1, there is growing evidence that H2Bub1 can also regulate multiple DNA-templated processes indirectly, by recruitment of specific factors ("readers") to the chromatin. H2Bub1 readers mediate much of the effect of H2Bub1 on histone crosstalk, transcriptional outcome and probably other chromatin-related activities. Here we summarize the current knowledge about H2Bub1-specific readers and their role in various biological processes. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
60
|
Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell 2014; 53:247-61. [PMID: 24389101 DOI: 10.1016/j.molcel.2013.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/03/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research.
Collapse
|
61
|
Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2013; 2:e01503. [PMID: 24368734 PMCID: PMC3869375 DOI: 10.7554/elife.01503] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear. In this study, we identify MLL4 (KMT2D) as a major mammalian H3K4 mono- and di-methyltransferase with partial functional redundancy with MLL3 (KMT2C). Using adipogenesis and myogenesis as model systems, we show that MLL4 exhibits cell-type- and differentiation-stage-specific genomic binding and is predominantly localized on enhancers. MLL4 co-localizes with lineage-determining transcription factors (TFs) on active enhancers during differentiation. Deletion of Mll4 markedly decreases H3K4me1/2, H3K27ac, Mediator and Polymerase II levels on enhancers and leads to severe defects in cell-type-specific gene expression and cell differentiation. Together, these findings identify MLL4 as a major mammalian H3K4 mono- and di-methyltransferase essential for enhancer activation during cell differentiation. DOI:http://dx.doi.org/10.7554/eLife.01503.001 Almost every cell in a human body carries the same genes, but not every cell will express all of these genes as proteins. As different types of cells, such as brain, liver, fat or muscle cells, develop, they will express different genes; or they will express the same genes, but at different times and in different amounts. Enhancers are short stretches of DNA that boost the amount of protein that is produced when a gene is expressed, and they are particularly important for those genes that are expressed differently between cell types. Enhancers bolster expression of a gene by interacting with the DNA nearby. Even genes separated from enhancers by a long stretches of DNA can benefit because the way that DNA is tightly packed inside the nucleus means that two distant sequences can actually end up close together. Proteins called transcription factors will bind to enhancers and recruit the cell’s protein ‘machinery’ required to express nearby genes. Enhancers can be identified by specific chemical marks associated with their DNA, but little is known about the enzymes that leave these marks in mammals. Moreover, it is not clear which genes are influenced by these marks. Now, by examining fat cells and muscle cells as they mature, Lee et al. have found that an enzyme called MLL4 is responsible for adding chemical marks to enhancers in both humans and mice. Further, MLL4 is required both to allow cells to specialize into different cell types, and to boost the expression of genes that are specific to each type of mature cells. Since faulty MLL4 has been implicated in several cancers and developmental defects, the findings of Lee et al. may lead to a better understanding of these diseases. DOI:http://dx.doi.org/10.7554/eLife.01503.002
Collapse
Affiliation(s)
- Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Tang Z, Chen WY, Shimada M, Nguyen UTT, Kim J, Sun XJ, Sengoku T, McGinty RK, Fernandez JP, Muir TW, Roeder RG. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 2013; 154:297-310. [PMID: 23870121 PMCID: PMC4023349 DOI: 10.1016/j.cell.2013.06.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/21/2013] [Accepted: 06/18/2013] [Indexed: 12/13/2022]
Abstract
The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53.
Collapse
Affiliation(s)
- Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F, Durocher D. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 2013; 499:50-4. [PMID: 23760478 PMCID: PMC3955401 DOI: 10.1038/nature12318] [Citation(s) in RCA: 540] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/24/2013] [Indexed: 12/18/2022]
Abstract
53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Marella D. Canny
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Cristina Escribano-Díaz
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Alexandre Orthwein
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Charles C.Y. Leung
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Hao Huang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Marie-Claude Landry
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Julianne Kitevski-LeBlanc
- Department of Molecular Genetics, University of Toronto, Ontario, M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Ontario, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Ontario, M5S 3E1, Canada
| | - Sylvie M. Noordermeer
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Frank Sicheri
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Ontario, M5S 3E1, Canada
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|