51
|
Wu Z, Wang Y, Lim J, Liu B, Li Y, Vartak R, Stankiewicz T, Montgomery S, Lu B. Ubiquitination of ABCE1 by NOT4 in Response to Mitochondrial Damage Links Co-translational Quality Control to PINK1-Directed Mitophagy. Cell Metab 2018; 28:130-144.e7. [PMID: 29861391 PMCID: PMC5989559 DOI: 10.1016/j.cmet.2018.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/13/2017] [Accepted: 05/04/2018] [Indexed: 10/14/2022]
Abstract
Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Junghyun Lim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Boxiang Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanping Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rasika Vartak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Trisha Stankiewicz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
52
|
Zurita Rendón O, Fredrickson EK, Howard CJ, Van Vranken J, Fogarty S, Tolley ND, Kalia R, Osuna BA, Shen PS, Hill CP, Frost A, Rutter J. Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun 2018; 9:2197. [PMID: 29875445 PMCID: PMC5989216 DOI: 10.1038/s41467-018-04564-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cells employ the ribosome-associated quality control complex (RQC) to maintain homeostasis despite defects that cause ribosomes to stall. The RQC comprises the E3 ubiquitin ligase Ltn1p, the ATPase Cdc48p, Rqc1p, and Rqc2p. Upon ribosome stalling and splitting, the RQC assembles on the 60S species containing unreleased peptidyl-tRNA (60S:peptidyl–tRNA). Ltn1p and Rqc1p facilitate ubiquitination of the incomplete nascent chain, marking it for degradation. Rqc2p stabilizes Ltn1p on the 60S and recruits charged tRNAs to the 60S to catalyze elongation of the nascent protein with carboxy-terminal alanine and threonine extensions (CAT tails). By mobilizing the nascent chain, CAT tailing can expose lysine residues that are hidden in the exit tunnel, thereby supporting efficient ubiquitination. If the ubiquitin–proteasome system is overwhelmed or unavailable, CAT-tailed nascent chains can aggregate in the cytosol or within organelles like mitochondria. Here we identify Vms1p as a tRNA hydrolase that releases stalled polypeptides engaged by the RQC. The ribosome-associated quality control complex (RQC) functions to disassemble stalled ribosomes. Here the authors find that the tRNA hydrolase Vms1 is involved in the release of nascent peptide from stalled ribosomes.
Collapse
Affiliation(s)
- Olga Zurita Rendón
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Eric K Fredrickson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, 94158, USA
| | - Jonathan Van Vranken
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Sarah Fogarty
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Neal D Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Raghav Kalia
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, 94158, USA
| | - Beatriz A Osuna
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Peter S Shen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Adam Frost
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA. .,California Institute for Quantitative Biomedical Research, San Francisco, CA, 94158, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Jared Rutter
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA. .,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
53
|
Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci Rep 2018; 8:7317. [PMID: 29743537 PMCID: PMC5943263 DOI: 10.1038/s41598-018-25724-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step. Under ER stress conditions, Derlin family proteins (Derlins), which are components of ER-associated degradation, reroute specific ER-targeting proteins to the cytosol. Newly synthesized rerouted polypeptides are degraded via the cytosolic chaperone Bag6 and the AAA-ATPase p97 in the ubiquitin-proteasome system. However, the mechanisms by which ER-targeting proteins are rerouted from the ER translocation pathway to the cytosolic degradation pathway and how the E3 ligase ubiquitinates ERpQC substrates remain unclear. Here, we show that ERpQC substrates are captured by the carboxyl-terminus region of Derlin-1 and ubiquitinated by the HRD1 E3 ubiquitin ligase prior to degradation. Moreover, HRD1 forms a large ERpQC-related complex composed of Sec61α and Derlin-1 during ER stress. These findings indicate that the association of the degradation factor HRD1 with the translocon and the rerouting factor Derlin-1 may be necessary for the smooth and effective clearance of ERpQC substrates.
Collapse
|
54
|
Verma R, Reichermeier KM, Burroughs AM, Oania RS, Reitsma JM, Aravind L, Deshaies RJ. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature 2018; 557:446-451. [PMID: 29632312 PMCID: PMC6226276 DOI: 10.1038/s41586-018-0022-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/08/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Rati Verma
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Amgen Discovery Research, Thousand Oaks, CA, USA
| | - Kurt M Reichermeier
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Genentech, South San Francisco, CA, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Robert S Oania
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Raymond J Deshaies
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Amgen Discovery Research, Thousand Oaks, CA, USA.
