51
|
Cai C, Wang W, Tu Z. Aberrantly DNA Methylated-Differentially Expressed Genes and Pathways in Hepatocellular Carcinoma. J Cancer 2019; 10:355-366. [PMID: 30719129 PMCID: PMC6360310 DOI: 10.7150/jca.27832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Methylation plays a significant role in the etiology and pathogenesis of hepatocellular carcinoma (HCC). The aim of the present study is to identify aberrantly methylated-diferentially expressed genes (DEGs) and dysregulated pathways associated with the development of HCC through integrated analysis of gene expression and methylation microarray. Method: Aberrantly methylated-DEGs were identified from gene expression microarrays (GSE62232, GSE74656) and gene methylation microarrays (GSE44909, GSE57958). Functional enrichment and pathway enrichment analyses were performed through the database of DAVID. Protein-protein interaction (PPI) network was established by STRING and visualized in Cytoscape. Subsequently, overall survival (OS) analysis of hub genes was performed by OncoLnc. Finally, we validated the expression level of CDCA5 by quantitative real-time PCR (qRT-PCR) and western blotting, and performed Immunohistochemical experiments utilizing a tissue microarray. Cell growth assay and flow cytometry were behaved to explore the function of CDCA5. Results: Aberrantly methylated-DEGs were enriched in biological process, molecular function, cellular component and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Among them, cell cycle was enriched most frequently, and some terms associated with cancer were enriched, such as p53 signaling pathway, pathways in cancers, PI3K-Akt signaling pathway and AMPK signaling pathway. After survival analysis and validation in TCGA database including methylation and gene expression status, 12 hub genes were identified. Furthermore, the expression level of new gene CDCA5 was validated in HCC cell lines and hepatic normal cell lines through qRT-PCR and western blotting. In additional, immunohistochemistry experiments revealed higher CDCA5 protein expression from HCC tumor tissues compared with paracancer tissues by tissue microarray. Finally, through loss of function, we demonstrated that CDCA5 promoted proliferation by regulating the cell cycle. Conclusions: In summary, the present study implied possible aberrantly methylated-differentially expressed genes and dysregulated pathways in HCC by bioinformatics analysis and experiments, which could be helpful in understanding the molecular mechanisms underlying the development and progression of HCC. Hub genes including CDC20, AURKB, BIRC5, RRM2, MCM2, PTTG1, CDKN2A, NEK2, CENPF, RACGAP1, GNA14 and especially the new gene CDCA5 may serve as biomarkers for diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Changzhou Cai
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhenhua Tu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People`s Hospital, Shenzhen 518112, China
| |
Collapse
|
52
|
Zhang S, Jiang H, Xu Z, Jiang Y, She Y, Huang X, Feng S, Chen W, Chen S, Chen Y, Qiu G, Zhong S. The resistance of esophageal cancer cells to paclitaxel can be reduced by the knockdown of long noncoding RNA DDX11-AS1 through TAF1/TOP2A inhibition. Am J Cancer Res 2019; 9:2233-2248. [PMID: 31720085 PMCID: PMC6834486 DOI: pmid/31720085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/18/2019] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common malignancies in the world. The currently used chemotherapeutic drug for the treatment of EC is paclitaxel (PTX), the efficacy of which is affected by the development of drug resistance. The present study aims to define the role of the long noncoding RNA (lncRNA) DDX11-AS1 in the progression of EC with the involvement of PTX-resistant EC cells. First, EC and adjacent normal tissue samples were collected from 82 patients with EC, after which the expression levels of DDX11-AS1, TOP2A and TAF1 were determined. The results showed that DDX11-AS1, TOP2A and TAF1 were highly expressed in EC tissues, and there was a positive correlation between the expression levels of DDX11-AS1 and TOP2A. A PTX-resistant EC cell line was constructed. Next, we evaluated the effects of DDX11-AS1 and TOP2A on the resistance of EC cells to PTX, and the regulatory relationships between DDX11-AS1, TOP2A and TAF1 were investigated. DDX11-AS1 could promote TOP2A transcription via TAF1, and the knockdown of TOP2A or DDX11-AS1 could increase the sensitivity of EC cells to PTX. The effect of DDX11-AS1 on the growth of PTX-inhibited tumors was confirmed using a tumor formation assay in nude mice. It was verified that knocking down DDX11-AS1 reduced the expression level of TOP2A and inhibited tumor growth. In conclusion, our findings suggest that DDX11-AS1 knockdown results in reduced resistance of EC cells to PTX by inhibiting TOP2A transcription via TAF1. Therefore, DDX11-AS1 knockdown could be a promising therapeutic strategy for EC.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical CollegeGuangzhou 510220, Guangdong Province, P. R. China
