51
|
Mochizuki Y, Funayama R, Shirota M, Kikukawa Y, Ohira M, Karasawa H, Kobayashi M, Ohnuma S, Unno M, Nakayama K. Alternative microexon splicing by RBFOX2 and PTBP1 is associated with metastasis in colorectal cancer. Int J Cancer 2021; 149:1787-1800. [PMID: 34346508 DOI: 10.1002/ijc.33758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Abstract
The splicing of microexons (very small exons) is frequently dysregulated in the brain of individuals with autism spectrum disorder. However, little is known of the patterns, regulatory mechanisms and roles of microexon splicing in cancer. We here examined the transcriptome-wide profile of microexon splicing in matched colorectal cancer (CRC) and normal tissue specimens. Out of 1492 microexons comprising 3 to 15 nucleotides, 21 (1%) manifested differential splicing between CRC and normal tissue. The 21 genes harboring the differentially spliced microexons were enriched in gene ontology terms related to cell adhesion and migration. RNA interference-mediated knockdown experiments identified two splicing factors, RBFOX2 and PTBP1, as regulators of microexon splicing in CRC cells. RBFOX2 and PTBP1 were found to directly bind to microexon-containing pre-mRNAs and to control their splicing in such cells. Differential microexon splicing was shown to be due, at least in part, to altered expression of RBFOX2 and PTBP1 in CRC tissue compared to matched normal tissue. Finally, we found that changes in the pattern of microexon splicing were associated with CRC metastasis. Our data thus suggest that altered expression of RBFOX2 and PTBP1 might influence CRC metastasis through the regulation of microexon splicing.
Collapse
Affiliation(s)
- Yasushi Mochizuki
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuna Kikukawa
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Ohira
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hideaki Karasawa
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Minoru Kobayashi
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinobu Ohnuma
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
52
|
Lee JS, Lamarche-Vane N, Richard S. Microexon alternative splicing of small GTPase regulators: Implication in central nervous system diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1678. [PMID: 34155820 DOI: 10.1002/wrna.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Microexons are small sized (≤51 bp) exons which undergo extensive alternative splicing in neurons, microglia, embryonic stem cells, and cancer cells, giving rise to cell type specific protein isoforms. Due to their small sizes, microexons provide a unique challenge for the splicing machinery. They frequently lack exon splicer enhancers/repressors and require specialized neighboring trans-regulatory and cis-regulatory elements bound by RNA binding proteins (RBPs) for their inclusion. The functional consequences of including microexons within mRNAs have been extensively documented in the central nervous system (CNS) and aberrations in their inclusion have been observed to lead to abnormal processes. Despite the increasing evidence for microexons impacting cellular physiology within CNS, mechanistic details illustrating their functional importance in diseases of the CNS is still limited. In this review, we discuss the unique characteristics of microexons, and how RBPs participate in regulating their inclusion and exclusion during splicing. We consider recent findings of microexon alternative splicing and their implication for regulating the function of small GTPases in the context of the microglia, and we extrapolate these findings to what is known in neurons. We further discuss the emerging evidence for dysregulation of the Rho GTPase pathway in CNS diseases and the consequences contributed by the mis-splicing of microexons. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Jee-San Lee
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
53
|
Chakraborty A, Ay F, Davuluri RV. ExTraMapper: Exon- and Transcript-level mappings for orthologous gene pairs. Bioinformatics 2021; 37:3412-3420. [PMID: 34014317 PMCID: PMC8545320 DOI: 10.1093/bioinformatics/btab393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Access to large-scale genomics and transcriptomics data from various tissues and cell lines allowed the discovery of wide-spread alternative splicing events and alternative promoter usage in mammalians. Between human and mouse, gene-level orthology is currently present for nearly 16k protein-coding genes spanning a diverse repertoire of over 200k total transcript isoforms. RESULTS Here, we describe a novel method, ExTraMapper, which leverages sequence conservation between exons of a pair of organisms and identifies a fine-scale orthology mapping at the exon and then transcript level. ExTraMapper identifies more than 350k exon mappings, as well as 30k transcript mappings between human and mouse using only sequence and gene annotation information. We demonstrate that ExTraMapper identifies a larger number of exon and transcript mappings compared to previous methods. Further, it identifies exon fusions, splits, and losses due to splice site mutations, and finds mappings between microexons that are previously missed. By reanalysis of RNA-seq data from 13 matched human and mouse tissues, we show that ExTraMapper improves the correlation of transcript-specific expression levels suggesting a more accurate mapping of human and mouse transcripts. We also applied the method to detect conserved exon and transcript pairs between human and rhesus macaque genomes to highlight the point that ExTraMapper is applicable to any pair of organisms that have orthologous gene pairs. AVAILABILITY The source code and the results are available at https://github.com/ay-lab/ExTraMapper and http://ay-lab-tools.lji.org/extramapper. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Pediatrics, UC San Diego - School of Medicine, La Jolla, 92093, CA, USA
| | - Ramana V Davuluri
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
54
|
Farini D, Cesari E, Weatheritt RJ, La Sala G, Naro C, Pagliarini V, Bonvissuto D, Medici V, Guerra M, Di Pietro C, Rizzo FR, Musella A, Carola V, Centonze D, Blencowe BJ, Marazziti D, Sette C. A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Rep 2021; 31:107703. [PMID: 32492419 DOI: 10.1016/j.celrep.2020.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3' splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum.