| |
Collapse
|
55
|
Zuzow N, Ghosh A, Leonard M, Liao J, Yang B, Bennett EJ. Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches. Mol Biol Cell 2018. [PMID: 29540532 PMCID: PMC5935074 DOI: 10.1091/mbc.e17-12-0714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous genetic and biochemical studies from Saccharomyces cerevisiae have identified a critical ribosome-associated quality control complex (RQC) that facilitates resolution of stalled ribosomal complexes. While components of the mammalian RQC have been examined in vitro, a systematic characterization of RQC protein interactions in mammalian cells has yet to be described. Here we utilize both proximity-labeling proteomic approaches, BioID and APEX, and traditional affinity-based strategies to both identify interacting proteins of mammalian RQC members and putative substrates for the RQC resident E3 ligase, Ltn1. Surprisingly, validation studies revealed that a subset of substrates are ubiquitylated by Ltn1 in a regulatory manner that does not result in subsequent substrate degradation. We demonstrate that Ltn1 catalyzes the regulatory ubiquitylation of ribosomal protein S6 kinase 1 and 2 (RPS6KA1, RPS6KA3). Further, loss of Ltn1 function results in hyperactivation of RSK1/2 signaling without impacting RSK1/2 protein turnover. These results suggest that Ltn1-mediated RSK1/2 ubiquitylation is inhibitory and establishes a new role for Ltn1 in regulating mitogen-activated kinase signaling via regulatory RSK1/2 ubiquitylation. Taken together, our results suggest that mammalian RQC interactions are difficult to observe and may be more transient than the homologous complex in S. cerevisiae and that Ltn1 has RQC-independent functions.
Collapse
Affiliation(s)
- Nathan Zuzow
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Arit Ghosh
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jeffrey Liao
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Bing Yang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
56
|
Feng Q, Shao S. In vitro reconstitution of translational arrest pathways. Methods 2018; 137:20-36. [DOI: 10.1016/j.ymeth.2017.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
|
57
|
Limoncelli KA, Merrikh CN, Moore MJ. ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay. RNA (NEW YORK, N.Y.) 2017; 23:1946-1960. [PMID: 28956756 PMCID: PMC5689013 DOI: 10.1261/rna.061671.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In budding yeast, inactivating mutations within the 40S ribosomal subunit decoding center lead to 18S rRNA clearance by a quality control mechanism known as nonfunctional 18S rRNA decay (18S NRD). We previously showed that 18S NRD is functionally related to No-Go mRNA Decay (NGD), a pathway for clearing translation complexes stalled on aberrant mRNAs. Whereas the NGD factors Dom34p and Hbs1p contribute to 18S NRD, their genetic deletion (either singly or in combination) only partially stabilizes mutant 18S rRNA. Here we identify Asc1p (aka RACK1) and Rps3p, both stable 40S subunit components, as additional 18S NRD factors. Complete stabilization of mutant 18S rRNA in dom34Δ;asc1Δ and hbs1Δ;asc1Δ strains indicates the existence of two genetically separable 18S NRD pathways. A small region of the Rps3p C-terminal tail known to be subject to post-translational modification is also crucial for 18S NRD. We combine these findings with the effects of mutations in the 5' → 3' and 3' → 5' decay machinery to propose a model wherein multiple targeting and decay pathways kinetically contribute to 18S NRD.
Collapse
Affiliation(s)
- Kelly A Limoncelli
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Christopher N Merrikh
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
58
|
Simms CL, Yan LL, Zaher HS. Ribosome Collision Is Critical for Quality Control during No-Go Decay. Mol Cell 2017; 68:361-373.e5. [PMID: 28943311 DOI: 10.1016/j.molcel.2017.08.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
59
|
Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 2017; 8:159. [PMID: 28757607 PMCID: PMC5534433 DOI: 10.1038/s41467-017-00188-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/08/2017] [Indexed: 11/08/2022] Open
Abstract
Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.Several protein quality control mechanisms are in place to trigger the rapid degradation of aberrant polypeptides and mRNAs. Here the authors describe a mechanism of ribosome-mediated quality control that involves the ubiquitination of ribosomal proteins by the E3 ubiquitin ligase Hel2/RQT1.
Collapse
|
60
|
Kostova KK, Hickey KL, Osuna BA, Hussmann JA, Frost A, Weinberg DE, Weissman JS. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 2017; 357:414-417. [PMID: 28751611 PMCID: PMC5673106 DOI: 10.1126/science.aam7787] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/04/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates.
Collapse
Affiliation(s)
- Kamena K Kostova
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey L Hickey
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey A Hussmann
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
61
|
Osuna BA, Howard CJ, KC S, Frost A, Weinberg DE. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. eLife 2017; 6:e27949. [PMID: 28718767 PMCID: PMC5562442 DOI: 10.7554/elife.27949] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities-Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation-can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins.
Collapse
Affiliation(s)
- Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Subheksha KC
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Sandler Faculty Fellows Program, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
62
|
Joazeiro CAP. Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol 2017; 33:343-368. [PMID: 28715909 DOI: 10.1146/annurev-cellbio-111315-125249] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.
