51
|
Bhattacharya U, Neizer-Ashun F, Mukherjee P, Bhattacharya R. When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis 2020; 11:1033. [PMID: 33277473 PMCID: PMC7718870 DOI: 10.1038/s41419-020-03246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
Deubiquitination is now understood to be as important as its partner ubiquitination for the maintenance of protein half-life, activity, and localization under both normal and pathological conditions. The enzymes that remove ubiquitin from target proteins are called deubiquitinases (DUBs) and they regulate a plethora of cellular processes. DUBs are essential enzymes that maintain intracellular protein homeostasis by recycling ubiquitin. Ubiquitination is a post-translational modification where ubiquitin molecules are added to proteins thus influencing activation, localization, and complex formation. Ubiquitin also acts as a tag for protein degradation, especially by proteasomal or lysosomal degradation systems. With ~100 members, DUBs are a large enzyme family; the ubiquitin-specific peptidases (USPs) being the largest group. USP10, an important member of this family, has enormous significance in diverse cellular processes and many human diseases. In this review, we discuss recent studies that define the roles of USP10 in maintaining cellular function, its involvement in human pathologies, and the molecular mechanisms underlying its association with cancer and neurodegenerative diseases. We also discuss efforts to modulate USPs as therapy in these diseases.
Collapse
Affiliation(s)
- Udayan Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
52
|
Graifer D, Karpova G. Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects. Bioessays 2020; 42:e2000124. [PMID: 33179285 DOI: 10.1002/bies.202000124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF-kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding the roles of uS3 in such processes as the assembly and maturation of 40S subunits, ensuring proper structure of 48S pre-initiation complexes, regulation of initiation and ribosome-based RNA quality control pathways. Besides, we summarize novel results on the participation of the protein in processes beyond translation and consider biomedical implications of previously known and recently found extra-ribosomal functions of uS3, primarily, in oncogenesis.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
53
|
Ribosomal protein S7 ubiquitination during ER stress in yeast is associated with selective mRNA translation and stress outcome. Sci Rep 2020; 10:19669. [PMID: 33184379 PMCID: PMC7661504 DOI: 10.1038/s41598-020-76239-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
eIF2α phosphorylation-mediated translational regulation is crucial for global translation repression by various stresses, including the unfolded protein response (UPR). However, translational control during UPR has not been demonstrated in yeast. This study investigated ribosome ubiquitination-mediated translational controls during UPR. Tunicamycin-induced ER stress enhanced the levels of ubiquitination of the ribosomal proteins uS10, uS3 and eS7. Not4-mediated monoubiquitination of eS7A was required for resistance to tunicamycin, whereas E3 ligase Hel2-mediated ubiquitination of uS10 was not. Ribosome profiling showed that the monoubiquitination of eS7A was crucial for translational regulation, including the upregulation of the spliced form of HAC1 (HAC1i) mRNA and the downregulation of Histidine triad NucleoTide-binding 1 (HNT1) mRNA. Downregulation of the deubiquitinating enzyme complex Upb3-Bre5 increased the levels of ubiquitinated eS7A during UPR in an Ire1-independent manner. These findings suggest that the monoubiquitination of ribosomal protein eS7A plays a crucial role in translational controls during the ER stress response in yeast.
Collapse
|
54
|
Eagleman DE, Zhu J, Liu DC, Seimetz J, Kalsotra A, Tsai NP. Unbiased proteomic screening identifies a novel role for the E3 ubiquitin ligase Nedd4-2 in translational suppression during ER stress. J Neurochem 2020; 157:1809-1820. [PMID: 33064840 DOI: 10.1111/jnc.15219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum (ER) stress occurs when protein folding or maturation is disrupted. A malfunction in the ER stress response can lead to cell death and has been observed in many neurological diseases. However, how the ER stress response is regulated in neuronal cells remains largely unclear. Here, we studied an E3 ubiquitin ligase named neural precursor cell expressed developmentally down-regulated protein 4-like (Nedd4-2). Nedd4-2 is highly expressed in the brain and has a high affinity toward ubiquitinating membrane-bound proteins. We first utilized unbiased proteomic profiling with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of isolated membrane fractions from mouse whole brains to identify novel targets of Nedd4-2. Through this screen, we found that the expression and ubiquitination of ribosomal proteins are regulated by Nedd4-2 and we confirmed an association between Nedd4-2 and ribosomes through ribosome sedimentation and polysome profiling. Further, we utilized immunoprecipitation and western blotting to show that induction of ER stress promotes an association between Nedd4-2 and ribosomal proteins, which is mediated through dephosphorylation of Nedd4-2 at serine-342. This increased interaction between Nedd4-2 and ribosomal proteins in turn mediates ER stress-associated translational suppression. In summary, the results of this study demonstrate a novel regulatory mechanism underlying the ER stress response and a novel function of Nedd4-2 in translational control. Our findings may shed light on neurological diseases in which the ER stress response or the function of Nedd4-2 is dysregulated.
Collapse
Affiliation(s)
- Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Seimetz
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R.Woese Institute of Genomic Biology, University of Illinois, Champaign, IL, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
55
|
Dong HJ, Zhang R, Kuang Y, Wang XJ. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol 2020; 203:1021-1032. [PMID: 33124672 PMCID: PMC7594972 DOI: 10.1007/s00203-020-02094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yu Kuang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
56
|
Vainshtein A, Grumati P. Selective Autophagy by Close Encounters of the Ubiquitin Kind. Cells 2020; 9:cells9112349. [PMID: 33114389 PMCID: PMC7693032 DOI: 10.3390/cells9112349] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy, a bulk degradation process within eukaryotic cells, is responsible for cellular turnover and nutrient liberation during starvation. Increasing evidence indicate that this process can be extremely discerning. Selective autophagy segregates and eliminates protein aggregates, damaged organelles, and invading organisms. The specificity of this process is largely mediated by post-translational modifications (PTMs), which are recognized by autophagy receptors. These receptors grant autophagy surgical precision in cargo selection, where only tagged substrates are engulfed within autophagosomes and delivered to the lysosome for proteolytic breakdown. A growing number of selective autophagy receptors have emerged including p62, NBR1, OPTN, NDP52, TAX1BP1, TOLLIP, and more continue to be uncovered. The most well-documented PTM is ubiquitination and selective autophagy receptors are equipped with a ubiquitin binding domain and an LC3 interacting region which allows them to physically bridge cargo to autophagosomes. Here, we review the role of ubiquitin and ubiquitin-like post-translational modifications in various types of selective autophagy.
Collapse
Affiliation(s)
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli (NA), Italy
- Correspondence:
| |
Collapse
|
57
|
Proteomic approaches for the profiling of ubiquitylation events and their applications in drug discovery. J Proteomics 2020; 231:103996. [PMID: 33017648 DOI: 10.1016/j.jprot.2020.103996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Accepted: 09/27/2020] [Indexed: 01/23/2023]
Abstract
Protein ubiquitylation regulates almost all aspects of the biological processes including gene expression, DNA repair, cell proliferation and apoptosis in eukaryotic cells. Dysregulation of protein ubiquitylation caused by abnormal expression of enzymes in the ubiquitin system results in the onset of many diseases including cancer, neurodegenerative diseases, and metabolic syndromes. Therefore, targeting the ubiquitin system becomes a promising research area in drug discovery. Identification of protein ubiquitylation sites is critical for revealing the key ubiquitylation events associated with diseases and specific signaling pathways and for elucidating the biological functions of the specific ubiquitylation events. Many approaches that enrich for the ubiquitylated proteins and ubiquitylated peptides at the protein and peptide levels have been developed to facilitate their identification by MS. In this paper, we will review the proteomic approaches available for the identification of ubiquitylation events at the proteome scale and discuss their advantages and limitations. We will also brief the application of the profiling of ubiquitylation events in drug target discovery and in target validation for proteolysis-targeting chimera (PROTAC). Possible future research directions in this field will also be discussed. SIGNIFICANCE: Ubiquitylation plays critical roles in regulating many biological processes in eukaryotic cells. Identification of ubiquitylation sites can provide the essential information for the functional study of the specific modified substrates. Since ubiquitylated proteins have much lower abundance than non-ubiquitylated proteins, enrichment of ubiquitylated proteins or peptides is critical for their identification by MS. This review focuses on different enrichment approaches that facilitate their isolation and identification by MS and discusses the advantages and drawbacks of these approaches. The application of the profiling of ubiquitylation events in drug target discovery and future research directions will be beneficial to the research community.