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Hong Jiang
- Department of Nursing, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical CollegeGuangzhou 510220, Guangdong Province, P. R. China
| | - Zhe Xu
- Department of Urology, Cancer Hospital of Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Yi Jiang
- Department of Digestive Oncology, Cancer Hospital of Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Yuqi She
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Xiaoting Huang
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Shanna Feng
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Wanying Chen
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Shuang Chen
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Yun Chen
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Guodong Qiu
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Shilong Zhong
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong Province, P. R. China
| |
Collapse
|
53
|
Xu M, Xiang Y, Liu X, Bai B, Chen R, Liu L, Li M. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mβ. RNA Biol 2018; 16:42-53. [PMID: 30526271 DOI: 10.1080/15476286.2018.1556148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It is obvious that the majority of cellular transcripts are long noncoding RNAs (lncRNAs). Although studies suggested that lncRNAs participate in many biological processes through diverse mechanisms, however, little is known about their effects on epidermal mechanoreceptors. Here, we identified one novel Drosophila lncRNA, Scutellar Macrochaetes Regulatory Gene (SMRG), which regulates scutellar macrochaetes that act as mechanoreceptors by antagonizing the proneural gene scute (sc), through the repressor Enhancer-of-split mβ (E(spl)mβ). SMRG deficiency induced supernumerary scutellar macrochaetes and simultaneously a high sc RNA level in the adult thorax. Genetically, sc overexpression enhanced this supernumerary phenotype, while heterozygous sc mutant rescued this phenotype, both of which were mediated by E(spl)mβ. At the molecular level, SMRG recruited E(spl)mβ to the sc promoter region, which in turn suppressed sc expression. Our work presents a novel function of lncRNA and offers insights into the molecular mechanism underlying mechanoreceptor development.
Collapse
Affiliation(s)
- Mengbo Xu
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Yuanhang Xiang
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Xiaojun Liu
- c State Key Laboratory of Medical Molecular Biology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Baoyan Bai
- d Key Laboratory of Noncoding RNA , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Runsheng Chen
- d Key Laboratory of Noncoding RNA , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Li Liu
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China.,e Key Laboratory of Mental Health , Chinese Academy of Sciences , Beijing , China
| | - Meixia Li
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
54
|
Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018; 9:genes9110564. [PMID: 30469382 PMCID: PMC6266566 DOI: 10.3390/genes9110564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron–sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Ettore Napolitano
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Luisa M R Napolitano
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| | - Silvia Onesti
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
55
|
Long B, Li N, Xu XX, Li XX, Xu XJ, Liu JY, Wu ZH. Long noncoding RNA LOXL1-AS1 regulates prostate cancer cell proliferation and cell cycle progression through miR-541-3p and CCND1. Biochem Biophys Res Commun 2018; 505:561-568. [DOI: 10.1016/j.bbrc.2018.09.160] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
|
56
|
Zhang L, Peng D, Sood AK, Dang CV, Zhong X. Shedding Light on the Dark Cancer Genomes: Long Noncoding RNAs as Novel Biomarkers and Potential Therapeutic Targets for Cancer. Mol Cancer Ther 2018; 17:1816-1823. [PMID: 30181330 PMCID: PMC6127856 DOI: 10.1158/1535-7163.mct-18-0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Recently there have been explosive discoveries of new long noncoding RNAs (lncRNA) obtained by progress in the technology of second-generation sequencing. Genome scale analysis of transcriptome, in conjunction with studies on chromatin modifications at the epigenetic level, identified lncRNAs as a novel type of noncoding transcripts whose length is longer than 200 nucleotides. These transcripts are later found as major participants in various physiologic processes and diseases, especially in human cancers. LncRNAs have been found to function as novel types of oncogenes and tumor suppressors during cancer progression through various mechanisms, which endow them with the potential of serving as reliable biomarkers and novel therapeutic targets for cancers. Mol Cancer Ther; 17(9); 1816-23. ©2018 AACR.