Collapse
Affiliation(s)
- Claudio A P Joazeiro
- ZMBH, University of Heidelberg, 69120 Heidelberg, Germany; .,The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
63
|
Defenouillère Q, Fromont-Racine M. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr Genet 2017; 63:997-1005. [PMID: 28528489 DOI: 10.1007/s00294-017-0708-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023]
Abstract
Proteostasis in eukaryotes is maintained by compartment-specific quality control pathways, which enable the refolding or the degradation of defective polypeptides to prevent the toxicity that may arise from their aggregation. Among these processes, translational protein quality control is performed by the Ribosome-bound Quality Control complex (RQC), which recognizes nascent peptides translated from aberrant mRNAs, polyubiquitylates these aberrant peptides, extracts them from the stalled 60S subunit and finally escorts them to the proteasome for degradation. In this review, we focus on the mechanism of action of the RQC complex from stalled 60S binding to aberrant peptide delivery to the proteasome and describe the cellular consequences of a deficiency in the RQC pathway, such as aberrant protein aggregation. In addition, this review covers the recent discoveries concerning the role of cytosolic chaperones, as well as Tom1, to prevent the accumulation of aberrant protein aggregates in case of a deficiency in the RQC pathway.
Collapse
Affiliation(s)
- Quentin Defenouillère
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, 75724, Paris Cedex 15, France. .,Membrane Trafficking, Ubiquitin and Signaling, Institut Jacques Monod, UMR7592 CNRS/Université Paris-Diderot, 15 Rue Hélène Brion, Bât. Buffon, 75205, Paris Cedex 13, France.
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, 75724, Paris Cedex 15, France
| |
Collapse
|
64
|
Sitron CS, Park JH, Brandman O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA (NEW YORK, N.Y.) 2017; 23:798-810. [PMID: 28223409 PMCID: PMC5393187 DOI: 10.1261/rna.060897.117] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 05/17/2023]
Abstract
Premature arrest of protein synthesis within the open reading frame elicits a protective response that degrades the incomplete nascent chain. In this response, arrested 80S ribosomes are split into their large and small subunits, allowing assembly of the ribosome quality control complex (RQC), which targets nascent chains for degradation. How the cell recognizes arrested nascent chains among the vast pool of actively translating polypeptides is poorly understood. We systematically examined translation arrest and modification of nascent chains in Saccharomyces cerevisiae to characterize the steps that couple arrest to RQC targeting. We focused our analysis on two poorly understood 80S ribosome-binding proteins previously implicated in the response to failed translation, Asc1 and Hel2, as well as a new component of the pathway, Slh1, that we identified here. We found that premature arrest at ribosome stalling sequences still occurred robustly in the absence of Asc1, Hel2, and Slh1. However, these three factors were required for the RQC to modify the nascent chain. We propose that Asc1, Hel2, and Slh1 target arresting ribosomes and that this targeting event is a precondition for the RQC to engage the incomplete nascent chain and facilitate its degradation.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Joseph H Park
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
65
|
Defenouillère Q, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation. Mol Biol Cell 2017; 28:1165-1176. [PMID: 28298488 PMCID: PMC5415013 DOI: 10.1091/mbc.e16-10-0746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
Abstract
The RQC complex involved in protein quality control mechanisms also exists as a ribosome-unbound complex during the escort of aberrant peptides to the proteasome. The E3 ubiquitin ligase Tom1 is a newly identified partner of this light version of the RQC complex and is required for aggregate prevention. Protein quality control mechanisms eliminate defective polypeptides to ensure proteostasis and to avoid the toxicity of protein aggregates. In eukaryotes, the ribosome-bound quality control (RQC) complex detects aberrant nascent peptides that remain stalled in 60S ribosomal particles due to a dysfunction in translation termination. The RQC complex polyubiquitylates aberrant polypeptides and recruits a Cdc48 hexamer to extract them from 60S particles in order to escort them to the proteasome for degradation. Whereas the steps from stalled 60S recognition to aberrant peptide polyubiquitylation by the RQC complex have been described, the mechanism leading to proteasomal degradation of these defective translation products remains unknown. We show here that the RQC complex also exists as a ribosome-unbound complex during the escort of aberrant peptides to the proteasome. In addition, we identify a new partner of this light version of the RQC complex, the E3 ubiquitin ligase Tom1. Tom1 interacts with aberrant nascent peptides and is essential to limit their accumulation and aggregation in the absence of Rqc1; however, its E3 ubiquitin ligase activity is not required. Taken together, these results reveal new roles for Tom1 in protein quality control, aggregate prevention, and, therefore, proteostasis maintenance.