Collapse
|
58
|
Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. The ASC-1 Complex Disassembles Collided Ribosomes. Mol Cell 2020; 79:603-614.e8. [PMID: 32579943 PMCID: PMC7447978 DOI: 10.1016/j.molcel.2020.06.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023]
Abstract
Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Li Wan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
59
|
Sinha NK, Ordureau A, Best K, Saba JA, Zinshteyn B, Sundaramoorthy E, Fulzele A, Garshott DM, Denk T, Thoms M, Paulo JA, Harper JW, Bennett EJ, Beckmann R, Green R. EDF1 coordinates cellular responses to ribosome collisions. eLife 2020; 9:e58828. [PMID: 32744497 PMCID: PMC7486125 DOI: 10.7554/elife.58828] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Katharina Best
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Timo Denk
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Matthias Thoms
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
60
|
Abstract
Stalled protein synthesis produces defective nascent chains that can harm cells. In response, cells degrade these nascent chains via a process called ribosome-associated quality control (RQC). Here, we review the irregularities in the translation process that cause ribosomes to stall as well as how cells use RQC to detect stalled ribosomes, ubiquitylate their tethered nascent chains, and deliver the ubiquitylated nascent chains to the proteasome. We additionally summarize how cells respond to RQC failure.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
61
|
Li D, Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 2020; 219:e202001108. [PMID: 32330234 PMCID: PMC7265316 DOI: 10.1083/jcb.202001108] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Translation control is critical to regulate protein expression. By directly adjusting protein levels, cells can quickly respond to dynamic transitions during stem cell differentiation and embryonic development. Ribosomes are multisubunit cellular assemblies that mediate translation. Previously seen as invariant machines with the same composition of components in all conditions, recent studies indicate that ribosomes are heterogeneous and that different ribosome types can preferentially translate specific subsets of mRNAs. Such heterogeneity and specialized translation functions are very important in stem cells and development, as they allow cells to quickly respond to stimuli through direct changes of protein abundance. In this review, we discuss ribosome heterogeneity that arises from multiple features of rRNAs, including rRNA variants and rRNA modifications, and ribosomal proteins, including their stoichiometry, compositions, paralogues, and posttranslational modifications. We also discuss alterations of ribosome-associated proteins (RAPs), with a particular focus on their consequent specialized translational control in stem cells and development.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
62
|
Sugiyama T, Li S, Kato M, Ikeuchi K, Ichimura A, Matsuo Y, Inada T. Sequential Ubiquitination of Ribosomal Protein uS3 Triggers the Degradation of Non-functional 18S rRNA. Cell Rep 2020; 26:3400-3415.e7. [PMID: 30893611 DOI: 10.1016/j.celrep.2019.02.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/13/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023] Open
Abstract
18S non-functional rRNA decay (NRD) eliminates non-functional 18S rRNA with deleterious mutations in the decoding center. Dissociation of the non-functional 80S ribosome into 40S and 60S subunits is a prerequisite step for degradation of the non-functional 18S rRNA. However, the mechanisms by which the non-functional ribosome is recognized and dissociated into subunits remain elusive. Here, we report that the sequential ubiquitination of non-functional ribosomes is crucial for subunit dissociation. 18S NRD requires Mag2-mediated monoubiquitination followed by Hel2- and Rsp5-mediated K63-linked polyubiquitination of uS3 at the 212th lysine residue. Determination of the aberrant 18S rRNA levels in sucrose gradient fractions revealed that the subunit dissociation of stalled ribosomes requires sequential ubiquitination of uS3 by E3 ligases and ATPase activity of Slh1 (Rqt2), as well as Asc1 and Dom34. We propose that sequential uS3 ubiquitination of the non-functional 80S ribosome induces subunit dissociation by Slh1, leading to degradation of the non-functional 18S rRNA.
Collapse
Affiliation(s)
- Takato Sugiyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sihan Li
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Misaki Kato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ken Ikeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Ichimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshitaka Matsuo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
63
|
Igwebuike C, Yaglom J, Huiting L, Feng H, Campbell JD, Wang Z, Havasi A, Pimentel D, Sherman MY, Borkan SC. Cross organelle stress response disruption promotes gentamicin-induced proteotoxicity. Cell Death Dis 2020; 11:217. [PMID: 32245975 PMCID: PMC7125232 DOI: 10.1038/s41419-020-2382-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Gentamicin is a nephrotoxic antibiotic that causes acute kidney injury (AKI) primarily by targeting the proximal tubule epithelial cell. The development of an effective therapy for gentamicin-induced renal cell injury is limited by incomplete mechanistic insight. To address this challenge, we propose that RNAi signal pathway screening could identify a unifying mechanism of gentamicin-induced cell injury and suggest a therapeutic strategy to ameliorate it. Computational analysis of RNAi signal screens in gentamicin-exposed human proximal tubule cells suggested the cross-organelle stress response (CORE), the unfolded protein response (UPR), and cell chaperones as key targets of gentamicin-induced injury. To test this hypothesis, we assessed the effect of gentamicin on the CORE, UPR, and cell chaperone function, and tested the therapeutic efficacy of enhancing cell chaperone content. Early gentamicin exposure disrupted the CORE, evidenced by a rise in the ATP:ADP ratio, mitochondrial-specific H2O2 accumulation, Drp-1-mediated mitochondrial fragmentation, and endoplasmic reticulum-mitochondrial dissociation. CORE disruption preceded measurable increases in whole-cell oxidative stress, misfolded protein content, transcriptional UPR activation, and its untoward downstream effects: CHOP expression, PARP cleavage, and cell death. Geranylgeranylacetone, a therapeutic that increases cell chaperone content, prevented mitochondrial H2O2 accumulation, preserved the CORE, reduced the burden of misfolded proteins and CHOP expression, and significantly improved survival in gentamicin-exposed cells. We identify CORE disruption as an early and remediable cause of gentamicin proteotoxicity that precedes downstream UPR activation and cell death. Preserving the CORE significantly improves renal cell survival likely by reducing organelle-specific proteotoxicity during gentamicin exposure.
Collapse
Affiliation(s)
| | - Julia Yaglom
- Boston University School of Medicine, Department of Biochemistry, Boston, MA, USA
- Ariel University, Department of Molecular Biology, Ariel, West Bank, Israel
| | - Leah Huiting
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Hui Feng
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Joshua D Campbell
- Boston University School of Medicine, Department of Computational Biomedicine, Boston, MA, USA
| | - Zhiyong Wang
- Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA
| | - Andrea Havasi
- Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA
| | - David Pimentel
- Boston University School of Medicine, Department of Cardiology, Boston, MA, USA
| | - Michael Y Sherman
- Ariel University, Department of Molecular Biology, Ariel, West Bank, Israel
- Boston University School of Medicine, Department of Cardiology, Boston, MA, USA
| | - Steven C Borkan
- Boston Medical Center, Department of Medicine, Renal Section, Boston, MA, USA.
| |
Collapse
|
64
|
Montellese C, van den Heuvel J, Ashiono C, Dörner K, Melnik A, Jonas S, Zemp I, Picotti P, Gillet LC, Kutay U. USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit. eLife 2020; 9:54435. [PMID: 32129764 PMCID: PMC7065907 DOI: 10.7554/elife.54435] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential connection between 40S maturation and protein synthesis.
