51
|
Conin B, Billault-Chaumartin I, El Sayyed H, Quenech'Du N, Cockram C, Koszul R, Espéli O. Extended sister-chromosome catenation leads to massive reorganization of the E. coli genome. Nucleic Acids Res 2022; 50:2635-2650. [PMID: 35212387 PMCID: PMC8934667 DOI: 10.1093/nar/gkac105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/07/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
In bacteria, chromosome segregation occurs progressively from the origin to terminus within minutes of replication of each locus. Between replication and segregation, sister loci are held in an apparent cohesive state by topological links. The decatenation activity of topoisomerase IV (Topo IV) is required for segregation of replicated loci, yet little is known about the structuring of the chromosome maintained in a cohesive state. In this work, we investigated chromosome folding in cells with altered decatenation activities. Within minutes after Topo IV inactivation, massive chromosome reorganization occurs, associated with increased in contacts between nearby loci, likely trans-contacts between sister chromatids, and in long-range contacts between the terminus and distant loci. We deciphered the respective roles of Topo III, MatP and MukB when TopoIV activity becomes limiting. Topo III reduces short-range inter-sister contacts suggesting its activity near replication forks. MatP, the terminus macrodomain organizing system, and MukB, the Escherichia coli SMC, promote long-range contacts with the terminus. We propose that the large-scale conformational changes observed under these conditions reveal defective decatenation attempts involving the terminus area. Our results support a model of spatial and temporal partitioning of the tasks required for sister chromosome segregation.
Collapse
Affiliation(s)
- Brenna Conin
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France.,Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France.,Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Ingrid Billault-Chaumartin
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Hafez El Sayyed
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Nicole Quenech'Du
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Charlotte Cockram
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France
| | - Romain Koszul
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
52
|
Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2022; 119:2115854119. [PMID: 35101983 PMCID: PMC8833148 DOI: 10.1073/pnas.2115854119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
How bacteria with multipartite genomes organize and segregate their DNA is poorly understood. Here, we investigate a prototypical multipartite genome in the plant pathogen Agrobacterium tumefaciens. We identify previously unappreciated interreplicon interactions: the four replicons cluster through interactions at their centromeres, and the two chromosomes, one circular and one linear, interact along their replication arms. Our data suggest that these interreplicon contacts play critical roles in the organization and maintenance of multipartite genomes. Bacterial species from diverse phyla contain multiple replicons, yet how these multipartite genomes are organized and segregated during the cell cycle remains poorly understood. Agrobacterium tumefaciens has a 2.8-Mb circular chromosome (Ch1), a 2.1-Mb linear chromosome (Ch2), and two large plasmids (pAt and pTi). We used this alpha proteobacterium as a model to investigate the global organization and temporal segregation of a multipartite genome. Using chromosome conformation capture assays, we demonstrate that both the circular and the linear chromosomes, but neither of the plasmids, have their left and right arms juxtaposed from their origins to their termini, generating interarm interactions that require the broadly conserved structural maintenance of chromosomes complex. Moreover, our study revealed two types of interreplicon interactions: “ori-ori clustering” in which the replication origins of all four replicons interact, and “Ch1-Ch2 alignment” in which the arms of Ch1 and Ch2 interact linearly along their lengths. We show that the centromeric proteins (ParB1 for Ch1 and RepBCh2 for Ch2) are required for both types of interreplicon contacts. Finally, using fluorescence microscopy, we validated the clustering of the origins and observed their frequent colocalization during segregation. Altogether, our findings provide a high-resolution view of the conformation of a multipartite genome. We hypothesize that intercentromeric contacts promote the organization and maintenance of diverse replicons.
Collapse
|
53
|
Dugar G, Hofmann A, Heermann DW, Hamoen LW. A chromosomal loop anchor mediates bacterial genome organization. Nat Genet 2022; 54:194-201. [PMID: 35075232 DOI: 10.1038/s41588-021-00988-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
Nucleoprotein complexes play an integral role in genome organization of both eukaryotes and prokaryotes. Apart from their role in locally structuring and compacting DNA, several complexes are known to influence global organization by mediating long-range anchored chromosomal loop formation leading to spatial segregation of large sections of DNA. Such megabase-range interactions are ubiquitous in eukaryotes, but have not been demonstrated in prokaryotes. Here, using a genome-wide sedimentation-based approach, we found that a transcription factor, Rok, forms large nucleoprotein complexes in the bacterium Bacillus subtilis. Using chromosome conformation capture and live-imaging of DNA loci, we show that these complexes robustly interact with each other over large distances. Importantly, these Rok-dependent long-range interactions lead to anchored chromosomal loop formation, thereby spatially isolating large sections of DNA, as previously observed for insulator proteins in eukaryotes.
Collapse
Affiliation(s)
- Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
54
|
Vasileva D, Streich J, Burdick L, Klingeman D, Chhetri HB, Brelsford C, Ellis JC, Close DM, Jacobson D, Michener J. Protoplast fusion in Bacillus species produces frequent, unbiased, genome-wide homologous recombination. Nucleic Acids Res 2022; 50:6211-6223. [PMID: 35061904 PMCID: PMC9226520 DOI: 10.1093/nar/gkac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.
Collapse
Affiliation(s)
| | | | | | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hari B Chhetri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J Christopher Ellis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dan M Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel A Jacobson
- Correspondence may also be addressed to Daniel A. Jacobson. Tel: +1 865 574 6134; Fax: +1 865 241 2869;
| | - Joshua K Michener
- To whom correspondence should be addressed. Tel: +1 865 576 7957; Fax: +1 865 576 8646;
| |
Collapse
|
55
|
Gaimster H, Winterhalter C, Koh A, Murray H. Visualizing the Replisome, Chromosome Breaks, and Replication Restart in Bacillus subtilis. Methods Mol Biol 2022; 2476:263-276. [PMID: 35635709 DOI: 10.1007/978-1-0716-2221-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Research over the last two decades has revealed that bacterial genomes are highly organized and that bacteria have sophisticated mechanisms in place to ensure their correct replication and segregation into progeny cells. Here we discuss techniques that can be used with live bacterial cells to analyze DNA replisome dynamics, double-strand chromosome breaks, and restart of repaired replication forks.
Collapse
Affiliation(s)
- Hannah Gaimster
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alan Koh
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
56
|
Carron L, Morlot JB, Lesne A, Mozziconacci J. The 3D Organization of Chromatin Colors in Mammalian Nuclei. Methods Mol Biol 2022; 2301:317-336. [PMID: 34415544 DOI: 10.1007/978-1-0716-1390-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While many computational methods have been proposed for 3D chromosome reconstruction from chromosomal contact maps, these methods are rarely used for the interpretation of such experimental data, in particular Hi-C data. We posit that this is due to the lack of an easy-to-use implementation of the proposed algorithms, as well as to the important computational cost of most methods. We here give a detailed implementation of the fast ShRec3D algorithm. We provide a tutorial that will enable the reader to reconstruct 3D consensus structures for human chromosomes and to decorate these structures with chromatin epigenetic states. We use this methodology to show that the bivalent chromatin, including Polycomb-rich domains, is spatially segregated and located in between the active and the quiescent chromatin compartments.