Collapse
Affiliation(s)
- Lin Zhang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dan Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Anil K Sood
- Center for RNA Interference and Non-coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi V Dang
- Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York City, New York
| | - Xiaomin Zhong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
57
|
Wu H, Yao R, Yu S, Chen H, Cai J, Peng S, Pang X, Sun X, Zhang Y, Zhang J. Transcriptome analysis identifies the potential roles of long non‐coding RNAs during parainfluenza virus infection. FEBS Lett 2018; 592:2444-2457. [DOI: 10.1002/1873-3468.13166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Haoming Wu
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Ran‐Ran Yao
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Shuang‐Shuang Yu
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Hong‐Yan Chen
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Juan Cai
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Shu‐Jie Peng
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Xue‐Wen Pang
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Xiu‐Yuan Sun
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Yu Zhang
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| | - Jun Zhang
- Department of Immunology School of Basic Medical Sciences Key Laboratory of Medical Immunology Ministry of Health (Peking University) Peking University Health Science Center Beijing China
| |
Collapse
|
58
|
Integrative Analysis of Dysregulated lncRNA-Associated ceRNA Network Reveals Functional lncRNAs in Gastric Cancer. Genes (Basel) 2018; 9:genes9060303. [PMID: 29912172 PMCID: PMC6027299 DOI: 10.3390/genes9060303] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023] Open
Abstract
Mounting evidence suggests that long noncoding RNAs (lncRNAs) play important roles in the regulation of gene expression by acting as competing endogenous RNA (ceRNA). However, the regulatory mechanisms of lncRNA as ceRNA in gastric cancer (GC) are not fully understood. Here, we first constructed a dysregulated lncRNA-associated ceRNA network by integrating analysis of gene expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs). Then, we determined three lncRNAs (RP5-1120P11, DLEU2, and DDX11-AS1) as hub lncRNAs, in which associated ceRNA subnetworks were involved in cell cycle-related processes and cancer-related pathways. Furthermore, we confirmed that the two lncRNAs (DLEU2 and DDX11-AS1) were significantly upregulated in GC tissues, promote GC cell proliferation, and negatively regulate miRNA expression, respectively. The hub lncRNAs (DLEU2 and DDX11-AS1) could have oncogenic functions, and act as potential ceRNAs to sponge miRNA. Our findings not only provide novel insights on ceRNA regulation in GC, but can also provide opportunities for the functional characterization of lncRNAs in future studies.
Collapse
|
59
|
Expression of long non-coding RNA LINC00973 is consistently increased upon treatment of colon cancer cells with different chemotherapeutic drugs. Biochimie 2018; 151:67-72. [PMID: 29870803 DOI: 10.1016/j.biochi.2018.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
Early prediction of tumor relapse depends on the identification of new prognostic cancer biomarkers, which are suitable for monitoring tumor response to different chemotherapeutic drugs. Using RNA-Seq, RT-qPCR, bioinformatics, and studies utilizing the murine tumor xenograft model, we have found significant and consistent changes in the abundance of five lincRNAs (LINC00973, LINC00941, CASC19, CCAT1, and BCAR4) upon treatment of both HT-29 and HCT-116 cells with 5-fluorouracil, oxaliplatin, and irinotecan at different doses and durations; both in vitro and in vivo. The most frequent changes were detected for LINC00973, whose content is most strongly and consistently increased upon treatment of both colon cancer cell lines with all three chemotherapeutic drugs. Additional studies are required in order to determine the molecular mechanisms by which anticancer drugs affect LINC00973 expression and to define the consequences of its upregulation on drug resistance of cancer cells.
