51
|
Fukagawa T. Critical histone post-translational modifications for centromere function and propagation. Cell Cycle 2017; 16:1259-1265. [PMID: 28598241 DOI: 10.1080/15384101.2017.1325044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The centromere is a critical genomic region that enables faithful chromosome segregation during mitosis, and must be distinguishable from other genomic regions to facilitate establishment of the kinetochore. The centromere-specific histone H3-variant CENP-A forms a special nucleosome that functions as a marker for centromere specification. In addition to the CENP-A nucleosomes, there are additional H3 nucleosomes that have been identified in centromeres, both of which are predicted to exhibit specific features. It is likely that the composite organization of CENP-A and H3 nucleosomes contributes to the formation of centromere-specific chromatin, termed 'centrochromatin'. Recent studies suggest that centrochromatin has specific histone modifications that mediate centromere specification and kinetochore assembly. We use chicken non-repetitive centromeres as a model of centromeric activities to characterize functional features of centrochromatin. This review discusses our recent progress, and that of various other research groups, in elucidating the functional roles of histone modifications in centrochromatin.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- a Graduate School of Frontier Biosciences , Osaka University , Suita , Osaka , Japan
| |
Collapse
|
52
|
Filipescu D, Naughtin M, Podsypanina K, Lejour V, Wilson L, Gurard-Levin ZA, Orsi GA, Simeonova I, Toufektchan E, Attardi LD, Toledo F, Almouzni G. Essential role for centromeric factors following p53 loss and oncogenic transformation. Genes Dev 2017; 31:463-480. [PMID: 28356341 PMCID: PMC5393061 DOI: 10.1101/gad.290924.116] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022]
Abstract
In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the Hjurp and Cenpa promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.
Collapse
Affiliation(s)
- Dan Filipescu
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Monica Naughtin
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Katrina Podsypanina
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Vincent Lejour
- Institut Curie, PSL Research University, UMR3244, CNRS, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, UPMC Université Paris 06, UMR3244, CNRS, F-75005 Paris, France
| | - Laurence Wilson
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Zachary A Gurard-Levin
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Guillermo A Orsi
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Iva Simeonova
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| | - Eleonore Toufektchan
- Institut Curie, PSL Research University, UMR3244, CNRS, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, UPMC Université Paris 06, UMR3244, CNRS, F-75005 Paris, France
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Franck Toledo
- Institut Curie, PSL Research University, UMR3244, CNRS, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, UPMC Université Paris 06, UMR3244, CNRS, F-75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, UMR3664, Centre Nationnal de la Recherche Scientifique (CNRS), Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR3664, CNRS, F-75005 Paris, France
| |
Collapse
|
53
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
54
|
Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE. CENP-A Modifications on Ser68 and Lys124 Are Dispensable for Establishment, Maintenance, and Long-Term Function of Human Centromeres. Dev Cell 2017; 40:104-113. [PMID: 28073008 PMCID: PMC5235356 DOI: 10.1016/j.devcel.2016.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/09/2016] [Accepted: 12/11/2016] [Indexed: 12/24/2022]
Abstract
CENP-A is a histone H3 variant key to epigenetic specification of mammalian centromeres. Using transient overexpression of CENP-A mutants, two recent reports in Developmental Cell proposed essential centromere functions for post-translational modifications of human CENP-A. Phosphorylation at Ser68 was proposed to have an essential role in CENP-A deposition at centromeres. Blockage of ubiquitination at Lys124 was proposed to abrogate localization of CENP-A to the centromere. Following gene inactivation and replacement in human cells, we demonstrate that CENP-A mutants that cannot be phosphorylated at Ser68 or ubiquitinated at Lys124 assemble efficiently at centromeres during G1, mediate early events in centromere establishment at an ectopic chromosomal locus, and maintain centromere function indefinitely. Thus, neither Ser68 nor Lys124 post-translational modification is essential for long-term centromere identity, propagation, cell-cycle-dependent deposition, maintenance, function, or mediation of early steps in centromere establishment.
Collapse
Affiliation(s)
- Daniele Fachinetti
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amira Abdullah
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Evan B Selzer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
55
|
Pan D, Klare K, Petrovic A, Take A, Walstein K, Singh P, Rondelet A, Bird AW, Musacchio A. CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary for CENP-A loading. eLife 2017; 6. [PMID: 28059702 PMCID: PMC5245964 DOI: 10.7554/elife.23352] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023] Open
Abstract
Centromeres are unique chromosomal loci that promote the assembly of kinetochores, macromolecular complexes that bind spindle microtubules during mitosis. In most organisms, centromeres lack defined genetic features. Rather, they are specified epigenetically by a centromere-specific histone H3 variant, CENP-A. The Mis18 complex, comprising the Mis18α:Mis18β subcomplex and M18BP1, is crucial for CENP-A homeostasis. It recruits the CENP-A-specific chaperone HJURP to centromeres and primes it for CENP-A loading. We report here that a specific arrangement of Yippee domains in a human Mis18α:Mis18β 4:2 hexamer binds two copies of M18BP1 through M18BP1’s 140 N-terminal residues. Phosphorylation by Cyclin-dependent kinase 1 (CDK1) at two conserved sites in this region destabilizes binding to Mis18α:Mis18β, limiting complex formation to the G1 phase of the cell cycle. Using an improved viral 2A peptide co-expression strategy, we demonstrate that CDK1 controls Mis18 complex recruitment to centromeres by regulating oligomerization of M18BP1 through the Mis18α:Mis18β scaffold. DOI:http://dx.doi.org/10.7554/eLife.23352.001
Collapse
Affiliation(s)
- Dongqing Pan
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Kerstin Klare
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Annika Take
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Priyanka Singh
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arnaud Rondelet
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alexander W Bird
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
56
|
Stankovic A, Jansen LET. Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:139-162. [PMID: 28840236 DOI: 10.1007/978-3-319-58592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.
Collapse
Affiliation(s)
- Ana Stankovic
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Lars E T Jansen
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| |
Collapse
|