Collapse
Affiliation(s)
- Leopold Carron
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France
- Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Jean-Baptiste Morlot
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France
| | - Annick Lesne
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France.
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Julien Mozziconacci
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France.
- Muséum National d'Histoire Naturelle, Structure et Instabilité des Genomes, Paris, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
57
|
Rashid FZM, Detmar L, Dame RT. Chromosome Conformation Capture in Bacteria and Archaea. Methods Mol Biol 2022; 2516:1-28. [PMID: 35922618 DOI: 10.1007/978-1-0716-2413-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The three-dimensional structure of the chromosome is encoded within its sequence and regulates activities such as replication and transcription. This necessitates the study of the spatial organization of the chromosome in relation to the underlying sequence. Chromosome conformation capture (3C) techniques are proximity ligation-based approaches that simplify the three-dimensional architecture of the chromosome into a one-dimensional library of hybrid ligation junctions. Deciphering the information contained in these libraries resolves chromosome architecture in a sequence-specific manner. This chapter describes the preparation of 3C libraries for bacteria and archaea. It details how the three-dimensional architecture of local chromatin can be extracted from the 3C library using qPCR (3C-qPCR), and it summarizes the processing of 3C libraries for next-generation sequencing (3C-Seq) for a study of global chromosome organization.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Laurien Detmar
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
58
|
3D Genome Organization: Causes and Consequences for DNA Damage and Repair. Genes (Basel) 2021; 13:genes13010007. [PMID: 35052348 PMCID: PMC8775012 DOI: 10.3390/genes13010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023] Open
Abstract
The inability to repair damaged DNA severely compromises the integrity of any organism. In eukaryotes, the DNA damage response (DDR) operates within chromatin, a tightly organized DNA–histone complex in a non-random manner within the nucleus. Chromatin thus orchestrates various cellular processes, including repair. Here, we examine the chromatin landscape before, during, and after the DNA damage, focusing on double strand breaks (DSBs). We study how chromatin is modified during the repair process, not only around the damaged region (in cis), but also genome-wide (in trans). Recent evidence has highlighted a complex landscape in which different chromatin parameters (stiffness, compaction, loops) are transiently modified, defining “codes” for each specific stage of the DDR. We illustrate a novel aspect of DDR where chromatin modifications contribute to the movement of DSB-damaged chromatin, as well as undamaged chromatin, ensuring the mobilization of DSBs, their clustering, and their repair processes.
Collapse
|
59
|
Rom JS, Hart MT, McIver KS. PRD-Containing Virulence Regulators (PCVRs) in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:772874. [PMID: 34737980 PMCID: PMC8560693 DOI: 10.3389/fcimb.2021.772874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.
Collapse
Affiliation(s)
- Joseph S Rom
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Meaghan T Hart
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Kevin S McIver
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States.,Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
60
|
Rashid FZM, Mahlandt E, van der Vaart M, Boer DEC, Varela Alvarez M, Henneman B, Brocken DJW, Voskamp P, Blok A, Shimizu T, Meijer A, Luijsterburg M, Goedhart J, Crémazy FGE, Dame R. HI-NESS: a family of genetically encoded DNA labels based on a bacterial nucleoid-associated protein. Nucleic Acids Res 2021; 50:e10. [PMID: 34734265 PMCID: PMC8789088 DOI: 10.1093/nar/gkab993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023] Open
Abstract
The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS — a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Eike Mahlandt
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Michiel van der Vaart
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Monica Varela Alvarez
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Bram Henneman
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Daan J W Brocken
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Anneloes J Blok
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Thomas S Shimizu
- Systems Biology, AMOLF Institute, Amsterdam 1098XG, The Netherlands
| | - Annemarie H Meijer
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Joachim Goedhart
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Remus T Dame
- To whom correspondence should be addressed. Tel: +31 71 527 5605;
| |
Collapse
|
61
|
Goel VY, Hansen AS. The macro and micro of chromosome conformation capture. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e395. [PMID: 32987449 PMCID: PMC8236208 DOI: 10.1002/wdev.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from megabase-scale compartments and topologically associating domains (TADs) down to kilobase-scale enhancer-promoter interactions. Understanding the functional role of each layer of genome organization is a gateway to understanding cell state, development, and disease. Here, we discuss the evolution of 3C-based technologies for mapping 3D genome organization. We focus on genomics methods and provide a historical account of the development from 3C to Hi-C. We also discuss ChIP-based techniques that focus on 3D genome organization mediated by specific proteins, capture-based methods that focus on particular regions or regulatory elements, 3C-orthogonal methods that do not rely on restriction digestion and proximity ligation, and methods for mapping the DNA-RNA and RNA-RNA interactomes. We consider the biological discoveries that have come from these methods, examine the mechanistic contributions of CTCF, cohesin, and loop extrusion to genomic folding, and detail the 3D genome field's current understanding of nuclear architecture. Finally, we give special consideration to Micro-C as an emerging frontier in chromosome conformation capture and discuss recent Micro-C findings uncovering fine-scale chromatin organization in unprecedented detail. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- Viraat Y. Goel
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anders S. Hansen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
62
|
Antar H, Soh YM, Zamuner S, Bock FP, Anchimiuk A, Rios PDL, Gruber S. Relief of ParB autoinhibition by parS DNA catalysis and recycling of ParB by CTP hydrolysis promote bacterial centromere assembly. SCIENCE ADVANCES 2021; 7:eabj2854. [PMID: 34613769 PMCID: PMC8494293 DOI: 10.1126/sciadv.abj2854] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Three-component ParABS systems are widely distributed factors for plasmid partitioning and chromosome segregation in bacteria. ParB acts as adaptor protein between the 16–base pair centromeric parS DNA sequences and the DNA segregation proteins ParA and Smc (structural maintenance of chromosomes). Upon cytidine triphosphate (CTP) and parS DNA binding, ParB dimers form DNA clamps that spread onto parS-flanking DNA by sliding, thus assembling the so-called partition complex. We show here that CTP hydrolysis is essential for efficient chromosome segregation by ParABS but largely dispensable for Smc recruitment. Our results suggest that CTP hydrolysis contributes to partition complex assembly via two mechanisms. It promotes ParB unloading from DNA to limit the extent of ParB spreading, and it recycles off-target ParB clamps to allow for parS retargeting, together superconcentrating ParB near parS. We also propose a model for clamp closure involving a steric clash when binding ParB protomers to opposing parS half sites.