Collapse
Affiliation(s)
- Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Robert J Weatheritt
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Davide Bonvissuto
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Vanessa Medici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Francesca Romana Rizzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; San Raffaele Pisana and University San Raffaele, IRCCS, Rome, Italy
| | | | - Valeria Carola
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Dynamic and Clinical Psychology, University of Rome Sapienza, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Claudio Sette
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
55
|
Liakath-Ali K, Südhof TC. The Perils of Navigating Activity-Dependent Alternative Splicing of Neurexins. Front Mol Neurosci 2021; 14:659681. [PMID: 33767611 PMCID: PMC7985251 DOI: 10.3389/fnmol.2021.659681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Neurexins are presynaptic cell-adhesion molecules essential for synaptic function that are expressed in thousands of alternatively spliced isoforms. Recent studies suggested that alternative splicing at splice site 4 (SS4) of Nrxn1 is tightly regulated by an activity-dependent mechanism. Given that Nrxn1 alternative splicing at SS4 controls NMDA-receptor-mediated synaptic responses, activity-dependent SS4 alternative splicing would suggest a new synaptic plasticity mechanism. However, conflicting results confound the assessment of neurexin alternative splicing, prompting us to re-evaluate this issue. We find that in cortical cultures, membrane depolarization by elevated extracellular K+-concentrations produced an apparent shift in Nrxn1-SS4 alternative splicing by inducing neuronal but not astroglial cell death, resulting in persistent astroglial Nrxn1-SS4+ expression and decreased neuronal Nrxn1-SS4- expression. in vivo, systemic kainate-induced activation of neurons in the hippocampus produced no changes in Nrxn1-SS4 alternative splicing. Moreover, focal kainate injections into the mouse cerebellum induced small changes in Nrxn1-SS4 alternative splicing that, however, were associated with large decreases in Nrxn1 expression and widespread DNA damage. Our results suggest that although Nrxn1-SS4 alternative splicing may represent a mechanism of activity-dependent synaptic plasticity, common procedures for testing this hypothesis are prone to artifacts, and more sophisticated approaches will be necessary to test this important question.
Collapse
Affiliation(s)
- Kif Liakath-Ali
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Thomas C. Südhof
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
56
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
57
|
Naro C, Cesari E, Sette C. Splicing regulation in brain and testis: common themes for highly specialized organs. Cell Cycle 2021; 20:480-489. [PMID: 33632061 PMCID: PMC8018374 DOI: 10.1080/15384101.2021.1889187] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022] Open
Abstract
Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
58
|
Head SA, Hernandez-Alias X, Yang JS, Ciampi L, Beltran-Sastre V, Torres-Méndez A, Irimia M, Schaefer MH, Serrano L. Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers. PLoS Biol 2021; 19:e3001138. [PMID: 33621242 PMCID: PMC7935315 DOI: 10.1371/journal.pbio.3001138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 03/05/2021] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
RNA splicing is widely dysregulated in cancer, frequently due to altered expression or activity of splicing factors (SFs). Microexons are extremely small exons (3–27 nucleotides long) that are highly evolutionarily conserved and play critical roles in promoting neuronal differentiation and development. Inclusion of microexons in mRNA transcripts is mediated by the SF Serine/Arginine Repetitive Matrix 4 (SRRM4), whose expression is largely restricted to neural tissues. However, microexons have been largely overlooked in prior analyses of splicing in cancer, as their small size necessitates specialized computational approaches for their detection. Here, we demonstrate that despite having low expression in normal nonneural tissues, SRRM4 is further silenced in tumors, resulting in the suppression of normal microexon inclusion. Remarkably, SRRM4 is the most consistently silenced SF across all tumor types analyzed, implying a general advantage of microexon down-regulation in cancer independent of its tissue of origin. We show that this silencing is favorable for tumor growth, as decreased SRRM4 expression in tumors is correlated with an increase in mitotic gene expression, and up-regulation of SRRM4 in cancer cell lines dose-dependently inhibits proliferation in vitro and in a mouse xenograft model. Further, this proliferation inhibition is accompanied by induction of neural-like expression and splicing patterns in cancer cells, suggesting that SRRM4 expression shifts the cell state away from proliferation and toward differentiation. We therefore conclude that SRRM4 acts as a proliferation brake, and tumors gain a selective advantage by cutting off this brake. Using data from The Cancer Genome Atlas, this study shows that the splicing factor SRRM4 and its program of differentiation-promoting microexons are downregulated across tumor types with remarkable consistency, providing tumors with a proliferative advantage.