Collapse
Affiliation(s)
- Quentin Defenouillère
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France.,Sorbonne Universités, UPMC Paris 6, Complexité Du Vivant, 75252 Paris Cedex 05, France
| | - Abdelkader Namane
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| | - John Mouaikel
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| | - Alain Jacquier
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| |
Collapse
|
66
|
Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A, Bennett EJ. ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation. Mol Cell 2017; 65:751-760.e4. [PMID: 28132843 DOI: 10.1016/j.molcel.2016.12.026] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
Ribosomes that experience terminal stalls during translation are resolved by ribosome-associated quality control (QC) pathways that oversee mRNA and nascent chain destruction and recycle ribosomal subunits. The proximal factors that sense stalled ribosomes and initiate mammalian ribosome-associated QC events remain undefined. We demonstrate that the ZNF598 ubiquitin ligase and the 40S ribosomal protein RACK1 help to resolve poly(A)-induced stalled ribosomes. They accomplish this by regulating distinct and overlapping regulatory 40S ribosomal ubiquitylation events. ZNF598 primarily mediates regulatory ubiquitylation of RPS10 and RPS20, whereas RACK1 regulates RPS2, RPS3, and RPS20 ubiquitylation. Gain or loss of ZNF598 function or mutations that block RPS10 or RPS20 ubiquitylation result in defective resolution of stalled ribosomes and subsequent readthrough of poly(A)-containing stall sequences. Together, our results indicate that ZNF598, RACK1, and 40S regulatory ubiquitylation plays a pivotal role in mammalian ribosome-associated QC pathways.
Collapse
Affiliation(s)
- Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raymond Mak
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey Liao
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amitkumar Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
67
|
Juszkiewicz S, Hegde RS. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol Cell 2017; 65:743-750.e4. [PMID: 28065601 PMCID: PMC5316413 DOI: 10.1016/j.molcel.2016.11.039] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
Diverse cellular stressors have been observed to trigger site-specific ubiquitination on several ribosomal proteins. However, the ubiquitin ligases, biochemical consequences, and physiologic pathways linked to these modifications are not known. Here, we show in mammalian cells that the ubiquitin ligase ZNF598 is required for ribosomes to terminally stall during translation of poly(A) sequences. ZNF598-mediated stalling initiated the ribosome-associated quality control (RQC) pathway for degradation of nascent truncated proteins. Biochemical ubiquitination reactions identified two sites of mono-ubiquitination on the 40S protein eS10 as the primary ribosomal target of ZNF598. Cells lacking ZNF598 activity or containing ubiquitination-resistant eS10 ribosomes failed to stall efficiently on poly(A) sequences. In the absence of stalling, read-through of poly(A) produces a poly-lysine tag, which might alter the localization and solubility of the associated protein. Thus, ribosome ubiquitination can modulate translation elongation and impacts co-translational quality control to minimize production of aberrant proteins. Poly(A), not poly-basic tracts, are the main trigger of ribosome stalling in mammals The ubiquitin ligase ZNF598 is required to stall ribosomes during poly(A) translation ZNF598 primarily mono-ubiquitinates two lysines on the 40S ribosomal protein eS10 ZNF598 deletion or mutation of its eS10 target permits increased poly(A) translation
Collapse
|
68
|
Inada T. The Ribosome as a Platform for mRNA and Nascent Polypeptide Quality Control. Trends Biochem Sci 2017; 42:5-15. [DOI: 10.1016/j.tibs.2016.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
69
|
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature 2016; 537:328-38. [PMID: 27629639 DOI: 10.1038/nature19947] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
70
|
Doamekpor SK, Lee JW, Hepowit NL, Wu C, Charenton C, Leonard M, Bengtson MH, Rajashankar KR, Sachs MS, Lima CD, Joazeiro CAP. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. Proc Natl Acad Sci U S A 2016; 113:E4151-60. [PMID: 27385828 PMCID: PMC4961192 DOI: 10.1073/pnas.1605951113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1's substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1's intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD's role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation.