Collapse
Affiliation(s)
- Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Young-Min Soh
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Stefano Zamuner
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florian P. Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Anchimiuk
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
63
|
The spatial position effect: synthetic biology enters the era of 3D genomics. Trends Biotechnol 2021; 40:539-548. [PMID: 34607694 DOI: 10.1016/j.tibtech.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Microbial cell factories are critical to achieving green biomanufacturing. A position effect occurs when a synthetic gene circuit is expressed from different positions in the chassis strain genome. Here, we propose the concept of the 'spatial position effect,' which uses technologies in 3D genomics to reveal the spatial structure characteristics of the 3D genome of the chassis. On this basis, we propose to rationally design the integration sites of synthetic gene circuits, use reporter genes for preliminary screening, and integrate synthetic gene circuits into promising sites for further experiments. This approach can produce stable and efficient chassis strains for green biomanufacturing. The proposed spatial position effect brings synthetic biology into the era of 3D genomics.
Collapse
|
64
|
MacPhillamy C, Pitchford WS, Alinejad-Rokny H, Low WY. Opportunity to improve livestock traits using 3D genomics. Anim Genet 2021; 52:785-798. [PMID: 34494283 DOI: 10.1111/age.13135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
The advent of high-throughput chromosome conformation capture and sequencing (Hi-C) has enabled researchers to probe the 3D architecture of the mammalian genome in a genome-wide manner. Simultaneously, advances in epigenomic assays, such as chromatin immunoprecipitation and sequencing (ChIP-seq) and DNase-seq, have enabled researchers to study cis-regulatory interactions and chromatin accessibility across the same genome-wide scale. The use of these data has revealed many unique insights into gene regulation and disease pathomechanisms in several model organisms. With the advent of these high-throughput sequencing technologies, there has been an ever-increasing number of datasets available for study; however, this is often limited to model organisms. Livestock species play critical roles in the economies of developing and developed nations alike. Despite this, they are greatly underrepresented in the 3D genomics space; Hi-C and related technologies have the potential to revolutionise livestock breeding by enabling a more comprehensive understanding of how production traits are controlled. The growth in human and model organism Hi-C data has seen a surge in the availability of computational tools for use in 3D genomics, with some tools using machine learning techniques to predict features and improve dataset quality. In this review, we provide an overview of the 3D genome and discuss the status of 3D genomics in livestock before delving into advancing the field by drawing inspiration from research in human and mouse. We end by offering future directions for livestock research in the field of 3D genomics.
Collapse
Affiliation(s)
- C MacPhillamy
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| | - W S Pitchford
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| | - H Alinejad-Rokny
- Biological & Medical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Computer Science and Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - W Y Low
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| |
Collapse
|
65
|
Lioy VS, Lorenzi JN, Najah S, Poinsignon T, Leh H, Saulnier C, Aigle B, Lautru S, Thibessard A, Lespinet O, Leblond P, Jaszczyszyn Y, Gorrichon K, Varoquaux N, Junier I, Boccard F, Pernodet JL, Bury-Moné S. Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation. Nat Commun 2021; 12:5221. [PMID: 34471117 PMCID: PMC8410849 DOI: 10.1038/s41467-021-25462-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase. Conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends tend to be transcriptionally quiescent compartments with different structural features. The onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture, from a rather 'open' to a 'closed' conformation, in which highly expressed specialized metabolite biosynthetic genes form new boundaries. Thus, our results indicate that the linear chromosome of S. ambofaciens is partitioned into structurally distinct entities, suggesting a link between chromosome folding, gene expression and genome evolution.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Jean-Noël Lorenzi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Soumaya Najah
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thibault Poinsignon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hervé Leh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Corinne Saulnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kevin Gorrichon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nelle Varoquaux
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
66
|
Anchimiuk A, Lioy VS, Bock FP, Minnen A, Boccard F, Gruber S. A low Smc flux avoids collisions and facilitates chromosome organization in Bacillus subtilis. eLife 2021; 10:65467. [PMID: 34346312 PMCID: PMC8357415 DOI: 10.7554/elife.65467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.
Collapse
Affiliation(s)
- Anna Anchimiuk
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florian Patrick Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anita Minnen
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
67
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
68
|
Brandão HB, Ren Z, Karaboja X, Mirny LA, Wang X. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol 2021; 28:642-651. [PMID: 34312537 DOI: 10.1038/s41594-021-00626-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Chromosome organization mediated by structural maintenance of chromosomes (SMC) complexes is vital in many organisms. SMC complexes act as motors that extrude DNA loops, but it remains unclear what happens when multiple complexes encounter one another on the same DNA in living cells and how these interactions may help to organize an active genome. We therefore created a crash-course track system to study SMC complex encounters in vivo by engineering defined SMC loading sites in the Bacillus subtilis chromosome. Chromosome conformation capture (Hi-C) analyses of over 20 engineered strains show an amazing variety of chromosome folding patterns. Through three-dimensional polymer simulations and theory, we determine that these patterns require SMC complexes to bypass each other in vivo, as recently seen in an in vitro study. We posit that the bypassing activity enables SMC complexes to avoid traffic jams while spatially organizing the genome.
Collapse
Affiliation(s)
- Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Leonid A Mirny
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
69
|
Gilbert BR, Thornburg ZR, Lam V, Rashid FZM, Glass JI, Villa E, Dame RT, Luthey-Schulten Z. Generating Chromosome Geometries in a Minimal Cell From Cryo-Electron Tomograms and Chromosome Conformation Capture Maps. Front Mol Biosci 2021; 8:644133. [PMID: 34368224 PMCID: PMC8339304 DOI: 10.3389/fmolb.2021.644133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vinson Lam
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Fatema-Zahra M Rashid
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
70
|
Xu Z, Dixon JR. Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 2021; 19:139-150. [PMID: 31875884 DOI: 10.1093/bfgp/elz026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples. These types of information are valuable for understanding the role of genome sequence and genetic variation on genome function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture (3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic analysis and genome sequencing.
Collapse
|
71
|
Labarde A, Jakutyte L, Billaudeau C, Fauler B, López-Sanz M, Ponien P, Jacquet E, Mielke T, Ayora S, Carballido-López R, Tavares P. Temporal compartmentalization of viral infection in bacterial cells. Proc Natl Acad Sci U S A 2021; 118:e2018297118. [PMID: 34244425 PMCID: PMC8285916 DOI: 10.1073/pnas.2018297118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral-bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication.
Collapse
Affiliation(s)
- Audrey Labarde
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lina Jakutyte
- Laboratoire de Virologie Moléculaire et Structurale, CNRS Unité Propre de Recherche 3296 and Institut Fédératif de Recherche 115, 91198 Gif-sur-Yvette, France
| | - Cyrille Billaudeau
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Beatrix Fauler
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Maria López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Prishila Ponien
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Thorsten Mielke
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Rut Carballido-López
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
72
|
Balaguer FDA, Aicart-Ramos C, Fisher GL, de Bragança S, Martin-Cuevas EM, Pastrana CL, Dillingham MS, Moreno-Herrero F. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS. eLife 2021; 10:67554. [PMID: 34250901 PMCID: PMC8299390 DOI: 10.7554/elife.67554] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.