Collapse
|
60
|
Ntini E, Louloupi A, Liz J, Muino JM, Marsico A, Ørom UAV. Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin. Nat Commun 2018; 9:1636. [PMID: 29691407 PMCID: PMC5915440 DOI: 10.1038/s41467-018-04100-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Long ncRNAs are often enriched in the nucleus and at chromatin, but whether their dissociation from chromatin is important for their role in transcription regulation is unclear. Here, we group long ncRNAs using epigenetic marks, expression and strength of chromosomal interactions; we find that long ncRNAs transcribed from loci engaged in strong long-range chromosomal interactions are less abundant at chromatin, suggesting the release from chromatin as a crucial functional aspect of long ncRNAs in transcription regulation of their target genes. To gain mechanistic insight into this, we functionally validate the long ncRNA A-ROD, which enhances DKK1 transcription via its nascent spliced released form. Our data provide evidence that the regulatory interaction requires dissociation of A-ROD from chromatin, with target specificity ensured within the pre-established chromosomal proximity. We propose that the post-transcriptional release of a subset of long ncRNAs from the chromatin-associated template plays an important role in their function as transcription regulators.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Annita Louloupi
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Free University Berlin, 14195, Berlin, Germany
| | - Julia Liz
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Free University Berlin, 14195, Berlin, Germany
| | - Ulf Andersson Vang Ørom
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute for Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
61
|
Liao HT, Huang JW, Lan T, Wang JJ, Zhu B, Yuan KF, Zeng Y. Identification of The Aberrantly Expressed LncRNAs in Hepatocellular Carcinoma: A Bioinformatics Analysis Based on RNA-sequencing. Sci Rep 2018; 8:5395. [PMID: 29599483 PMCID: PMC5876391 DOI: 10.1038/s41598-018-23647-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent subtypes of liver cancer worldwide. LncRNAs have been demonstrated to be associated with the progression of HCC, but a systematic identification and characterization of their clinical roles and molecular mechanisms in HCC has not been conducted. In this study, the aberrantly expressed lncRNAs in HCC tissues were analyzed based on TCGA RNA-seq data. 1162 lncRNAs were found to be aberrantly expressed in HCC tissues, including 232 down-regulated lncRNAs and 930 up-regulated lncRNAs. The top 5 lncRNAs with the highest diagnostic accuracy were further analyzed to evaluate their clinical value and potential mechanism in HCC. Kaplan-Meier curves showed that higher expressions of DDX11-AS1 and AC092171.4 were in correlation with poorer survival in HCC patients. Significant difference was also observed when comparing the expression levels of DDX11-AS1 and SFTA1P in different clinical parameters (p < 0.05). GO analysis showed that genes regulated by the 5 lncRNAs were enriched in certain pathways, such as PI3K pathway. Moreover, GSEA analysis on the expression of DDX11-AS1 showed that DDX11-AS1 affected the gene expressions involved in HCC proliferation, differentiation and cell cycle, indicating an essential role of DDX11-AS1 in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hao-Tian Liao
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Wei Huang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China
| | - Jin-Ju Wang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhu
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China
| | - Ke-Fei Yuan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China.