Collapse
Affiliation(s)
| | - Jasmin van den Heuvel
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | | | - Kerstin Dörner
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - André Melnik
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ivo Zemp
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
65
|
Dougherty SE, Maduka AO, Inada T, Silva GM. Expanding Role of Ubiquitin in Translational Control. Int J Mol Sci 2020; 21:E1151. [PMID: 32050486 PMCID: PMC7037965 DOI: 10.3390/ijms21031151] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.
Collapse
Affiliation(s)
- Shannon E. Dougherty
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Austin O. Maduka
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| |
Collapse
|
66
|
Garshott DM, Sundaramoorthy E, Leonard M, Bennett EJ. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 2020; 9:54023. [PMID: 32011234 PMCID: PMC7064338 DOI: 10.7554/elife.54023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/01/2020] [Indexed: 11/13/2022] Open
Abstract
Activation of the integrated stress response (ISR) or the ribosome-associated quality control (RQC) pathway stimulates regulatory ribosomal ubiquitylation (RRub) on distinct 40S ribosomal proteins, yet the cellular role and fate of ubiquitylated proteins remain unclear. We demonstrate that uS10 and uS5 ubiquitylation are dependent upon eS10 or uS3 ubiquitylation, respectively, suggesting that a hierarchical relationship exists among RRub events establishing a ubiquitin code on ribosomes. We show that stress dependent RRub events diminish after initial stimuli and that demodification by deubiquitylating enzymes contributes to reduced RRub levels during stress recovery. Utilizing an optical RQC reporter we identify OTUD3 and USP21 as deubiquitylating enzymes that antagonize ZNF598-mediated 40S ubiquitylation and can limit RQC activation. Critically, cells lacking USP21 or OTUD3 have altered RQC activity and delayed eS10 deubiquitylation indicating a functional role for deubiquitylating enzymes within the RQC pathway. Ribosomes are cellular machines that build proteins by latching on and then reading template molecules known as mRNAs. Several ribosomes may be moving along the same piece of mRNA at the same time, each making their own copy of the same protein. Damage to an mRNA or other problems may cause a ribosome to stall, leading to subsequent collisions. A quality control pathway exists to identify stalled ribosomes and fix the ‘traffic jams’. It relies on enzymes that tag halted ribosomes with molecules known as ubiquitin. The cell then removes these ribosomes from the mRNA and destroys the proteins they were making. Afterwards, additional enzymes take off the ubiquitin tags so the cell can recycle the ribosomes. These enzymes are key to signaling the end of the quality control event, yet their identity was still unclear. Garshott et al. used genetic approaches to study traffic jams of ribosomes in mammalian cells. The experiments showed that cells added sets of ubiquitin tags to stalled ribosomes in a specific order. Two enzymes, known as USP21 and OTUD3, could stop this process; this allowed ribosomes to carry on reading mRNA. Further work revealed that the ribosomes in cells that produce higher levels of USP21 and OTUD3 were less likely to stall on mRNA. On the other hand, ribosomes in cells lacking USP1 and OTUD3 retained their ubiquitin tags for longer and were more likely to stall. The findings of Garshott et al. reveal that USP21 and OTUD3 are involved in the quality control pathway which fixes ribosome traffic jams. In mice, problems in this pathway have been linked with neurons dying or being damaged because toxic protein products start to accumulate in cells; this is similar to what happens in human conditions such as Alzheimer's and Parkinson's diseases. Using ubiquitin to target and potentially fix the pathway could therefore open the door to new therapies.
Collapse
Affiliation(s)
- Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
67
|
Meyer C, Garzia A, Morozov P, Molina H, Tuschl T. The G3BP1-Family-USP10 Deubiquitinase Complex Rescues Ubiquitinated 40S Subunits of Ribosomes Stalled in Translation from Lysosomal Degradation. Mol Cell 2020; 77:1193-1205.e5. [PMID: 31981475 DOI: 10.1016/j.molcel.2019.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
Ribosome-associated quality control (RQC) purges aberrant mRNAs and nascent polypeptides in a multi-step molecular process initiated by the E3 ligase ZNF598 through sensing of ribosomes collided at aberrant mRNAs and monoubiquitination of distinct small ribosomal subunit proteins. We show that G3BP1-family-USP10 complexes are required for deubiquitination of RPS2, RPS3, and RPS10 to rescue modified 40S subunits from programmed degradation. Knockout of USP10 or G3BP1 family proteins increased lysosomal ribosomal degradation and perturbed ribosomal subunit stoichiometry, both of which were rescued by a single K214R substitution of RPS3. While the majority of RPS2 and RPS3 monoubiquitination resulted from ZNF598-dependent sensing of ribosome collisions initiating RQC, another minor pathway contributed to their monoubiquitination. G3BP1 family proteins have long been considered RNA-binding proteins, however, our results identified 40S subunits and associated mRNAs as their predominant targets, a feature shared by stress granules to which G3BP1 family proteins localize under stress.
Collapse
Affiliation(s)
- Cindy Meyer
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Pavel Morozov
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Ave, Box 105, New York, NY 10065, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA.
| |
Collapse
|
68
|
Beese CJ, Brynjólfsdóttir SH, Frankel LB. Selective Autophagy of the Protein Homeostasis Machinery: Ribophagy, Proteaphagy and ER-Phagy. Front Cell Dev Biol 2020; 7:373. [PMID: 32039200 PMCID: PMC6985035 DOI: 10.3389/fcell.2019.00373] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell has developed intricate machineries that monitor and maintain proteome homeostasis in order to ensure cellular functionality. This involves the carefully coordinated balance between protein synthesis and degradation pathways, which are dynamically regulated in order to meet the constantly changing demands of the cell. Ribosomes, together with the endoplasmic reticulum (ER), are the key drivers of protein synthesis, folding, maturation and sorting, while the proteasome plays a pivotal role in terminating the existence of thousands of proteins that are misfolded, damaged or otherwise obsolete. The synthesis, structure and function of these dedicated machines has been studied for decades, however, much less is understood about the mechanisms that control and execute their own turnover. Autophagy, an evolutionarily conserved catabolic pathway, mediates degradation of a large variety of cytosolic substrates, ranging from single proteins to entire organelles or multi-subunit macromolecular complexes. In this review, we focus on selective autophagy of three key components of the protein homeostasis machinery: ribosomes, ER and proteasomes, through the selective autophagy pathways of ribophagy, ER-phagy, and proteaphagy. We discuss newly discovered mechanisms for the selective clearance of these substrates, which are often stress-dependent and involve specialized signals for cargo recognition by a growing number of receptors. We further discuss the interplay between these pathways and their biological impact on key aspects of proteome homeostasis and cellular function in health and disease.