Collapse
Affiliation(s)
- Francisco de Asis Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gemma Lm Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Sara de Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M Martin-Cuevas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
73
|
Serrano E, Torres R, Alonso JC. Nucleoid-associated Rok differentially affects chromosomal transformation on Bacillus subtilis recombination-deficient cells. Environ Microbiol 2021; 23:3318-3331. [PMID: 33973337 DOI: 10.1111/1462-2920.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Rok, a Bacillus subtilis nucleoid-associated protein (NAP), negatively regulates competence development and silences xenogeneic genes. We show that rok inactivation increases rpoB482 natural intraspecies chromosomal transformation (CT) and plasmid transformation to a different extent. In ΔaddAB, ΔrecO, recF15, ΔrecU, ΔruvAB or rec+ cells intraspecies CT significantly increases, but the ΔrecD2 mutation reduces, and the ΔrecX, ΔradA or ΔdprA mutation further decreases CT in the Δrok context when compared to rok+ cells. These observations support the idea that rok inactivation, by altering the topology of the recipient DNA, differentially affects the integration of homologous DNA in rec-deficient strains, and in minor extent the competent subpopulation size. The impairment of other NAP (Hbsu or LrpC) also increased intra- and interspecies CT (nonself-DNA, ~8% nucleotide sequence divergence) in rec+ cells, but differentially reduced both types of CTs in certain rec-deficient strains. We describe that rok inactivation significantly stimulates intra and interspecies CT but differentially reduces them in transformation-deficient cells, perhaps by altering the nucleoid architecture. We extend the observation to other NAPs (Hbsu, LrpC).
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| |
Collapse
|
74
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
75
|
Cockram C, Thierry A, Koszul R. Generation of gene-level resolution chromosome contact maps in bacteria and archaea. STAR Protoc 2021; 2:100512. [PMID: 34027477 PMCID: PMC8121701 DOI: 10.1016/j.xpro.2021.100512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chromosome conformation capture (Hi-C) has become a routine method for probing the 3D organization of genomes. However, when applied to bacteria and archaea, current protocols are expensive and limited in their resolution. By dissecting the different steps of published eukaryotic and prokaryotic Hi-C protocols, we have developed a cost- and time-effective approach to generate high-resolution (down to 500 bp – 1 kb) contact matrices of both bacteria and archaea genomes. For complete details on the use and execution of this protocol, please refer to Cockram et al. (2020). Optimized Hi-C protocol for archaeal and bacterial genomes Generation of genome-wide contact maps up to 1 kb resolution Detailed description of steps from cell fixation to sequencing library preparation A cost- and time-effective approach offering gene-level resolution contact maps
Collapse
Affiliation(s)
- Charlotte Cockram
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 5015 Paris, France
| | - Agnès Thierry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 5015 Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 5015 Paris, France
| |
Collapse
|
76
|
Ultra-deep sequencing reveals dramatic alteration of organellar genomes in Physcomitrella patens due to biased asymmetric recombination. Commun Biol 2021; 4:633. [PMID: 34045660 PMCID: PMC8159992 DOI: 10.1038/s42003-021-02141-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Destabilization of organelle genomes causes organelle dysfunction that appears as abnormal growth in plants and diseases in human. In plants, loss of the bacterial-type homologous recombination repair (HRR) factors RECA and RECG induces organelle genome instability. In this study, we show the landscape of organelle genome instability in Physcomitrella patens HRR knockout mutants by deep sequencing in combination with informatics approaches. Genome-wide maps of rearrangement positions in the organelle genomes, which exhibited prominent mutant-specific patterns, were highly biased in terms of direction and location and often associated with dramatic variation in read depth. The rearrangements were location-dependent and mostly derived from the asymmetric products of microhomology-mediated recombination. Our results provide an overall picture of organelle-specific gross genomic rearrangements in the HRR mutants, and suggest that chloroplasts and mitochondria share common mechanisms for replication-related rearrangements. Masaki Odahara and Kensuke Nakamura et al. use deep paired-end sequencing to examine organellar genome recombination when homologous recombination repair genes are individually knocked out in the moss, Physcomitrella patens. Their results suggest that chloroplasts and mitochondria share a common mechanism for replication-related rearrangements.
Collapse
|
77
|
Lioy VS, Junier I, Lagage V, Vallet I, Boccard F. Distinct Activities of Bacterial Condensins for Chromosome Management in Pseudomonas aeruginosa. Cell Rep 2021; 33:108344. [PMID: 33147461 DOI: 10.1016/j.celrep.2020.108344] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Three types of structurally related structural maintenance of chromosomes (SMC) complexes, referred to as condensins, have been identified in bacteria. Smc-ScpAB is present in most bacteria, whereas MukBEF is found in enterobacteria and MksBEF is scattered over the phylogenic tree. The contributions of these condensins to chromosome management were characterized in Pseudomonas aeruginosa, which carries both Smc-ScpAB and MksBEF. In this bacterium, SMC-ScpAB controls chromosome disposition by juxtaposing chromosome arms. In contrast, MksBEF is critical for chromosome segregation in the absence of the main segregation system, and it affects the higher-order architecture of the chromosome by promoting DNA contacts in the megabase range. Strikingly, our results reveal a prevalence of Smc-ScpAB over MksBEF involving a coordination of their activities with chromosome replication. They also show that E. coli MukBEF can substitute for MksBEF in P. aeruginosa while prevailing over Smc-ScpAB. Our results reveal a hierarchy between activities of bacterial condensins on the same chromosome.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ivan Junier
- CNRS, Université Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France
| | - Valentine Lagage
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Isabelle Vallet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
78
|
Kim KD. Potential roles of condensin in genome organization and beyond in fission yeast. J Microbiol 2021; 59:449-459. [PMID: 33877578 DOI: 10.1007/s12275-021-1039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
The genome is highly organized hierarchically by the function of structural maintenance of chromosomes (SMC) complex proteins such as condensin and cohesin from bacteria to humans. Although the roles of SMC complex proteins have been well characterized, their specialized roles in nuclear processes remain unclear. Condensin and cohesin have distinct binding sites and mediate long-range and short-range genomic associations, respectively, to form cell cycle-specific genome organization. Condensin can be recruited to highly expressed genes as well as dispersed repeat genetic elements, such as Pol III-transcribed genes, LTR retrotransposon, and rDNA repeat. In particular, mitotic transcription factors Ace2 and Ams2 recruit condensin to their target genes, forming centromeric clustering during mitosis. Condensin is potentially involved in various chromosomal processes such as the mobility of chromosomes, chromosome territories, DNA reannealing, and transcription factories. The current knowledge of condensin in fission yeast summarized in this review can help us understand how condensin mediates genome organization and participates in chromosomal processes in other organisms.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
79
|
Messelink JJB, van Teeseling MCF, Janssen J, Thanbichler M, Broedersz CP. Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nat Commun 2021; 12:1963. [PMID: 33785756 PMCID: PMC8010069 DOI: 10.1038/s41467-021-22189-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/15/2021] [Indexed: 02/01/2023] Open
Abstract
The order and variability of bacterial chromosome organization, contained within the distribution of chromosome conformations, are unclear. Here, we develop a fully data-driven maximum entropy approach to extract single-cell 3D chromosome conformations from Hi-C experiments on the model organism Caulobacter crescentus. The predictive power of our model is validated by independent experiments. We find that on large genomic scales, organizational features are predominantly present along the long cell axis: chromosomal loci exhibit striking long-ranged two-point axial correlations, indicating emergent order. This organization is associated with large genomic clusters we term Super Domains (SuDs), whose existence we support with super-resolution microscopy. On smaller genomic scales, our model reveals chromosome extensions that correlate with transcriptional and loop extrusion activity. Finally, we quantify the information contained in chromosome organization that may guide cellular processes. Our approach can be extended to other species, providing a general strategy to resolve variability in single-cell chromosomal organization.