Collapse
Affiliation(s)
- Selom K Doamekpor
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Joong-Won Lee
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Nathaniel L Hepowit
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | - Clement Charenton
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Marilyn Leonard
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Mario H Bengtson
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Kanagalaghatta R Rajashankar
- Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258;
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065; Howard Hughes Medical Institute, Sloan-Kettering Institute, New York, NY 10065;
| | - Claudio A P Joazeiro
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg D-69120, Germany; Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance (ZMBH-DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
71
|
Pfeffer S, Dudek J, Zimmermann R, Förster F. Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane. Biochim Biophys Acta Gen Subj 2016; 1860:2122-9. [PMID: 27373685 DOI: 10.1016/j.bbagen.2016.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND In eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex. SCOPE OF REVIEW The aim of this review is to summarize the current structural knowledge about protein translocon components in mammals. MAJOR CONCLUSIONS Various structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation. GENERAL SIGNIFICANCE The protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany
| | - Johanna Dudek
- Saarland University, Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Richard Zimmermann
- Saarland University, Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| | - Friedrich Förster
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany; Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
72
|
Shcherbik N, Chernova TA, Chernoff YO, Pestov DG. Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Res 2016; 44:6840-52. [PMID: 27325745 PMCID: PMC5001609 DOI: 10.1093/nar/gkw566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022] Open
Abstract
Cotranslational degradation of polypeptide nascent chains plays a critical role in quality control of protein synthesis and the rescue of stalled ribosomes. In eukaryotes, ribosome stalling triggers release of 60S subunits with attached nascent polypeptides, which undergo ubiquitination by the E3 ligase Ltn1 and proteasomal degradation facilitated by the ATPase Cdc48. However, the identity of factors acting upstream in this process is less clear. Here, we examined how the canonical release factors Sup45–Sup35 (eRF1–eRF3) and their paralogs Dom34-Hbs1 affect the total population of ubiquitinated nascent chains associated with yeast ribosomes. We found that the availability of the functional release factor complex Sup45–Sup35 strongly influences the amount of ubiquitinated polypeptides associated with 60S ribosomal subunits, while Dom34-Hbs1 generate 60S-associated peptidyl-tRNAs that constitute a relatively minor fraction of Ltn1 substrates. These results uncover two separate pathways that target nascent polypeptides for Ltn1-Cdc48-mediated degradation and suggest that in addition to canonical termination on stop codons, eukaryotic release factors contribute to cotranslational protein quality control.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30322, USA Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Dimitri G Pestov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
73
|
Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3' end of nonstop mRNA. Sci Rep 2016; 6:28234. [PMID: 27312062 PMCID: PMC4911565 DOI: 10.1038/srep28234] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
Dom34-Hbs1 stimulates degradation of aberrant mRNAs lacking termination codons by dissociating ribosomes stalled at the 3′ ends, and plays crucial roles in Nonstop Decay (NSD) and No-Go Decay (NGD). In the dom34Δ mutant, nonstop mRNA is degraded by sequential endonucleolytic cleavages induced by a stalled ribosome at the 3′ end. Here, we report that ribosome-associated Asc1/RACK1 is required for the endonucleolytic cleavage of nonstop mRNA by stalled ribosome at the 3′ end of mRNA in dom34Δ mutant cells. Asc1/RACK1 facilitates degradation of truncated GFP-Rz mRNA in the absence of Dom34 and exosome-dependent decay. Asc1/RACK1 is required for the sequential endonucleolytic cleavages by the stalled ribosome in the dom34Δ mutant, depending on its ribosome-binding activity. The levels of peptidyl-tRNA derived from nonstop mRNA were elevated in dom34Δasc1Δ mutant cells, and overproduction of nonstop mRNA inhibited growth of mutant cells. E3 ubiquitin ligase Ltn1 degrades the arrest products from truncated GFP-Rz mRNA in dom34Δ and dom34Δasc1Δ mutant cells, and Asc1/RACK1 represses the levels of substrates for Ltn1-dependent degradation. These indicate that ribosome-associated Asc1/RACK1 facilitates endonucleolytic cleavage of nonstop mRNA by stalled ribosomes and represses the levels of aberrant products even in the absence of Dom34. We propose that Asc1/RACK1 acts as a fail-safe in quality control for nonstop mRNA.
Collapse
|
74
|
Simms CL, Thomas EN, Zaher HS. Ribosome-based quality control of mRNA and nascent peptides. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27193249 DOI: 10.1002/wrna.1366] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/06/2022]
Abstract
Quality control processes are widespread and play essential roles in detecting defective molecules and removing them in order to maintain organismal fitness. Aberrant messenger RNA (mRNA) molecules, unless properly managed, pose a significant hurdle to cellular proteostasis. Often mRNAs harbor premature stop codons, possess structures that present a block to the translational machinery, or lack stop codons entirely. In eukaryotes, the three cytoplasmic mRNA-surveillance processes, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD), evolved to cope with these aberrant mRNAs, respectively. Nonstop mRNAs and mRNAs that inhibit translation elongation are especially problematic as they sequester valuable ribosomes from the translating ribosome pool. As a result, in addition to RNA degradation, NSD and NGD are intimately coupled to ribosome rescue in all domains of life. Furthermore, protein products produced from all three classes of defective mRNAs are more likely to malfunction. It is not surprising then that these truncated nascent protein products are subject to degradation. Over the past few years, many studies have begun to document a central role for the ribosome in initiating the RNA and protein quality control processes. The ribosome appears to be responsible for recognizing the target mRNAs as well as for recruiting the factors required to carry out the processes of ribosome rescue and nascent protein decay. WIREs RNA 2017, 8:e1366. doi: 10.1002/wrna.1366 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Erica N Thomas
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
75
|
Ribosome-associated protein quality control. Nat Struct Mol Biol 2016; 23:7-15. [PMID: 26733220 DOI: 10.1038/nsmb.3147] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.