| | - Yong Zeng
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
62
|
Kim SY, Kwon SK, Lee SY, Baek KH. Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53-/- HCT116 cells. Int J Oncol 2018; 52:1705-1714. [PMID: 29512757 DOI: 10.3892/ijo.2018.4302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Most proteins undergo ubiquitination, a process by which ubiquitin proteins bind to their substrate proteins; by contrast, deubiquitination is a process that reverses ubiquitination. Deubiquitinating enzymes (DUBs) function to remove ubiquitin proteins from the protein targets and serve an essential role in regulating DNA repair, protein degradation, apoptosis and immune responses. Abnormal regulation of DUBs may affect a number of cellular processes and may lead to a variety of human diseases, including cancer. Therefore, it is important to identify abnormally expressed DUBs to identify DUB-related diseases and biological mechanisms. The present study aimed to develop a multiplex polymerase chain reaction screening platform comprising primers for various DUB genes. This assay was used to identify p53-related DUBs in HCT116 p53+/+ and p53-/- cells. The results demonstrated that ubiquitin-specific peptidase 5 (USP5) and ovarian tumor deubiquitinase 6A (OTUD6A) were differentially expressed in p53+/+ and p53-/- HCT116 cells. Based on the data obtained through DUB screening, the protein expression levels of USP5 and OTUD6A were examined by western blotting, which confirmed that both of these DUBs were also expressed differentially in p53+/+ and p53-/- HCT116 cells. In conclusion, results from the DUB screening performed by the present study revealed that the expression of USP5 and OTUD6A may be affected by p53, and this method may be useful for the rapid and cost-effective identification of possible biomarkers.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Seul-Ki Kwon
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - So-Young Lee
- Department of Internal Medicine, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
63
|
Hu X, Sood AK, Dang CV, Zhang L. The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 2018; 48:8-15. [PMID: 29054012 PMCID: PMC5869075 DOI: 10.1016/j.gde.2017.10.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Sequencing technology has facilitated a new era of cancer research, especially in cancer genomics. Using next-generation sequencing, thousands of long noncoding RNAs (lncRNAs) have been identified as abnormally altered in the cancer genome or differentially expressed in tumor tissues. These lncRNAs are associated with imbalanced gene regulation and aberrant biological processes that contribute to malignant transformation. The functions and therapeutic potential of cancer-related lncRNAs have attracted considerable interest in the past few years. Although few lncRNAs have been well-characterized, researchers have recently made impressive progress in understanding lncRNAs and their novel functions, such as regulation of gene expression, metabolism and DNA repair. These latest findings reinforce the crucial roles of lncRNAs in cancer initiation and development, as well as their possible clinical applications.
Collapse
Affiliation(s)
- Xiaowen Hu
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anil K. Sood
- Center for RNA Interference and Non-coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi V. Dang
- Wistar Institute, Philadelphia, PA 19104, USA
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
| | - Lin Zhang
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
64
|
Abstract
A major shift in our understanding of genome regulation has emerged recently. It is now apparent that the majority of cellular transcripts do not code for proteins, and many of them are long noncoding RNAs (lncRNAs). Increasingly, studies suggest that lncRNAs regulate gene expression through diverse mechanisms. We review emerging mechanistic views of lncRNAs in gene regulation in the cell nucleus. We discuss the functional interactions that lncRNAs establish with other molecules as well as the relationship between lncRNA transcription and function. While some of these mechanisms are specific to lncRNAs, others might be shared with other types of genes.
Collapse
Affiliation(s)
- Francesco P Marchese
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Ivan Raimondi
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Maite Huarte
- University of Navarra, Center for Applied Medical Research (CIMA), Pamplona, 31008, Spain. .,Institute of Health Research of Navarra (IdiSNA), Pamplona, 31008, Spain.
| |
Collapse
|
65
|
Capitanio JS, Montpetit B, Wozniak RW. Nucleoplasmic Nup98 controls gene expression by regulating a DExH/D-box protein. Nucleus 2017; 9:1-8. [PMID: 28934014 PMCID: PMC5973140 DOI: 10.1080/19491034.2017.1364826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nucleoporin Nup98 has been linked to the regulation of transcription and RNA metabolism, 1-3 but the mechanisms by which Nup98 contributes to these processes remains largely undefined. Recently, we uncovered interactions between Nup98 and several DExH/D-box proteins (DBPs), a protein family well-known for modulating gene expression and RNA metabolism. 4-6 Analysis of Nup98 and one of these DBPs, DHX9, showed that they directly interact, their association is facilitated by RNA, and Nup98 binding stimulates DHX9 ATPase activity. 7 Furthermore, these proteins were dependent on one another for their proper association with a subset of gene loci to control transcription and modulate mRNA splicing. 7 On the basis of these observations, we proposed that Nup98 functions to regulate DHX9 activity within the nucleoplasm. 7 Since Nup98 is associated with several DBPs, regulation of DHX9 by Nup98 may represent a paradigm for understanding how Nup98, and possibly other FG-Nup proteins, could direct the diverse cellular activities of multiple DBPs.