Collapse
Affiliation(s)
- Joris J B Messelink
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Prokaryotic Cell Biology Group, Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Jacqueline Janssen
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
80
|
Karaboja X, Ren Z, Brandão HB, Paul P, Rudner DZ, Wang X. XerD unloads bacterial SMC complexes at the replication terminus. Mol Cell 2021; 81:756-766.e8. [PMID: 33472056 DOI: 10.1016/j.molcel.2020.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Collapse
Affiliation(s)
- Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Payel Paul
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
81
|
Fajardo-Cavazos P, Nicholson WL. Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation. Life (Basel) 2021; 11:33. [PMID: 33430182 PMCID: PMC7825584 DOI: 10.3390/life11010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the mechanisms of microgravity perception and response in prokaryotes (Bacteria and Archaea) lag behind those which have been elucidated in eukaryotic organisms. In this hypothesis paper, we: (i) review how eukaryotic cells sense and respond to microgravity using various pathways responsive to unloading of mechanical stress; (ii) we observe that prokaryotic cells possess many structures analogous to mechanosensitive structures in eukaryotes; (iii) we review current evidence indicating that prokaryotes also possess active mechanosensing and mechanotransduction mechanisms; and (iv) we propose a complete mechanotransduction model including mechanisms by which mechanical signals may be transduced to the gene expression apparatus through alterations in bacterial nucleoid architecture, DNA supercoiling, and epigenetic pathways.
Collapse
Affiliation(s)
| | - Wayne L. Nicholson
- Space Life Sciences Laboratory, Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Merritt Island, FL 32953, USA;
| |
Collapse
|
82
|
Multi-scale architecture of archaeal chromosomes. Mol Cell 2020; 81:473-487.e6. [PMID: 33382983 DOI: 10.1016/j.molcel.2020.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2023]
Abstract
Chromosome conformation capture (3C) technologies have identified topologically associating domains (TADs) and larger A/B compartments as two salient structural features of eukaryotic chromosomes. These structures are sculpted by the combined actions of transcription and structural maintenance of chromosomes (SMC) superfamily proteins. Bacterial chromosomes fold into TAD-like chromosomal interaction domains (CIDs) but do not display A/B compartment-type organization. We reveal that chromosomes of Sulfolobus archaea are organized into CID-like topological domains in addition to previously described larger A/B compartment-type structures. We uncover local rules governing the identity of the topological domains and their boundaries. We also identify long-range loop structures and provide evidence of a hub-like structure that colocalizes genes involved in ribosome biogenesis. In addition to providing high-resolution descriptions of archaeal chromosome architectures, our data provide evidence of multiple modes of organization in prokaryotic chromosomes and yield insights into the evolution of eukaryotic chromosome conformation.
Collapse
|
83
|
Cockram C, Thierry A, Gorlas A, Lestini R, Koszul R. Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol Cell 2020; 81:459-472.e10. [PMID: 33382984 DOI: 10.1016/j.molcel.2020.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.
Collapse
Affiliation(s)
- Charlotte Cockram
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France
| | - Agnès Thierry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France
| | - Aurore Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Roxane Lestini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS UMR7645 - INSERM U1182, IP Paris, 91128 Palaiseau Cedex, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France.
| |
Collapse
|
84
|
Banigan EJ, Mirny LA. The interplay between asymmetric and symmetric DNA loop extrusion. eLife 2020; 9:e63528. [PMID: 33295869 PMCID: PMC7793625 DOI: 10.7554/elife.63528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Chromosome compaction is essential for reliable transmission of genetic information. Experiments suggest that ∼1000-fold compaction is driven by condensin complexes that extrude chromatin loops, by progressively collecting chromatin fiber from one or both sides of the complex to form a growing loop. Theory indicates that symmetric two-sided loop extrusion can achieve such compaction, but recent single-molecule studies (Golfier et al., 2020) observed diverse dynamics of condensins that perform one-sided, symmetric two-sided, and asymmetric two-sided extrusion. We use simulations and theory to determine how these molecular properties lead to chromosome compaction. High compaction can be achieved if even a small fraction of condensins have two essential properties: a long residence time and the ability to perform two-sided (not necessarily symmetric) extrusion. In mixtures of condensins I and II, coupling two-sided extrusion and stable chromatin binding by condensin II promotes compaction. These results provide missing connections between single-molecule observations and chromosome-scale organization.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Leonid A Mirny
- Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
85
|
Gaultney RA, Vincent AT, Lorioux C, Coppée JY, Sismeiro O, Varet H, Legendre R, Cockram CA, Veyrier F, Picardeau M. 4-Methylcytosine DNA modification is critical for global epigenetic regulation and virulence in the human pathogen Leptospira interrogans. Nucleic Acids Res 2020; 48:12102-12115. [PMID: 33301041 PMCID: PMC7708080 DOI: 10.1093/nar/gkaa966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
In bacteria, DNA methylation can be facilitated by 'orphan' DNA methyltransferases lacking cognate restriction endonucleases, but whether and how these enzymes control key cellular processes are poorly understood. The effects of a specific modification, 4-methylcytosine (4mC), are even less clear, as this epigenetic marker is unique to bacteria and archaea, whereas the bulk of epigenetic research is currently performed on eukaryotes. Here, we characterize a 4mC methyltransferase from the understudied pathogen Leptospira spp. Inactivating this enzyme resulted in complete abrogation of CTAG motif methylation, leading to genome-wide dysregulation of gene expression. Mutants exhibited growth defects, decreased adhesion to host cells, higher susceptibility to LPS-targeting antibiotics, and, importantly, were no longer virulent in an acute infection model. Further investigation resulted in the discovery of at least one gene, that of an ECF sigma factor, whose transcription was altered in the methylase mutant and, subsequently, by mutation of the CTAG motifs in the promoter of the gene. The genes that comprise the regulon of this sigma factor were, accordingly, dysregulated in the methylase mutant and in a strain overexpressing the sigma factor. Our results highlight the importance of 4mC in Leptospira physiology, and suggest the same of other understudied species.