Collapse
Affiliation(s)
- Carsten J Beese
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Lisa B Frankel
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
69
|
An H, Harper JW. Ribosome Abundance Control Via the Ubiquitin-Proteasome System and Autophagy. J Mol Biol 2020; 432:170-184. [PMID: 31195016 PMCID: PMC6904543 DOI: 10.1016/j.jmb.2019.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Ribosomes are central to the life of a cell, as they translate the genetic code into the amino acid language of proteins. Moreover, ribosomal abundance within the cell is coordinated with protein production required for cell function or processes such as cell division. As such, it is not surprising that these elegant machines are both highly regulated at the level of both their output of newly translated proteins but also at the level of ribosomal protein expression, ribosome assembly, and ribosome turnover. In this review, we focus on mechanisms that regulate ribosome abundance through both the ubiquitin-proteasome system and forms of autophagy referred to as "ribophagy." We discussed mechanisms employed in both yeast and mammalian cells, including the various machineries that are important for recognition and degradation of ribosomal components. In addition, we discussed controversies in the field and how the development of new approaches for examining flux through the proteasomal and autophagic systems in the context of a systematic inventory of ribosomal components is necessary to fully understand how ribosome abundance is controlled under various physiological conditions.
Collapse
Affiliation(s)
- Heeseon An
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
70
|
Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 2019; 10:5611. [PMID: 31819057 PMCID: PMC6901537 DOI: 10.1038/s41467-019-13579-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
71
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
72
|
DiGiuseppe S, Rollins MG, Bartom ET, Walsh D. ZNF598 Plays Distinct Roles in Interferon-Stimulated Gene Expression and Poxvirus Protein Synthesis. Cell Rep 2019; 23:1249-1258. [PMID: 29719242 PMCID: PMC5951170 DOI: 10.1016/j.celrep.2018.03.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 10/25/2022] Open
Abstract
Post-translational modification of ribosomal subunit proteins (RPs) is emerging as an important means of regulating gene expression. Recently, regulatory ubiquitination of small RPs RPS10 and RPS20 by the ubiquitin ligase ZNF598 was found to function in ribosome sensing and stalling on internally polyadenylated mRNAs during ribosome quality control (RQC). Here, we reveal that ZNF598 and RPS10 negatively regulate interferon-stimulated gene (ISG) expression in primary cells, depletion of which induced ISG expression and a broad antiviral state. However, cell lines lacking interferon responses revealed that ZNF598 E3 ligase activity and ubiquitination of RPS20, but not RPS10, were specifically required for poxvirus replication and synthesis of poxvirus proteins whose encoding mRNAs contain unusual 5' poly(A) leaders. Our findings reveal distinct functions for ZNF598 and its downstream RPS targets, one that negatively regulates ISG expression and infection by a range of viruses while the other is positively exploited by poxviruses.
Collapse
Affiliation(s)
- Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
73
|
Sousa A, Gonçalves E, Mirauta B, Ochoa D, Stegle O, Beltrao P. Multi-omics Characterization of Interaction-mediated Control of Human Protein Abundance levels. Mol Cell Proteomics 2019; 18:S114-S125. [PMID: 31239291 PMCID: PMC6692786 DOI: 10.1074/mcp.ra118.001280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Proteogenomic studies of cancer samples have shown that copy-number variation can be attenuated at the protein level for a large fraction of the proteome, likely due to the degradation of unassembled protein complex subunits. Such interaction-mediated control of protein abundance remains poorly characterized. To study this, we compiled genomic, (phospho)proteomic and structural data for hundreds of cancer samples and find that up to 42% of 8,124 analyzed proteins show signs of post-transcriptional control. We find evidence of interaction-dependent control of protein abundance, correlated with interface size, for 516 protein pairs, with some interactions further controlled by phosphorylation. Finally, these findings in cancer were reflected in variation in protein levels in normal tissues. Importantly, expression differences due to natural genetic variation were increasingly buffered from phenotype differences for highly attenuated proteins. Altogether, this study further highlights the importance of posttranscriptional control of protein abundance in cancer and healthy cells.
Collapse
Affiliation(s)
- Abel Sousa
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3s), Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal; Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK
| | | | - Bogdan Mirauta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK
| | - David Ochoa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK; ‡European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany; §Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK.
| |
Collapse
|
74
|
Li Z, Cheng Z, Raghothama C, Cui Z, Liu K, Li X, Jiang C, Jiang W, Tan M, Ni X, Pandey A, Liu JO, Dang Y. USP9X controls translation efficiency via deubiquitination of eukaryotic translation initiation factor 4A1. Nucleic Acids Res 2019; 46:823-839. [PMID: 29228324 PMCID: PMC5778534 DOI: 10.1093/nar/gkx1226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Controlling translation initiation is an efficient way to regulate gene expression at the post-transcriptional level. However, current knowledge regarding regulatory proteins and their modes of controlling translation initiation is still limited. In this study, we employed tandem affinity purification and mass spectrometry to screen for unknown proteins associated with the translation initiation machinery. Ubiquitin specific peptidase 9, X-linked (USP9X), was identified as a novel binding partner, that interacts with the eukaryotic translation initiation factor 4B (eIF4B) in a mRNA-independent manner. USP9X-deficient cells presented significantly impaired nascent protein synthesis, cap-dependent translation initiation and cellular proliferation. USP9X can selectively alter the translation of pro-oncogenic mRNAs, such as c-Myc and XIAP. Moreover, we found that eIF4A1, which is primarily ubiquitinated at Lys-369, is the substrate of USP9X. USP9X dysfunction increases the ubiquitination of eIF4A1 and enhances its degradation. Our results provide evidence that USP9X is a novel regulator of the translation initiation process via deubiquitination of eIF4A1, which offers new insight in understanding the pivotal role of USP9X in human malignancies and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zengxia Li
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao Cheng
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chaerkady Raghothama
- McKusick-Nathans Institute of Genetic Medicine and the Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhaomeng Cui
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Kaiyu Liu
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojing Li
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chenxiao Jiang
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Ni
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IAD, Fudan University, Shanghai 200032, China
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and the Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology & Molecular Sciences and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongjun Dang
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
75
|
Michaletti A, Mancini M, Smirnov A, Candi E, Melino G, Zolla L. Multi-omics profiling of calcium-induced human keratinocytes differentiation reveals modulation of unfolded protein response signaling pathways. Cell Cycle 2019; 18:2124-2140. [PMID: 31291818 DOI: 10.1080/15384101.2019.1642066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
By proteomic, metabolomic and transcriptomic approaches we shed light on the molecular mechanism by which human keratinocytes undergo to terminal differentiation upon in vitro calcium treatment. Proteomic analysis revealed a selective induction of the ribosomal proteins RSSA, an inhibitor of cell proliferation and inducer of differentiation, HSP 60, a protein folding chaperone and GRP78, an unfolding protein response signal. Additionally, we observed an induction of EF1D, a transcription factor for genes that contain heat-shock responsive elements. Conversely, RAD23, a protein involved in regulating ER-associated protein degradation was down-regulated. All these modifications indicated an ER stress response, which in turn activated the unfolded protein response signaling pathway through ATF4, as confirmed both by the modulation of amino acids metabolism genes, such as XBP1, PDI and GPR78, and by the metabolomic analysis. Finally, we detected a reduction of PDI protein, as confirmed by the increase of oxidized glutathione. Metabolome analysis indicated that glycolysis failed to fuel the Krebs cycle, which continued to decrease during differentiation, at glance with the PPP pathway, allowing NADH production and glutathione reduction. Since unfolded protein response is linked to keratinization, these results may be useful for studying pathological mechanisms as well as potential treatments for different pathological conditions. Abbreviation: UPR, unfolded protein response; HEK, human epidermal keratinocytes; HKGS, human keratinocytes growth factor.