Collapse
|
76
|
Toompuu M, Kärblane K, Pata P, Truve E, Sarmiento C. ABCE1 is essential for S phase progression in human cells. Cell Cycle 2016; 15:1234-47. [PMID: 26985706 DOI: 10.1080/15384101.2016.1160972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
ABCE1 is a highly conserved protein universally present in eukaryotes and archaea, which is crucial for the viability of different organisms. First identified as RNase L inhibitor, ABCE1 is currently recognized as an essential translation factor involved in several stages of eukaryotic translation and ribosome biogenesis. The nature of vital functions of ABCE1, however, remains unexplained. Here, we study the role of ABCE1 in human cell proliferation and its possible connection to translation. We show that ABCE1 depletion by siRNA results in a decreased rate of cell growth due to accumulation of cells in S phase, which is accompanied by inefficient DNA synthesis and reduced histone mRNA and protein levels. We infer that in addition to the role in general translation, ABCE1 is involved in histone biosynthesis and DNA replication and therefore is essential for normal S phase progression. In addition, we analyze whether ABCE1 is implicated in transcript-specific translation via its association with the eIF3 complex subunits known to control the synthesis of cell proliferation-related proteins. The expression levels of a few such targets regulated by eIF3A, however, were not consistently affected by ABCE1 depletion.
Collapse
Affiliation(s)
- Marina Toompuu
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Kairi Kärblane
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Pille Pata
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Erkki Truve
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Cecilia Sarmiento
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| |
Collapse
|
77
|
Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 2016; 531:191-5. [DOI: 10.1038/nature16973] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
|
78
|
Abstract
Secreted and integral membrane proteins compose up to one-third of the biological proteome. These proteins contain hydrophobic signals that direct their translocation across or insertion into the lipid bilayer by the Sec61 protein-conducting channel. The molecular basis of how hydrophobic signals within a nascent polypeptide trigger channel opening is not understood. Here, we used cryo-electron microscopy to determine the structure of an active Sec61 channel that has been opened by a signal sequence. The signal supplants helix 2 of Sec61α, which triggers a rotation that opens the central pore both axially across the membrane and laterally toward the lipid bilayer. Comparisons with structures of Sec61 in other states suggest a pathway for how hydrophobic signals engage the channel to gain access to the lipid bilayer.
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
79
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
80
|
Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature 2015; 524:493-496. [PMID: 26245381 PMCID: PMC4591471 DOI: 10.1038/nature14896] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022]
Abstract
Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.
Collapse
Affiliation(s)
- Alan Brown
- MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sichen Shao
- MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason Murray
- MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | | |
Collapse
|
81
|
Voorhees RM, Hegde RS. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 2015; 4. [PMID: 26158507 PMCID: PMC4497383 DOI: 10.7554/elife.07975] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 12/11/2022] Open
Abstract
The universally conserved signal recognition particle (SRP) is essential for the biogenesis of most integral membrane proteins. SRP scans the nascent chains of translating ribosomes, preferentially engaging those with hydrophobic targeting signals, and delivers these ribosome-nascent chain complexes to the membrane. Here, we present structures of native mammalian SRP-ribosome complexes in the scanning and engaged states. These structures reveal the near-identical SRP architecture of these two states, show many of the SRP-ribosome interactions at atomic resolution, and suggest how the polypeptide-binding M domain selectively engages hydrophobic signals. The scanning M domain, pre-positioned at the ribosomal exit tunnel, is auto-inhibited by a C-terminal amphipathic helix occluding its hydrophobic binding groove. Upon engagement, the hydrophobic targeting signal displaces this amphipathic helix, which then acts as a protective lid over the signal. Biochemical experiments suggest how scanning and engagement are coordinated with translation elongation to minimize exposure of hydrophobic signals during membrane targeting. DOI:http://dx.doi.org/10.7554/eLife.07975.001 Proteins are long chain-like molecules built from smaller building blocks, called amino acids, by a large molecular machine known as a ribosome. Although all proteins are assembled inside cells, some of them must be delivered to the outside or inserted into cell membranes. It is important to understand how this selective delivery system works because secreted proteins (i.e., those delivered outside) and membrane-embedded proteins are essential for cells to communicate with their surroundings. Proteins destined for secretion or membrane insertion contain characteristic stretches of amino acids that act as a targeting signal for delivery to the membrane. These