Collapse
Affiliation(s)
| | - Ben Montpetit
- a Department of Cell Biology , University of Alberta , Edmonton , Canada.,b Department of Viticulture and Enology , University of California at Davis , Davis , CA , USA
| | - Richard W Wozniak
- a Department of Cell Biology , University of Alberta , Edmonton , Canada
| |
Collapse
|
66
|
Shi M, Zhang XY, Yu H, Xiang SH, Xu L, Wei J, Wu Q, Jia R, Wang YG, Lu XJ. DDX11-AS1 as potential therapy targets for human hepatocellular carcinoma. Oncotarget 2017; 8:44195-44202. [PMID: 28496001 PMCID: PMC5546473 DOI: 10.18632/oncotarget.17409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most fatal cancers, whose incidence and death rates are still rising. Here, we report the identification of long non-coding RNAs (IncRNAs) that associated with HCC progression and metabolism based on the systematically analysis of large scale RNA-seq data from HCC patients. We identified seven lncRNAs with high confidence which were highly related with prognostic of HCC. Of note, three of them had quite different expression patterns between the control samples and the patients, and their critical roles in cancer progression were validated. We proposed that DDX11-AS1 play important role during HCC oncogenesis and may serve as potential therapy target for HCC.
Collapse
Affiliation(s)
- Min Shi
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yu Zhang
- Department of General Surgery, Division of Gastrointestinal Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Heguo Yu
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research (SIPPR), Institutes of Reproduction and Development, Fudan University, Shanghai, China
| | - Shi-Hao Xiang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Wei
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Gang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
67
|
Mrhl Long Noncoding RNA Mediates Meiotic Commitment of Mouse Spermatogonial Cells by Regulating Sox8 Expression. Mol Cell Biol 2017; 37:MCB.00632-16. [PMID: 28461394 DOI: 10.1128/mcb.00632-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of various biological processes, including spermatogenesis. Our previous studies have revealed the regulatory loop of mrhl RNA and Wnt signaling, where mrhl RNA negatively regulates Wnt signaling and gets downregulated upon Wnt signaling activation. This downregulation of mrhl RNA is important for the meiotic progression of spermatogonial cells. In our present study, we identified the transcription factor Sox8 as the regulatory link between mrhl RNA expression, Wnt signaling activation, and meiotic progression. In contrast to reports from other groups, we report the expression of Sox8 in germ cells and describe the molecular mechanism of Sox8 regulation by mrhl RNA during differentiation of spermatogonial cells. Binding of mrhl RNA to the Sox8 promoter is accompanied by the assembly of other regulatory factors involving Myc-Max-Mad transcription factors, corepressor Sin3a, and coactivator Pcaf. In the context of Wnt signaling, Sox8 directly regulates the expression of premeiotic and meiotic markers. Prolonged Wnt signaling activation in spermatogonial cells leads to changes in global chromatin architecture and a decrease in levels of stem cell markers.
Collapse
|
68
|
Li S, Li B, Zheng Y, Li M, Shi L, Pu X. Exploring functions of long noncoding RNAs across multiple cancers through co-expression network. Sci Rep 2017; 7:754. [PMID: 28389669 PMCID: PMC5429718 DOI: 10.1038/s41598-017-00856-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/20/2022] Open
Abstract
In contrast to protein-coding genes, long-noncoding RNAs (lncRNAs) are much less well understood, despite increasing evidence indicating a wide range of their biological functions, and possible roles in various cancers. Based on public RNA-seq datasets of four solid cancer types, we here utilize Weighted Correlation Network Analysis (WGCNA) to propose a strategy for exploring the functions of lncRNAs altered in more than two cancer types, which we call onco-lncRNAs. Results indicate that cancer-expressed lncRNAs show high tissue specificity and are weakly expressed, more so than protein-coding genes. Most of the 236 onco-lncRNAs we identified have not been reported to have associations with cancers before. Our analysis exploits co-expression network to reveal that onco-lncRNAs likely play key roles in the multistep development of human cancers, covering a wide range of functions in genome stability maintenance, signaling, cell adhesion and motility, morphogenesis, cell cycle, immune and inflammatory response. These observations contribute to a more comprehensive understanding of cancer-associated lncRNAs, while demonstrating a novel and efficient strategy for subsequent functional studies of lncRNAs.