Collapse
Affiliation(s)
| | - Antony T Vincent
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | - Céline Lorioux
- Unité Biologie des Spirochètes, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | | | - Frédéric J Veyrier
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | | |
Collapse
|
86
|
Matthey-Doret C, Baudry L, Breuer A, Montagne R, Guiglielmoni N, Scolari V, Jean E, Campeas A, Chanut PH, Oriol E, Méot A, Politis L, Vigouroux A, Moreau P, Koszul R, Cournac A. Computer vision for pattern detection in chromosome contact maps. Nat Commun 2020; 11:5795. [PMID: 33199682 PMCID: PMC7670471 DOI: 10.1038/s41467-020-19562-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Chromosomes of all species studied so far display a variety of higher-order organisational features, such as self-interacting domains or loops. These structures, which are often associated to biological functions, form distinct, visible patterns on genome-wide contact maps generated by chromosome conformation capture approaches such as Hi-C. Here we present Chromosight, an algorithm inspired from computer vision that can detect patterns in contact maps. Chromosight has greater sensitivity than existing methods on synthetic simulated data, while being faster and applicable to any type of genomes, including bacteria, viruses, yeasts and mammals. Our method does not require any prior training dataset and works well with default parameters on data generated with various protocols. Chromatin loops bridging distant loci within chromosomes can be detected by a variety of techniques such as Hi-C. Here the authors present Chromosight, an algorithm applied on mammalian, bacterial, viral and yeast genomes, able to detect various types of pattern in chromosome contact maps, including chromosomal loops.
Collapse
Affiliation(s)
- Cyril Matthey-Doret
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Lyam Baudry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Axel Breuer
- ENGIE, Global Energy Management, Paris, France
| | - Rémi Montagne
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France
| | - Nadège Guiglielmoni
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France
| | - Vittore Scolari
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France
| | - Etienne Jean
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France
| | | | | | - Edgar Oriol
- ENGIE, Global Energy Management, Paris, France
| | - Adrien Méot
- ENGIE, Global Energy Management, Paris, France
| | | | | | - Pierrick Moreau
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France.
| | - Axel Cournac
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, Paris, France.
| |
Collapse
|
87
|
Magnitov MD, Kuznetsova VS, Ulianov SV, Razin SV, Tyakht AV. Benchmark of software tools for prokaryotic chromosomal interaction domain identification. Bioinformatics 2020; 36:4560-4567. [PMID: 32492116 PMCID: PMC7653553 DOI: 10.1093/bioinformatics/btaa555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
Motivation The application of genome-wide chromosome conformation capture (3C) methods to prokaryotes provided insights into the spatial organization of their genomes and identified patterns conserved across the tree of life, such as chromatin compartments and contact domains. Prokaryotic genomes vary in GC content and the density of restriction sites along the chromosome, suggesting that these properties should be considered when planning experiments and choosing appropriate software for data processing. Diverse algorithms are available for the analysis of eukaryotic chromatin contact maps, but their potential application to prokaryotic data has not yet been evaluated. Results Here, we present a comparative analysis of domain calling algorithms using available single-microbe experimental data. We evaluated the algorithms’ intra-dataset reproducibility, concordance with other tools and sensitivity to coverage and resolution of contact maps. Using RNA-seq as an example, we showed how orthogonal biological data can be utilized to validate the reliability and significance of annotated domains. We also suggest that in silico simulations of contact maps can be used to choose optimal restriction enzymes and estimate theoretical map resolutions before the experiment. Our results provide guidelines for researchers investigating microbes and microbial communities using high-throughput 3C assays such as Hi-C and 3C-seq. Availability and implementation The code of the analysis is available at https://github.com/magnitov/prokaryotic_cids. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mikhail D Magnitov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine.,Group of Genome Spatial Organization, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Veronika S Kuznetsova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia.,Group of Bioinformatics
| | - Sergey V Ulianov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biology, Moscow State University, Moscow 119234, Russia
| | - Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biology, Moscow State University, Moscow 119234, Russia
| | - Alexander V Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine.,Group of Bioinformatics
| |
Collapse
|
88
|
The Major Chromosome Condensation Factors Smc, HBsu, and Gyrase in Bacillus subtilis Operate via Strikingly Different Patterns of Motion. mSphere 2020; 5:5/5/e00817-20. [PMID: 32907955 PMCID: PMC7485690 DOI: 10.1128/msphere.00817-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
All types of cells need to compact their chromosomes containing their genomic information several-thousand-fold in order to fit into the cell. In eukaryotes, histones achieve a major degree of compaction and bind very tightly to DNA such that they need to be actively removed to allow access of polymerases to the DNA. Bacteria have evolved a basic, highly dynamic system of DNA compaction, accommodating rapid adaptability to changes in environmental conditions. We show that the Bacillus subtilis histone-like protein HBsu exchanges on DNA on a millisecond scale and moves through the entire nucleoid containing the genome as a slow-mobility fraction and a dynamic fraction, both having short dwell times. Thus, HBsu achieves compaction via short and transient DNA binding, thereby allowing rapid access of DNA replication or transcription factors to DNA. Topoisomerase gyrase and B. subtilis Smc show different interactions with DNA in vivo, displaying continuous loading or unloading from DNA, or using two fractions, one moving through the genome and one statically bound on a time scale of minutes, respectively, revealing three different modes of DNA compaction in vivo. Although DNA-compacting proteins have been extensively characterized in vitro, knowledge of their DNA binding dynamics in vivo is greatly lacking. We have employed single-molecule tracking to characterize the motion of the three major chromosome compaction factors in Bacillus subtilis, Smc (structural maintenance of chromosomes) proteins, topoisomerase DNA gyrase, and histone-like protein HBsu. We show that these three proteins display strikingly different patterns of interaction with DNA; while Smc displays two mobility fractions, one static and one moving through the chromosome in a constrained manner, gyrase operates as a single slow-mobility fraction, suggesting that all gyrase molecules are catalytically actively engaged in DNA binding. Conversely, bacterial histone-like protein HBsu moves through the nucleoid as a larger, slow-mobility fraction and a smaller, high-mobility fraction, with both fractions having relatively short dwell times. Turnover within the SMC complex that makes up the static fraction is shown to be important for its function in chromosome compaction. Our report reveals that chromosome compaction in bacteria can occur via fast, transient interactions in vivo, avoiding clashes with RNA and DNA polymerases. IMPORTANCE All types of cells need to compact their chromosomes containing their genomic information several-thousand-fold in order to fit into the cell. In eukaryotes, histones achieve a major degree of compaction and bind very tightly to DNA such that they need to be actively removed to allow access of polymerases to the DNA. Bacteria have evolved a basic, highly dynamic system of DNA compaction, accommodating rapid adaptability to changes in environmental conditions. We show that the Bacillus subtilis histone-like protein HBsu exchanges on DNA on a millisecond scale and moves through the entire nucleoid containing the genome as a slow-mobility fraction and a dynamic fraction, both having short dwell times. Thus, HBsu achieves compaction via short and transient DNA binding, thereby allowing rapid access of DNA replication or transcription factors to DNA. Topoisomerase gyrase and B. subtilis Smc show different interactions with DNA in vivo, displaying continuous loading or unloading from DNA, or using two fractions, one moving through the genome and one statically bound on a time scale of minutes, respectively, revealing three different modes of DNA compaction in vivo.