Collapse
Affiliation(s)
- Anna Michaletti
- a Department of Ecological and Biological Sciences (DEB), University of Tuscia , Viterbo , Italy
| | - Mara Mancini
- b Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS , Rome , Italy
| | - Artem Smirnov
- c Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Eleonora Candi
- b Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS , Rome , Italy.,c Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Gerry Melino
- c Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy.,d MRC Toxicology Unit, Cambridge University , Leicester , UK
| | - Lello Zolla
- e Agriculture and Forest Sciences (DAFNE), University of Tuscia , Viterbo , Italy
| |
Collapse
|
76
|
Genuth NR, Barna M. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet 2019; 19:431-452. [PMID: 29725087 DOI: 10.1038/s41576-018-0008-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of mRNA translation offers the opportunity to diversify the expression and abundance of proteins made from individual gene products in cells, tissues and organisms. Emerging evidence has highlighted variation in the composition and activity of several large, highly conserved translation complexes as a means to differentially control gene expression. Heterogeneity and specialized functions of individual components of the ribosome and of the translation initiation factor complexes eIF3 and eIF4F, which are required for recruitment of the ribosome to the mRNA 5' untranslated region, have been identified. In this Review, we summarize the evidence for selective mRNA translation by components of these macromolecular complexes as a means to dynamically control the translation of the proteome in time and space. We further discuss the implications of this form of gene expression regulation for a growing number of human genetic disorders associated with mutations in the translation machinery.
Collapse
Affiliation(s)
- Naomi R Genuth
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
77
|
Ahmed K, Carter DE, Lajoie P. Hyperactive
TORC
1 sensitizes yeast cells to endoplasmic reticulum stress by compromising cell wall integrity. FEBS Lett 2019; 593:1957-1973. [DOI: 10.1002/1873-3468.13463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Khadija Ahmed
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| | - David E. Carter
- Robarts Research Institute The University of Western Ontario London Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| |
Collapse
|
78
|
Wei J, Kishton RJ, Angel M, Conn CS, Dalla-Venezia N, Marcel V, Vincent A, Catez F, Ferré S, Ayadi L, Marchand V, Dersh D, Gibbs JS, Ivanov IP, Fridlyand N, Couté Y, Diaz JJ, Qian SB, Staudt LM, Restifo NP, Yewdell JW. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell 2019; 73:1162-1173.e5. [PMID: 30712990 DOI: 10.1016/j.molcel.2018.12.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Cell Line, Tumor
- Coculture Techniques
- HEK293 Cells
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/immunology
- Host-Pathogen Interactions
- Humans
- Immunologic Surveillance
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Melanoma/immunology
- Melanoma/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | | - Matthew Angel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Crystal S Conn
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nicole Dalla-Venezia
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Virginie Marcel
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Anne Vincent
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Frédéric Catez
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Sabrina Ferré
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | - Lilia Ayadi
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-INSERM-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France; Laboratory IMoPA, UMR7365 CNRS-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-INSERM-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France; Laboratory IMoPA, UMR7365 CNRS-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivaylo P Ivanov
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Nathan Fridlyand
- Laboratory of Translational Biology, School of Biosciences and Biotechnology, University of Camerino, Camerino MC 62032, Italy
| | - Yohann Couté
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | - Jean-Jacques Diaz
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, Center for Cancer Research, NIH, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
79
|
Back S, Gorman AW, Vogel C, Silva GM. Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. J Proteome Res 2018; 18:309-318. [PMID: 30489083 DOI: 10.1021/acs.jproteome.8b00623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During oxidative stress, K63-linked polyubiquitin chains modify a variety of proteins including ribosomes. Knowledge of the precise sites of K63 ubiquitin is key to understand its function during the response to stress. To identify the sites of K63 ubiquitin, we developed a new mass spectrometry based method that quantified >1100 K63 ubiquitination sites in yeast that responded to oxidative stress induced by H2O2. We determined that under stress, K63 ubiquitin-modified proteins were involved in several cellular functions including ion transport, protein trafficking, and translation. The most abundant ubiquitin sites localized to the head of the 40S subunit of the ribosome, modified assembled polysomes, and affected the binding of translation factors. The results suggested a new pathway of post-initiation control of translation during oxidative stress and illustrated the importance of high-resolution mapping of noncanonical ubiquitination events.
Collapse
Affiliation(s)
- Songhee Back
- Center for Genomics and Systems Biology , New York University , 12 Waverly Place , New York , New York 10003 , United States
| | - Andrew W Gorman
- Department of Biology , Duke University , 130 Science Drive , Durham , North Carolina 27708 , United States
| | - Christine Vogel
- Center for Genomics and Systems Biology , New York University , 12 Waverly Place , New York , New York 10003 , United States
| | - Gustavo M Silva
- Department of Biology , Duke University , 130 Science Drive , Durham , North Carolina 27708 , United States
| |
Collapse
|
80
|
Halim VA, García-Santisteban I, Warmerdam DO, van den Broek B, Heck AJR, Mohammed S, Medema RH. Doxorubicin-induced DNA Damage Causes Extensive Ubiquitination of Ribosomal Proteins Associated with a Decrease in Protein Translation. Mol Cell Proteomics 2018; 17:2297-2308. [PMID: 29438997 PMCID: PMC6283304 DOI: 10.1074/mcp.ra118.000652] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/06/2022] Open
Abstract
Protein posttranslational modifications (PTMs) play a central role in the DNA damage response. In particular, protein phosphorylation and ubiquitination have been shown to be essential in the signaling cascade that coordinates break repair with cell cycle progression. Here, we performed whole-cell quantitative proteomics to identify global changes in protein ubiquitination that are induced by DNA double-strand breaks. In total, we quantified more than 9,400 ubiquitin sites and found that the relative abundance of ∼10% of these sites was altered in response to DNA double-strand breaks. Interestingly, a large proportion of ribosomal proteins, including those from the 40S as well as the 60S subunit, were ubiquitinated in response to DNA damage. In parallel, we discovered that DNA damage leads to the inhibition of ribosome function. Taken together, these data uncover the ribosome as a major target of the DNA damage response.
Collapse
Affiliation(s)
- Vincentius A Halim
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iraia García-Santisteban
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Daniel O Warmerdam
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; Department of Biochemistry, University of Oxford, OX13TA Oxford, United Kingdom; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, OX13TA Oxford, United Kingdom
| | - René H Medema
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
81
|
miR-181b regulates ER stress induced neuron death through targeting Heat Shock Protein A5 following intracerebral haemorrhage. Immunol Lett 2018; 206:1-10. [PMID: 30503822 DOI: 10.1016/j.imlet.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress acts as a protein folding and contributes to neuronal damage and neurological deterioration following intracerebral hemorrhage (ICH). Heat Shock Protein A5 (HSPA5) serves as an essential regulator of the endoplasmic reticulum (ER) stress response. However, the specific mechanism has not been will identified. Primary cortical neurons from C57BL/6 mice were subjected to erythrocyte lysates. Cell viability, microRNA and HSPA5 levels, and ER stress was detected. The interaction between microRNA and the target HSPA5 was identified by dual luciferase reporter gene assay. In addition, inflammatory cytokines, brain edema, and neurological functions in ICH mice were also assessed. Erythrocyte lysates induced ER stress and neuron damage, downregulated miR-181b and upregulated HSPA5 levels. MiR-181b suppressed HSPA5 expression by directly binding its 3'-untranslated region. Correspondingly, our data demonstrated that overexpression of miR-181b attenuated erythrocyte lysates induced neuronal necrosis and apoptosis. In vivo, downregulated miR-181b increased the HSPA5 level, along with significant elevations of pro-inflammatory cytokines, brain edema, and neurological injury following ICH. HSPA5 pathway plays an important role in ER stress induced brain damage following ICH. In addition, miR-181b has neuroprotective effects that alleviates neurological injury and represents a promising therapeutic strategy in ICH.