targeting signals are recognized by the ‘signal recognition particle’ (or SRP for short), a large complex found in all living organisms. The SRP has the task of finding ribosomes that are assembling proteins with a targeting signal, and then taking them to the membrane. The protein being assembled can then either cross the membrane for secretion by the cell, or get embedded within the membrane. So, how can the SRP scan the broad range of proteins that are made by the ribosome and engage with only those containing targeting signals? Voorhees and Hegde investigated this question by analyzing SRPs bound to ribosomes that were at different stages of building a membrane protein. The experiment was devised so that SRP would be in two different states: in the first state, the SRP was scanning for its targeting signal and, in the second, it was engaged with the targeting signal. Voorhees and Hegde took many thousands of pictures of these samples using a technique called cryo-electron microscopy, and reconstructed the three-dimensional structures of both states. This revealed fine details of how SRP positions itself immediately next to the part of the ribosome where newly formed protein chains emerge. From here, the SRP scans the protein until the targeting signal emerges and then it engages with the protein. Engaging the targeting signal just as it emerges from the ribosome is probably important because targeting signals tend to aggregate if they are exposed to the contents of a cell. The new structures show how SRP cradles the targeting signal inside a binding groove and covers it with a protective lid to minimize its risk of aggregation. The next challenges are to figure out how SRP chooses which ribosomes to scan, and how it releases the targeting signal when it has delivered it to the membrane. DOI:http://dx.doi.org/10.7554/eLife.07975.002
Collapse
|
82
|
Crowder JJ, Geigges M, Gibson RT, Fults ES, Buchanan BW, Sachs N, Schink A, Kreft SG, Rubenstein EM. Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins. J Biol Chem 2015; 290:18454-66. [PMID: 26055716 DOI: 10.1074/jbc.m115.663559] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant nonstop proteins arise from translation of mRNA molecules beyond the coding sequence into the 3'-untranslated region. If a stop codon is not encountered, translation continues into the poly(A) tail, resulting in C-terminal appendage of a polylysine tract and a terminally stalled ribosome. In Saccharomyces cerevisiae, the ubiquitin ligase Rkr1/Ltn1 has been implicated in the proteasomal degradation of soluble cytosolic nonstop and translationally stalled proteins. Rkr1 is essential for cellular fitness under conditions associated with increased prevalence of nonstop proteins. Mutation of the mammalian homolog causes significant neurological pathology, suggesting broad physiological significance of ribosome-associated quality control. It is not known whether and how soluble or transmembrane nonstop and translationally stalled proteins targeted to the endoplasmic reticulum (ER) are detected and degraded. We generated and characterized model soluble and transmembrane ER-targeted nonstop and translationally stalled proteins. We found that these proteins are indeed subject to proteasomal degradation. We tested three candidate ubiquitin ligases (Rkr1 and ER-associated Doa10 and Hrd1) for roles in regulating abundance of these proteins. Our results indicate that Rkr1 plays the primary role in targeting the tested model ER-targeted nonstop and translationally stalled proteins for degradation. These data expand the catalog of Rkr1 substrates and highlight a previously unappreciated role for this ubiquitin ligase at the ER membrane.
Collapse
Affiliation(s)
- Justin J Crowder
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Marco Geigges
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ryan T Gibson
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Eric S Fults
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Bryce W Buchanan
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Nadine Sachs
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Schink
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan G Kreft
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Eric M Rubenstein
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| |
Collapse
|
83
|
The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat Struct Mol Biol 2015; 22:470-5. [PMID: 25984971 DOI: 10.1038/nsmb.3034] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/22/2015] [Indexed: 01/05/2023]
Abstract
The increasing prevalence of multidrug-resistant pathogenic bacteria is making current antibiotics obsolete. Proline-rich antimicrobial peptides (PrAMPs) display potent activity against Gram-negative bacteria and thus represent an avenue for antibiotic development. PrAMPs from the oncocin family interact with the ribosome to inhibit translation, but their mode of action has remained unclear. Here we have determined a structure of the Onc112 peptide in complex with the Thermus thermophilus 70S ribosome at a resolution of 3.1 Å by X-ray crystallography. The Onc112 peptide binds within the ribosomal exit tunnel and extends toward the peptidyl transferase center, where it overlaps with the binding site for an aminoacyl-tRNA. We show biochemically that the binding of Onc112 blocks and destabilizes the initiation complex, thus preventing entry into the elongation phase. Our findings provide a basis for the future development of this class of potent antimicrobial agents.