Collapse
|
89
|
Guilhas B, Walter JC, Rech J, David G, Walliser NO, Palmeri J, Mathieu-Demaziere C, Parmeggiani A, Bouet JY, Le Gall A, Nollmann M. ATP-Driven Separation of Liquid Phase Condensates in Bacteria. Mol Cell 2020; 79:293-303.e4. [PMID: 32679076 DOI: 10.1016/j.molcel.2020.06.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/08/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Liquid-liquid phase-separated (LLPS) states are key to compartmentalizing components in the absence of membranes; however, it is unclear whether LLPS condensates are actively and specifically organized in the subcellular space and by which mechanisms. Here, we address this question by focusing on the ParABS DNA segregation system, composed of a centromeric-like sequence (parS), a DNA-binding protein (ParB), and a motor (ParA). We show that parS and ParB associate to form nanometer-sized, round condensates. ParB molecules diffuse rapidly within the nucleoid volume but display confined motions when trapped inside ParB condensates. Single ParB molecules are able to rapidly diffuse between different condensates, and nucleation is strongly favored by parS. Notably, the ParA motor is required to prevent the fusion of ParB condensates. These results describe a novel active mechanism that splits, segregates, and localizes non-canonical LLPS condensates in the subcellular space.
Collapse
Affiliation(s)
- Baptiste Guilhas
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jerome Rech
- LMGM, CBI, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Gabriel David
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Nils Ole Walliser
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | | | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France; LPHI, CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Yves Bouet
- LMGM, CBI, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France.
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
90
|
Yin M, Ye B, Jin Y, Liu L, Zhang Y, Li P, Wang Y, Li Y, Han Y, Shen W, Zhao Z. Changes in Vibrio natriegens Growth Under Simulated Microgravity. Front Microbiol 2020; 11:2040. [PMID: 32983034 PMCID: PMC7483581 DOI: 10.3389/fmicb.2020.02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
The growth rate of bacteria increases under simulated microgravity (SMG) with low-shear force. The next-generation microbial chassis Vibrio natriegens (V. natriegens) is a fast-growing Gram-negative, non-pathogenic bacterium with a generation time of less than 10 min. Screening of a V. natriegens strain with faster growth rate was attempted by 2-week continuous long-term culturing under SMG. However, the rapid growth rate of this strain made it difficult to obtain the desired mutant strain with even more rapid growth. Thus, a mutant with slower growth rate emerged. Multi-omics integration analysis was conducted to explore why this mutant grew more slowly, which might inform us about the molecular mechanisms of rapid growth of V. natriegens instead. The transcriptome data revealed that whereas genes related to mechanical signal transduction and flagellin biogenesis were up-regulated, those involved in adaptive responses, anaerobic and nitrogen metabolism, chromosome segregation and cell vitality were down-regulated. Moreover, genome-wide chromosome conformation capture (Hi-C) results of the slower growth mutant and wide type indicated that SMG-induced great changes of genome 3D organization were highly correlated with differentially expressed genes (DEGs). Meanwhile, whole genome re-sequencing found a significant number of structure variations (SVs) were enriched in regions with lower interaction frequency and down-regulated genes in the slower growth mutant compared with wild type (WT), which might represent a prophage region. Additionally, there was also a decreased interaction frequency in regions associated with well-orchestrated chromosomes replication. These results suggested that SMG might regulate local gene expression by sensing stress changes through conformation changes in the genome region of genes involved in flagellin, adaptability and chromosome segregation, thus followed by alteration of some physiological characteristics and affecting the growth rate and metabolic capacity.
Collapse
Affiliation(s)
- Man Yin
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Yifei Jin
- Beijing Institute of Biotechnology, Beijing, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ye Li
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
91
|
Anand D, Schumacher D, Søgaard-Andersen L. SMC and the bactofilin/PadC scaffold have distinct yet redundant functions in chromosome segregation and organization in Myxococcus xanthus. Mol Microbiol 2020; 114:839-856. [PMID: 32738827 DOI: 10.1111/mmi.14583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParB∙parS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
92
|
Post-replicative pairing of sister ter regions in Escherichia coli involves multiple activities of MatP. Nat Commun 2020; 11:3796. [PMID: 32732900 PMCID: PMC7394560 DOI: 10.1038/s41467-020-17606-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
The ter region of the bacterial chromosome, where replication terminates, is the last to be segregated before cell division in Escherichia coli. Delayed segregation is controlled by the MatP protein, which binds to specific sites (matS) within ter, and interacts with other proteins such as ZapB. Here, we investigate the role of MatP by combining short-time mobility analyses of the ter locus with biochemical approaches. We find that ter mobility is similar to that of a non ter locus, except when sister ter loci are paired after replication. This effect depends on MatP, the persistence of catenanes, and ZapB. We characterise MatP/DNA complexes and conclude that MatP binds DNA as a tetramer, but bridging matS sites in a DNA-rich environment remains infrequent. We propose that tetramerisation of MatP links matS sites with ZapB and/or with non-specific DNA to promote optimal pairing of sister ter regions until cell division. Protein, MatP, binds to and delays segregation of the ter region of the bacterial chromosome before cell division. Here, the authors show that MatP displays multiple activities to promote optimal pairing of sister ter regions until cell division.
Collapse
|
93
|
Bylino OV, Ibragimov AN, Shidlovskii YV. Evolution of Regulated Transcription. Cells 2020; 9:E1675. [PMID: 32664620 PMCID: PMC7408454 DOI: 10.3390/cells9071675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of all organisms abound with various cis-regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms. In eubacteria, an enhancer-like element is often a single regulatory element, is usually proximal to the core promoter, and is occupied by one or a few activators. Activation of gene expression in archaea is accompanied by the recruitment of an activator to several enhancer-like sites in the upstream promoter region. In eukaryotes, activation of expression is accompanied by the recruitment of activators to multiple enhancers, which may be distant from the core promoter, and the activators act through coactivators. The role of the general DNA architecture in transcription control increases in evolution. As a whole, it can be seen that enhancers of multicellular eukaryotes evolved from the corresponding prototypic enhancer-like regulatory elements with the gradually increasing genome size of organisms.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
| | - Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
94
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
95
|
Maruyama H, Prieto EI, Nambu T, Mashimo C, Kashiwagi K, Okinaga T, Atomi H, Takeyasu K. Different Proteins Mediate Step-Wise Chromosome Architectures in Thermoplasma acidophilum and Pyrobaculum calidifontis. Front Microbiol 2020; 11:1247. [PMID: 32655523 PMCID: PMC7325993 DOI: 10.3389/fmicb.2020.01247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Archaeal species encode a variety of distinct lineage-specific chromosomal proteins. We have previously shown that in Thermococcus kodakarensis, histone, Alba, and TrmBL2 play distinct roles in chromosome organization. Although our understanding of individual archaeal chromosomal proteins has been advancing, how archaeal chromosomes are folded into higher-order structures and how they are regulated are largely unknown. Here, we investigated the primary and higher-order structures of archaeal chromosomes from different archaeal lineages. Atomic force microscopy of chromosome spreads out of Thermoplasma acidophilum and Pyrobaculum calidifontis cells revealed 10-nm fibers and 30–40-nm globular structures, suggesting the occurrence of higher-order chromosomal folding. Our results also indicated that chromosome compaction occurs toward the stationary phase. Micrococcal nuclease digestion indicated that fundamental structural units of the chromosome exist in T. acidophilum and T. kodakarensis but not in P. calidifontis or Sulfolobus solfataricus. In vitro reconstitution showed that, in T. acidophilum, the bacterial HU protein homolog HTa formed a 6-nm fiber by wrapping DNA, and that Alba was responsible for the formation of the 10-nm fiber by binding along the DNA without wrapping. Remarkably, Alba could form different higher-order complexes with histone or HTa on DNA in vitro. Mass spectrometry detected HTa and Rad50 in the T. acidophilum chromosome but not in other species. A putative transcriptional regulator of the AsnC/Lrp family (Pcal_1183) was detected on the P. calidifontis chromosome, but not on that of other species studied. Putative membrane-associated proteins were detected in the chromosomes of the three archaeal species studied, including T. acidophilum, P. calidifontis, and T. kodakarensis. Collectively, our data show that Archaea use different combinations of proteins to achieve chromosomal architecture and functional regulation.