Collapse
|
82
|
SseL Deubiquitinates RPS3 to Inhibit Its Nuclear Translocation. Pathogens 2018; 7:pathogens7040086. [PMID: 30405005 PMCID: PMC6313570 DOI: 10.3390/pathogens7040086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/25/2022] Open
Abstract
Many Gram-negative bacterial pathogens use type III secretion systems to deliver virulence proteins (effectors) into host cells to counteract innate immunity. The ribosomal protein S3 (RPS3) guides NF-κB subunits to specific κB sites and plays an important role in the innate response to bacterial infection. Two E. coli effectors inhibit RPS3 nuclear translocation. NleH1 inhibits RPS3 phosphorylation by IKK-β, an essential aspect of the RPS3 nuclear translocation process. NleC proteolysis of p65 generates an N-terminal p65 fragment that competes for full-length p65 binding to RPS3, thus also inhibiting RPS3 nuclear translocation. Thus, E. coli has multiple mechanisms by which to block RPS3-mediated transcriptional activation. With this in mind, we considered whether other enteric pathogens also encode T3SS effectors that impact this important host regulatory pathway. Here we report that the Salmonella Secreted Effector L (SseL), which was previously shown to function as a deubiquitinase and inhibit NF-κB signaling, also inhibits RPS3 nuclear translocation by deubiquitinating this important host transcriptional co-factor. RPS3 deubiquitination by SseL was restricted to K63-linkages and mutating the active-site cysteine of SseL abolished its ability to deubiquitinate and subsequently inhibit RPS3 nuclear translocation. Thus, Salmonella also encodes at least one T3SS effector that alters RPS3 activities in the host nucleus.
Collapse
|
83
|
Ledesma L, Sandoval E, Cruz-Martínez U, Escalante AM, Mejía S, Moreno-Álvarez P, Ávila E, García E, Coello G, Torres-Quiroz F. YAAM: Yeast Amino Acid Modifications Database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4797096. [PMID: 29688347 PMCID: PMC7206644 DOI: 10.1093/database/bax099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023]
Abstract
Proteins are dynamic molecules that regulate a myriad of cellular functions; these functions may be regulated by protein post-translational modifications (PTMs) that mediate the activity, localization and interaction partners of proteins. Thus, understanding the meaning of a single PTM or the combination of several of them is essential to unravel the mechanisms of protein regulation. Yeast Amino Acid Modification (YAAM) (http://yaam.ifc.unam.mx) is a comprehensive database that contains information from 121 921 residues of proteins, which are post-translationally modified in the yeast model Saccharomyces cerevisiae. All the PTMs contained in YAAM have been confirmed experimentally. YAAM database maps PTM residues in a 3D canvas for 680 proteins with a known 3D structure. The structure can be visualized and manipulated using the most common web browsers without the need for any additional plugin. The aim of our database is to retrieve and organize data about the location of modified amino acids providing information in a concise but comprehensive and user-friendly way, enabling users to find relevant information on PTMs. Given that PTMs influence almost all aspects of the biology of both healthy and diseased cells, identifying and understanding PTMs is critical in the study of molecular and cell biology. YAAM allows users to perform multiple searches, up to three modifications at the same residue, giving the possibility to explore possible regulatory mechanism for some proteins. Using YAAM search engine, we found three different PTMs of lysine residues involved in protein translation. This suggests an important regulatory mechanism for protein translation that needs to be further studied. Database URL: http://yaam.ifc.unam.mx/
Collapse
Affiliation(s)
- Leonardo Ledesma
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Eduardo Sandoval
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Uriel Cruz-Martínez
- División de Ciencia Básica, Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Ana María Escalante
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Selene Mejía
- Coordinación de Difusión y Divulgación, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Paola Moreno-Álvarez
- División de Ciencia Básica, Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Emiliano Ávila
- División de Ciencia Básica, Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Erik García
- División de Ciencia Básica, Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Gerardo Coello
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| | - Francisco Torres-Quiroz
- División de Ciencia Básica, Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Ciudad de México 04510, México
| |
Collapse
|
84
|
Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V, Hegde RS. ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Mol Cell 2018; 72:469-481.e7. [PMID: 30293783 PMCID: PMC6224477 DOI: 10.1016/j.molcel.2018.08.037] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 01/30/2023]
Abstract
Aberrantly slow translation elicits quality control pathways initiated by the ubiquitin ligase ZNF598. How ZNF598 discriminates physiologic from pathologic translation complexes and ubiquitinates stalled ribosomes selectively is unclear. Here, we find that the minimal unit engaged by ZNF598 is the collided di-ribosome, a molecular species that arises when a trailing ribosome encounters a slower leading ribosome. The collided di-ribosome structure reveals an extensive 40S-40S interface in which the ubiquitination targets of ZNF598 reside. The paucity of 60S interactions allows for different ribosome rotation states, explaining why ZNF598 recognition is indifferent to how the leading ribosome has stalled. The use of ribosome collisions as a proxy for stalling allows the degree of tolerable slowdown to be tuned by the initiation rate on that mRNA; hence, the threshold for triggering quality control is substrate specific. These findings illustrate how higher-order ribosome architecture can be exploited by cellular factors to monitor translation status. ZNF598 is a direct sensor of ribosome collisions incurred by many unrelated causes The minimal target recognized and ubiquitinated by ZNF598 is a collided di-ribosome Collided di-ribosome structure shows that ZNF598 ubiquitin sites are near the interface Collisions are required to terminally arrest translation in ZNF598-dependent manner
Collapse
Affiliation(s)
| | | | - Zhewang Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
85
|
Kocaturk NM, Gozuacik D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front Cell Dev Biol 2018; 6:128. [PMID: 30333975 PMCID: PMC6175981 DOI: 10.3389/fcell.2018.00128] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome system (UPS) are the two major intracellular quality control and recycling mechanisms that are responsible for cellular homeostasis in eukaryotes. Ubiquitylation is utilized as a degradation signal by both systems, yet, different mechanisms are in play. The UPS is responsible for the degradation of short-lived proteins and soluble misfolded proteins whereas autophagy eliminates long-lived proteins, insoluble protein aggregates and even whole organelles (e.g., mitochondria, peroxisomes) and intracellular parasites (e.g., bacteria). Both the UPS and selective autophagy recognize their targets through their ubiquitin tags. In addition to an indirect connection between the two systems through ubiquitylated proteins, recent data indicate the presence of connections and reciprocal regulation mechanisms between these degradation pathways. In this review, we summarize these direct and indirect interactions and crosstalks between autophagy and the UPS, and their implications for cellular stress responses and homeostasis.
Collapse
Affiliation(s)
- Nur Mehpare Kocaturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
86
|
Hwang I, Cho SW, Ahn JY. Chaperone-E3 Ligase Complex HSP70-CHIP Mediates Ubiquitination of Ribosomal Protein S3. Int J Mol Sci 2018; 19:ijms19092723. [PMID: 30213050 PMCID: PMC6163665 DOI: 10.3390/ijms19092723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
In addition to its role in ribosome biogenesis, ribosomal protein S3 (RPS3), a component of the 40S ribosomal subunit, has been suggested to possess several extraribosomal functions, including an apoptotic function. In this study, we demonstrated that in the mouse brain, the protein levels of RPS3 were altered by the degree of nutritional starvation and correlated with neuronal apoptosis. After endurable short-term starvation, the apoptotic function of RPS3 was suppressed by Akt activation and Akt-mediated T70 phosphorylation, whereas after prolonged starvation, the protein levels of RPS3 notably increased, and abundant neuronal death occurred. These events coincided with ubiquitination and subsequent degradation of RPS3, controlled by HSP70 and the cochaperone E3 ligase: carboxy terminus of heat shock protein 70-interacting protein (CHIP). Thus, our study points to an extraribosomal role of RPS3 in balancing neuronal survival or death depending on the degree of starvation through CHIP-mediated polyubiquitination and degradation.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul 05505, Korea.