Collapse
|
84
|
Preissler S, Reuther J, Koch M, Scior A, Bruderek M, Frickey T, Deuerling E. Not4-dependent translational repression is important for cellular protein homeostasis in yeast. EMBO J 2015; 34:1905-24. [PMID: 25971775 DOI: 10.15252/embj.201490194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/12/2015] [Indexed: 11/09/2022] Open
Abstract
Translation of aberrant or problematic mRNAs can cause ribosome stalling which leads to the production of truncated or defective proteins. Therefore, cells evolved cotranslational quality control mechanisms that eliminate these transcripts and target arrested nascent polypeptides for proteasomal degradation. Here we show that Not4, which is part of the multifunctional Ccr4-Not complex in yeast, associates with polysomes and contributes to the negative regulation of protein synthesis. Not4 is involved in translational repression of transcripts that cause transient ribosome stalling. The absence of Not4 affected global translational repression upon nutrient withdrawal, enhanced the expression of arrested nascent polypeptides and caused constitutive protein folding stress and aggregation. Similar defects were observed in cells with impaired mRNA decapping protein function and in cells lacking the mRNA decapping activator and translational repressor Dhh1. The results suggest a role for Not4 together with components of the decapping machinery in the regulation of protein expression on the mRNA level and emphasize the importance of translational repression for the maintenance of proteome integrity.
Collapse
Affiliation(s)
- Steffen Preissler
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Julia Reuther
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Miriam Koch
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Annika Scior
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Michael Bruderek
- Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Tancred Frickey
- Applied Bioinformatics, University of Konstanz, Konstanz, Germany
| | - Elke Deuerling
- Molecular Microbiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
85
|
von der Malsburg K, Shao S, Hegde RS. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell 2015; 26:2168-80. [PMID: 25877867 PMCID: PMC4462936 DOI: 10.1091/mbc.e15-01-0040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/09/2015] [Indexed: 11/11/2022] Open
Abstract
Secretory proteins that stall during their translocation into the endoplasmic reticulum can be polyubiquitinated by a ribosome-associated quality control pathway that accesses its targets via a gap at the ribosome–translocon junction. This pathway may help resolve blocked translocons and efficiently degrade unfinished proteins. Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome–Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S–RQC and 80S–Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome–translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel.
Collapse
Affiliation(s)
| | - Sichen Shao
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
86
|
Wang F, Canadeo LA, Huibregtse JM. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 2015; 114:127-33. [PMID: 25701549 DOI: 10.1016/j.biochi.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
87
|
Abstract
Utilizing their previously established minimal in vitro ubiquitination system (Shao and Hegde, 2014), Shao et al. (2015) now show how NEMF supports the binding of Listerin to stalled 60S-RNCs, a major substrate of ribosomal quality control.
Collapse
Affiliation(s)
- Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
88
|
Shen PS, Park J, Qin Y, Li X, Parsawar K, Larson MH, Cox J, Cheng Y, Lambowitz AM, Weissman JS, Brandman O, Frost A. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 2015; 347:75-8. [PMID: 25554787 DOI: 10.1126/science.1259724] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails").
Collapse
Affiliation(s)
- Peter S Shen
- Department of Biochemistry, University of Utah, UT 84112, USA
| | - Joseph Park
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Xueming Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Krishna Parsawar
- Mass Spectrometry and Proteomics Core Facility, University of Utah, UT 84112, USA
| | - Matthew H Larson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA. California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA. Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Cox
- Department of Biochemistry, University of Utah, UT 84112, USA. Mass Spectrometry and Proteomics Core Facility, University of Utah, UT 84112, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA. California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA. Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA.
| | - Adam Frost
- Department of Biochemistry, University of Utah, UT 84112, USA. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
89
|
Shao S, Brown A, Santhanam B, Hegde RS. Structure and assembly pathway of the ribosome quality control complex. Mol Cell 2015; 57:433-44. [PMID: 25578875 PMCID: PMC4321881 DOI: 10.1016/j.molcel.2014.12.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/07/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022]
Abstract
During ribosome-associated quality control, stalled ribosomes are split into subunits and the 60S-housed nascent polypeptides are poly-ubiquitinated by Listerin. How this low-abundance ubiquitin ligase targets rare stall-generated 60S among numerous empty 60S is unknown. Here, we show that Listerin specificity for nascent chain-60S complexes depends on nuclear export mediator factor (NEMF). The 3.6 Å cryo-EM structure of a nascent chain-containing 60S-Listerin-NEMF complex revealed that NEMF makes multiple simultaneous contacts with 60S and peptidyl-tRNA to sense nascent chain occupancy. Structural and mutational analyses showed that ribosome-bound NEMF recruits and stabilizes Listerin's N-terminal domain, while Listerin's C-terminal RWD domain directly contacts the ribosome to position the adjacent ligase domain near the nascent polypeptide exit tunnel. Thus, highly specific nascent chain targeting by Listerin is imparted by the avidity gained from a multivalent network of context-specific individually weak interactions, highlighting a new principle of client recognition during protein quality control.
Collapse
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
90
|
Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc Natl Acad Sci U S A 2014; 111:15981-6. [PMID: 25349383 DOI: 10.1073/pnas.1413882111] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes.
Collapse
|