Collapse
Affiliation(s)
- Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, Hirakata, Japan
| | - Eloise I Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Hirakata, Japan
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, Hirakata, Japan
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, Hirakata, Japan
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, Hirakata, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
96
|
Loop extrusion: theory meets single-molecule experiments. Curr Opin Cell Biol 2020; 64:124-138. [PMID: 32534241 DOI: 10.1016/j.ceb.2020.04.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Chromosomes are organized as chromatin loops that promote segregation, enhancer-promoter interactions, and other genomic functions. Loops were hypothesized to form by 'loop extrusion,' by which structural maintenance of chromosomes (SMC) complexes, such as condensin and cohesin, bind to chromatin, reel it in, and extrude it as a loop. However, such exotic motor activity had never been observed. Following an explosion of indirect evidence, recent single-molecule experiments directly imaged DNA loop extrusion by condensin and cohesin in vitro. These experiments observe rapid (kb/s) extrusion that requires ATP hydrolysis and stalls under pN forces. Surprisingly, condensin extrudes loops asymmetrically, challenging previous models. Extrusion by cohesin is symmetric but requires the protein Nipbl. We discuss how SMC complexes may perform their functions on chromatin in vivo.
Collapse
|
97
|
Takemata N, Samson RY, Bell SD. Physical and Functional Compartmentalization of Archaeal Chromosomes. Cell 2020; 179:165-179.e18. [PMID: 31539494 DOI: 10.1016/j.cell.2019.08.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
The three-dimensional organization of chromosomes can have a profound impact on their replication and expression. The chromosomes of higher eukaryotes possess discrete compartments that are characterized by differing transcriptional activities. Contrastingly, most bacterial chromosomes have simpler organization with local domains, the boundaries of which are influenced by gene expression. Numerous studies have revealed that the higher-order architectures of bacterial and eukaryotic chromosomes are dependent on the actions of structural maintenance of chromosomes (SMC) superfamily protein complexes, in particular, the near-universal condensin complex. Intriguingly, however, many archaea, including members of the genus Sulfolobus do not encode canonical condensin. We describe chromosome conformation capture experiments on Sulfolobus species. These reveal the presence of distinct domains along Sulfolobus chromosomes that undergo discrete and specific higher-order interactions, thus defining two compartment types. We observe causal linkages between compartment identity, gene expression, and binding of a hitherto uncharacterized SMC superfamily protein that we term "coalescin."
Collapse
Affiliation(s)
- Naomichi Takemata
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA; Biology Department, Indiana University, Bloomington, IN, USA
| | - Rachel Y Samson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA; Biology Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
98
|
Abstract
In this issue of Cell, Takemata et al. demonstrate that coalescin (ClsN), an archaeal condensin ortholog, facilitates higher-level organization of chromosomes in crenarchaea that bears greater similarity to metazoans than bacteria. Their study unravels biological function for chromosome organization in Archaea and provides insights into the evolution of eukaryotic chromosomal compartmentalization.
Collapse
|
99
|
Abstract
Over the past decade, advances in methodologies for the determination of chromosome conformation have provided remarkable insight into the local and higher-order organization of bacterial and eukaryotic chromosomes. Locally folded domains are found in both bacterial and eukaryotic genomes, although they vary in size. Importantly, genomes of metazoans also possess higher-order organization into A- and B-type compartments, regions of transcriptionally active and inactive chromatin, respectively. Until recently, nothing was known about the organization of genomes of organisms in the third domain of life - the archaea. However, despite archaea possessing simple circular genomes that are morphologically reminiscent of those seen in many bacteria, a recent study of archaea of the genus Sulfolobus has revealed that it organizes its genome into large-scale domains. These domains further interact to form defined A- and B-type compartments. The interplay of transcription and localization of a novel structural maintenance of chromosomes (SMC) superfamily protein, termed coalescin, defines compartment identity. In this Review, we discuss the mechanistic and evolutionary implications of these findings.
Collapse
Affiliation(s)
- Naomichi Takemata
- Biology Department, Indiana University, Bloomington, USA.,Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Stephen D Bell
- Biology Department, Indiana University, Bloomington, USA .,Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| |
Collapse
|
100
|
Banigan EJ, van den Berg AA, Brandão HB, Marko JF, Mirny LA. Chromosome organization by one-sided and two-sided loop extrusion. eLife 2020; 9:e53558. [PMID: 32250245 PMCID: PMC7295573 DOI: 10.7554/elife.53558] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
SMC complexes, such as condensin or cohesin, organize chromatin throughout the cell cycle by a process known as loop extrusion. SMC complexes reel in DNA, extruding and progressively growing DNA loops. Modeling assuming two-sided loop extrusion reproduces key features of chromatin organization across different organisms. In vitro single-molecule experiments confirmed that yeast condensins extrude loops, however, they remain anchored to their loading sites and extrude loops in a 'one-sided' manner. We therefore simulate one-sided loop extrusion to investigate whether 'one-sided' complexes can compact mitotic chromosomes, organize interphase domains, and juxtapose bacterial chromosomal arms, as can be done by 'two-sided' loop extruders. While one-sided loop extrusion cannot reproduce these phenomena, variants can recapitulate in vivo observations. We predict that SMC complexes in vivo constitute effectively two-sided motors or exhibit biased loading and propose relevant experiments. Our work suggests that loop extrusion is a viable general mechanism of chromatin organization.
Collapse
Affiliation(s)
- Edward J Banigan
- Institute for Medical Engineering & Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Aafke A van den Berg
- Institute for Medical Engineering & Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Hugo B Brandão
- Harvard Graduate Program in Biophysics, Harvard UniversityCambridgeUnited States
| | - John F Marko
- Departments of Molecular Biosciences and Physics & Astronomy, Northwestern UniversityEvanstonUnited States
| | - Leonid A Mirny
- Institute for Medical Engineering & Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|