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea.
| |
Collapse
|
87
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
88
|
Genuth NR, Barna M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life. Mol Cell 2018; 71:364-374. [PMID: 30075139 DOI: 10.1016/j.molcel.2018.07.018get] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 05/27/2023]
Abstract
The ribosome has recently transitioned from being viewed as a passive, indiscriminate machine to a more dynamic macromolecular complex with specialized roles in the cell. Here, we discuss the historical milestones from the discovery of the ribosome itself to how this ancient machinery has gained newfound appreciation as a more regulatory participant in the central dogma of gene expression. The first emerging examples of direct changes in ribosome composition at the RNA and protein level, coupled with an increased awareness of the role individual ribosomal components play in the translation of specific mRNAs, is opening a new field of study centered on ribosome-mediated control of gene regulation. In this Perspective, we discuss our current understanding of the known functions for ribosome heterogeneity, including specialized translation of individual transcripts, and its implications for the regulation and expression of key gene regulatory networks. In addition, we suggest what the crucial next steps are to ascertain the extent of ribosome heterogeneity and specialization and its importance for regulation of the proteome within subcellular space, across different cell types, and during multi-cellular organismal development.
Collapse
Affiliation(s)
- Naomi R Genuth
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA; Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
89
|
Genuth NR, Barna M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life. Mol Cell 2018; 71:364-374. [PMID: 30075139 PMCID: PMC6092941 DOI: 10.1016/j.molcel.2018.07.018] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
The ribosome has recently transitioned from being viewed as a passive, indiscriminate machine to a more dynamic macromolecular complex with specialized roles in the cell. Here, we discuss the historical milestones from the discovery of the ribosome itself to how this ancient machinery has gained newfound appreciation as a more regulatory participant in the central dogma of gene expression. The first emerging examples of direct changes in ribosome composition at the RNA and protein level, coupled with an increased awareness of the role individual ribosomal components play in the translation of specific mRNAs, is opening a new field of study centered on ribosome-mediated control of gene regulation. In this Perspective, we discuss our current understanding of the known functions for ribosome heterogeneity, including specialized translation of individual transcripts, and its implications for the regulation and expression of key gene regulatory networks. In addition, we suggest what the crucial next steps are to ascertain the extent of ribosome heterogeneity and specialization and its importance for regulation of the proteome within subcellular space, across different cell types, and during multi-cellular organismal development.
Collapse
Affiliation(s)
- Naomi R Genuth
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA; Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
90
|
Zuzow N, Ghosh A, Leonard M, Liao J, Yang B, Bennett EJ. Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches. Mol Biol Cell 2018. [PMID: 29540532 PMCID: PMC5935074 DOI: 10.1091/mbc.e17-12-0714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous genetic and biochemical studies from Saccharomyces cerevisiae have identified a critical ribosome-associated quality control complex (RQC) that facilitates resolution of stalled ribosomal complexes. While components of the mammalian RQC have been examined in vitro, a systematic characterization of RQC protein interactions in mammalian cells has yet to be described. Here we utilize both proximity-labeling proteomic approaches, BioID and APEX, and traditional affinity-based strategies to both identify interacting proteins of mammalian RQC members and putative substrates for the RQC resident E3 ligase, Ltn1. Surprisingly, validation studies revealed that a subset of substrates are ubiquitylated by Ltn1 in a regulatory manner that does not result in subsequent substrate degradation. We demonstrate that Ltn1 catalyzes the regulatory ubiquitylation of ribosomal protein S6 kinase 1 and 2 (RPS6KA1, RPS6KA3). Further, loss of Ltn1 function results in hyperactivation of RSK1/2 signaling without impacting RSK1/2 protein turnover. These results suggest that Ltn1-mediated RSK1/2 ubiquitylation is inhibitory and establishes a new role for Ltn1 in regulating mitogen-activated kinase signaling via regulatory RSK1/2 ubiquitylation. Taken together, our results suggest that mammalian RQC interactions are difficult to observe and may be more transient than the homologous complex in S. cerevisiae and that Ltn1 has RQC-independent functions.
Collapse
Affiliation(s)
- Nathan Zuzow
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Arit Ghosh
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jeffrey Liao
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Bing Yang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
91
|
Heidelberger JB, Voigt A, Borisova ME, Petrosino G, Ruf S, Wagner SA, Beli P. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep 2018; 19:embr.201744754. [PMID: 29467282 DOI: 10.15252/embr.201744754] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
Valosin-containing protein (VCP) is an evolutionarily conserved ubiquitin-dependent ATPase that mediates the degradation of proteins through the ubiquitin-proteasome pathway. Despite the central role of VCP in the regulation of protein homeostasis, identity and nature of its cellular substrates remain poorly defined. Here, we combined chemical inhibition of VCP and quantitative ubiquitin remnant profiling to assess the effect of VCP inhibition on the ubiquitin-modified proteome and to probe the substrate spectrum of VCP in human cells. We demonstrate that inhibition of VCP perturbs cellular ubiquitylation and increases ubiquitylation of a different subset of proteins compared to proteasome inhibition. VCP inhibition globally upregulates K6-linked ubiquitylation that is dependent on the HECT-type ubiquitin E3 ligase HUWE1. We report ~450 putative VCP substrates, many of which function in nuclear processes, including gene expression, DNA repair and cell cycle. Moreover, we identify that VCP regulates the level and activity of the transcription factor c-Myc.
Collapse
Affiliation(s)
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | - Stefanie Ruf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
92
|
Abstract
Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary differential equations and related tools to create dynamic, semi-mechanistic models of low dimensional data including gene/protein signaling as a function of time/dose. More recently, the integration of imaging technologies into predictive multiscale modeling has begun to extend further the scales across which data can be obtained and used to gain insight into system function.There are several goals for predictive multiscale modeling including the more academic pursuit of understanding how the system or local feature thereof is regulated or functions, to the more practical or translational goals of identifying predictive (selecting which patient should receive which drug/therapy) or prognostic (disease progress and outcome in an individual patient) biomarkers and/or identifying network vulnerabilities that represent potential targets for therapeutic benefit with existing drugs (including drug repurposing) or for the development of new drugs. These various goals are not necessarily mutually exclusive or inclusive. Within this volume, readers will find examples of many of the activities noted above. Each chapter contains practical and/or methodological insights to guide readers in the design and interpretation of their own and published work.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, W405A Research Building, 3970 Reservoir NW, Washington, DC, 20057, USA.
| |
Collapse
|
93
|
Fulzele A, Bennett EJ. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome. Methods Mol Biol 2018; 1844:363-384. [PMID: 30242721 PMCID: PMC6791129 DOI: 10.1007/978-1-4939-8706-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein ubiquitylation is one of the most prevalent posttranslational modifications (PTM) within cells. Ubiquitin modification of target lysine residues typically marks substrates for proteasome-dependent degradation. However, ubiquitylation can also alter protein function through modulation of protein complexes, localization, or activity, without impacting protein turnover. Taken together, ubiquitylation imparts critical regulatory control over nearly every cellular, physiological, and pathophysiological process. Affinity purification techniques coupled with quantitative mass spectrometry have been robust tools to identify PTMs on endogenous proteins. A peptide antibody-based affinity approach has been successfully utilized to enrich for and identify endogenously ubiquitylated proteins. These antibodies recognize the Lys-ϵ-Gly-Gly (diGLY) remnant that is generated following trypsin digestion of ubiquitylated proteins, and these peptides can then be identified by standard mass spectrometry approaches. This technique has led to the identification of >50,000 ubiquitylation sites in human cells and quantitative information about how many of these sites are altered upon exposure to diverse proteotoxic stressors. In addition, the diGLY proteomics approach has led to the identification of specific ubiquitin ligase targets. Here we provide a detailed method to interrogate the ubiquitin-modified proteome from any eukaryotic organism or tissue.