Collapse
Affiliation(s)
- Suqing Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bin Li
- Center for Pharmacogenomics, School of Life Sciences, and State Key Laboratory of Genetic Engineering and Shanghai Cancer Center/Cancer Institute, Fudan University, Shanghai, 201203, China
| | - Yuanting Zheng
- Center for Pharmacogenomics, School of Life Sciences, and State Key Laboratory of Genetic Engineering and Shanghai Cancer Center/Cancer Institute, Fudan University, Shanghai, 201203, China.,Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Leming Shi
- Center for Pharmacogenomics, School of Life Sciences, and State Key Laboratory of Genetic Engineering and Shanghai Cancer Center/Cancer Institute, Fudan University, Shanghai, 201203, China. .,Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
69
|
Long Noncoding RNA: Genome Organization and Mechanism of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:47-74. [PMID: 28815536 DOI: 10.1007/978-981-10-5203-3_2] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.
Collapse
|
70
|
Gaiti F, Calcino AD, Tanurdžić M, Degnan BM. Origin and evolution of the metazoan non-coding regulatory genome. Dev Biol 2016; 427:193-202. [PMID: 27880868 DOI: 10.1016/j.ydbio.2016.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 02/09/2023]
Abstract
Animals rely on genomic regulatory systems to direct the dynamic spatiotemporal and cell-type specific gene expression that is essential for the development and maintenance of a multicellular lifestyle. Although it is widely appreciated that these systems ultimately evolved from genomic regulatory mechanisms present in single-celled stem metazoans, it remains unclear how this occurred. Here, we focus on the contribution of the non-coding portion of the genome to the evolution of animal gene regulation, specifically on recent insights from non-bilaterian metazoan lineages, and unicellular and colonial holozoan sister taxa. High-throughput next-generation sequencing, largely in bilaterian model species, has led to the discovery of tens of thousands of non-coding RNA genes (ncRNAs), including short, long and circular forms, and uncovered the central roles they play in development. Based on the analysis of non-bilaterian metazoan, unicellular holozoan and fungal genomes, the evolution of some ncRNAs, such as Piwi-interacting RNAs, correlates with the emergence of metazoan multicellularity, while others, including microRNAs, long non-coding RNAs and circular RNAs, appear to be more ancient. Analysis of non-coding regulatory DNA and histone post-translational modifications have revealed that some cis-regulatory mechanisms, such as those associated with proximal promoters, are present in non-animal holozoans, while others appear to be metazoan innovations, most notably distal enhancers. In contrast, the cohesin-CTCF system for regulating higher-order chromatin structure and enhancer-promoter long-range interactions appears to be restricted to bilaterians. Taken together, most bilaterian non-coding regulatory mechanisms appear to have originated before the divergence of crown metazoans. However, differential expansion of non-coding RNA and cis-regulatory DNA repertoires in bilaterians may account for their increased regulatory and morphological complexity relative to non-bilaterians.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| | - Andrew D Calcino
- Department of Integrative Zoology, University of Vienna, Vienna, Austria.
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
71
|
Marchese FP, Huarte M. A long noncoding RNA in DNA replication and chromosome dynamics. Cell Cycle 2016; 16:151-152. [PMID: 27736302 DOI: 10.1080/15384101.2016.1241604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Francesco P Marchese
- a Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression , University of Navarra , Pamplona , Spain.,b Institute of Health Research of Navarra (IdiSNA) , Pamplona , Spain
| | - Maite Huarte
- a Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression , University of Navarra , Pamplona , Spain.,b Institute of Health Research of Navarra (IdiSNA) , Pamplona , Spain
| |
Collapse
|