Collapse
Affiliation(s)
- Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
94
|
Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 2017; 20:135-143. [PMID: 29230017 PMCID: PMC5786475 DOI: 10.1038/s41556-017-0007-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Ribosomes are abundant cellular machines1,2
regulated by assembly, supernumerary subunit turnover, and nascent chain quality
control mechanisms1–5. Moreover, nitrogen starvation
in yeast has been reported to promote selective ribosome delivery to the vacuole
in an autophagy conjugation system-dependent manner, a process called
“ribophagy”6,7. However,
whether ribophagy in mammals is selective or regulated is unclear. Using
Ribo-Keima flux reporters, we find that starvation or mTOR inhibition promotes
VPS34-dependent ribophagic flux, which unlike yeast, is largely ATG8 conjugation
independent and occurs concomitantly with other cytosolic protein autophagic
flux reporters8,9. Ribophagic flux was not induced upon
inhibition of translational elongation or nascent chain uncoupling, but was
induced in a comparatively selective manner upon proteotoxic stress via
arsenite10 or
chromosome mis-segregation11
dependent upon VPS34 and ATG8 conjugation. Unexpectedly, agents typically used
to induce selective autophagy also promoted increased ribosome and cytosolic
protein reporter flux, suggesting significant bulk or
“by-stander” autophagy during what is often considered selective
autophagy12,13. These results emphasize the importance
of monitoring non-specific cargo flux when assessing selective autophagy
pathways.
Collapse
|
95
|
Limoncelli KA, Merrikh CN, Moore MJ. ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay. RNA (NEW YORK, N.Y.) 2017; 23:1946-1960. [PMID: 28956756 PMCID: PMC5689013 DOI: 10.1261/rna.061671.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In budding yeast, inactivating mutations within the 40S ribosomal subunit decoding center lead to 18S rRNA clearance by a quality control mechanism known as nonfunctional 18S rRNA decay (18S NRD). We previously showed that 18S NRD is functionally related to No-Go mRNA Decay (NGD), a pathway for clearing translation complexes stalled on aberrant mRNAs. Whereas the NGD factors Dom34p and Hbs1p contribute to 18S NRD, their genetic deletion (either singly or in combination) only partially stabilizes mutant 18S rRNA. Here we identify Asc1p (aka RACK1) and Rps3p, both stable 40S subunit components, as additional 18S NRD factors. Complete stabilization of mutant 18S rRNA in dom34Δ;asc1Δ and hbs1Δ;asc1Δ strains indicates the existence of two genetically separable 18S NRD pathways. A small region of the Rps3p C-terminal tail known to be subject to post-translational modification is also crucial for 18S NRD. We combine these findings with the effects of mutations in the 5' → 3' and 3' → 5' decay machinery to propose a model wherein multiple targeting and decay pathways kinetically contribute to 18S NRD.
Collapse
Affiliation(s)
- Kelly A Limoncelli
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Christopher N Merrikh
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
96
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
97
|
Hildebrandt A, Alanis-Lobato G, Voigt A, Zarnack K, Andrade-Navarro MA, Beli P, König J. Interaction profiling of RNA-binding ubiquitin ligases reveals a link between posttranscriptional regulation and the ubiquitin system. Sci Rep 2017; 7:16582. [PMID: 29185492 PMCID: PMC5707401 DOI: 10.1038/s41598-017-16695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
RNA-binding ubiquitin ligases (RBULs) have the potential to link RNA-mediated mechanisms to protein ubiquitylation. Despite this, the cellular functions, substrates and interaction partners of most RBULs remain poorly characterized. Affinity purification (AP) combined with quantitative mass spectrometry (MS)-based proteomics is a powerful approach for analyzing protein functions. Mapping the physiological interaction partners of RNA-binding proteins has been hampered by their intrinsic properties, in particular the existence of low-complexity regions, which are prone to engage in non-physiological interactions. Here, we used an adapted AP approach to identify the interaction partners of human RBULs harboring different RNA-binding domains. To increase the likelihood of recovering physiological interactions, we combined control and bait-expressing cells prior to lysis. In this setup, only stable interactions that were originally present in the cell will be identified. We exploit gene function similarity between the bait proteins and their interactors to benchmark our approach in its ability to recover physiological interactions. We reveal that RBULs engage in stable interactions with RNA-binding proteins involved in different steps of RNA metabolism as well as with components of the ubiquitin conjugation machinery and ubiquitin-binding proteins. Our results thus demonstrate their capacity to link posttranscriptional regulation with the ubiquitin system.
Collapse
Affiliation(s)
- Andrea Hildebrandt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Gregorio Alanis-Lobato
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
98
|
Jung Y, Kim HD, Yang HW, Kim HJ, Jang CY, Kim J. Modulating cellular balance of Rps3 mono-ubiquitination by both Hel2 E3 ligase and Ubp3 deubiquitinase regulates protein quality control. Exp Mol Med 2017; 49:e390. [PMID: 29147007 PMCID: PMC5704183 DOI: 10.1038/emm.2017.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.
Collapse
Affiliation(s)
- Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building 603-3, Korea University, Seoul, Republic of Korea
| | - Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chang-Young Jang
- Laboratory of Cell Biology, Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building 603-3, Korea University, Seoul, Republic of Korea
| |
Collapse
|
99
|
Lee J, Salazar Hernández MA, Auen T, Mucka P, Lee J, Ozcan U. PGC-1α functions as a co-suppressor of XBP1s to regulate glucose metabolism. Mol Metab 2017; 7:119-131. [PMID: 29129613 PMCID: PMC5784318 DOI: 10.1016/j.molmet.2017.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s) suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. Methods We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. Results We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. Conclusions Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s. XBP1s suppresses FoxO1 activity and hepatic gluconeogenesis. PGC-1α physically interacts with XBP1s and functions as a co-suppressor of XBP1s in the liver. The suppression of XBP1s activity by PGC-1α leads to impaired glucose homeostasis in obese mice. Hepatic PGC-1α promotes gluconeogenesis as a co-activator and also as a co-suppressor.
Collapse
Affiliation(s)
- Jaemin Lee
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Current address: Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | | | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Justin Lee
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
100
|
Abstract
Human development requires intricate cell specification and communication pathways that allow an embryo to generate and appropriately connect more than 200 different cell types. Key to the successful completion of this differentiation programme is the quantitative and reversible regulation of core signalling networks, and post-translational modification with ubiquitin provides embryos with an essential tool to accomplish this task. Instigated by E3 ligases and reversed by deubiquitylases, ubiquitylation controls many processes that are fundamental for development, such as cell division, fate specification and migration. As aberrant function or regulation of ubiquitylation enzymes is at the roots of developmental disorders, cancer, and neurodegeneration, modulating the activity of ubiquitylation enzymes is likely to provide strategies for therapeutic intervention.
Collapse
|