Collapse
Affiliation(s)
- Sarah A. Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- * E-mail: (SAH); (MHS); (LS)
| | - Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Violeta Beltran-Sastre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Méndez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Martin H. Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- * E-mail: (SAH); (MHS); (LS)
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (SAH); (MHS); (LS)
| |
Collapse
|
59
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
60
|
Longaretti A, Forastieri C, Toffolo E, Caffino L, Locarno A, Misevičiūtė I, Marchesi E, Battistin M, Ponzoni L, Madaschi L, Cambria C, Bonasoni MP, Sala M, Perrone D, Fumagalli F, Bassani S, Antonucci F, Tonini R, Francolini M, Battaglioli E, Rusconi F. LSD1 is an environmental stress-sensitive negative modulator of the glutamatergic synapse. Neurobiol Stress 2020; 13:100280. [PMID: 33457471 PMCID: PMC7794663 DOI: 10.1016/j.ynstr.2020.100280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Along with neuronal mechanisms devoted to memory consolidation –including long term potentiation of synaptic strength as prominent electrophysiological correlate, and inherent dendritic spines stabilization as structural counterpart– negative control of memory formation and synaptic plasticity has been described at the molecular and behavioral level. Within this work, we report a role for the epigenetic corepressor Lysine Specific Demethylase 1 (LSD1) as a negative neuroplastic factor whose stress-enhanced activity may participate in coping with adverse experiences. Constitutively increasing LSD1 activity via knocking out its dominant negative splicing isoform neuroLSD1 (neuroLSD1KO mice), we observed extensive structural, functional and behavioral signs of excitatory decay, including disrupted memory consolidation. A similar LSD1 increase, obtained with acute antisense oligonucleotide-mediated neuroLSD1 splicing knock down in primary neuronal cultures, dampens spontaneous glutamatergic transmission, reducing mEPSCs. Remarkably, LSD1 physiological increase occurs in response to psychosocial stress-induced glutamatergic signaling. Since this mechanism entails neuroLSD1 splicing downregulation, we conclude that LSD1/neuroLSD1 ratio modulation in the hippocampus is instrumental to a negative homeostatic feedback, restraining glutamatergic neuroplasticity in response to glutamate. The active process of forgetting provides memories with salience. With our work, we propose that softening memory traces of adversities could further represent a stress-coping process in which LSD1/neuroLSD1 ratio modulation may help preserving healthy emotional references.
Collapse
Affiliation(s)
- A Longaretti
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - C Forastieri
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - E Toffolo
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - L Caffino
- Dept. of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti, 9, Milano, Italy
| | - A Locarno
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - I Misevičiūtė
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - E Marchesi
- Dept. of Chemical and Pharmaceutical Sciences, Università di Ferrara, Via Borsari, 46, Ferrara, Italy
| | - M Battistin
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - L Ponzoni
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - L Madaschi
- UNITECH NO LIMITS, Università Degli Studi di Milano, Via Celoria, 26, Milan, Italy
| | - C Cambria
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - M P Bonasoni
- ASMN Santa Maria Nuova Via Risorgimento, 80 Reggio Emilia, Italy
| | - M Sala
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - D Perrone
- Dept. of Chemical and Pharmaceutical Sciences, Università di Ferrara, Via Borsari, 46, Ferrara, Italy
| | - F Fumagalli
- Dept. of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti, 9, Milano, Italy
| | - S Bassani
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - F Antonucci
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - R Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - M Francolini
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - E Battaglioli
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - F Rusconi
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| |
Collapse
|
61
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
62
|
Denkena J, Zaisser A, Merz B, Klinger B, Kuhl D, Blüthgen N, Hermey G. Neuronal activity regulates alternative exon usage. Mol Brain 2020; 13:148. [PMID: 33172478 PMCID: PMC7656758 DOI: 10.1186/s13041-020-00685-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Neuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.
Collapse
Affiliation(s)
- Johanna Denkena
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Andrea Zaisser
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Barbara Merz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bertram Klinger
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
63
|
Koterniak B, Pilaka PP, Gracida X, Schneider LM, Pritišanac I, Zhang Y, Calarco JA. Global regulatory features of alternative splicing across tissues and within the nervous system of C. elegans. Genome Res 2020; 30:1766-1780. [PMID: 33127752 PMCID: PMC7706725 DOI: 10.1101/gr.267328.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Alternative splicing plays a major role in shaping tissue-specific transcriptomes. Among the broad tissue types present in metazoans, the central nervous system contains some of the highest levels of alternative splicing. Although many documented examples of splicing differences between broad tissue types exist, there remains much to be understood about the splicing factors and the cis sequence elements controlling tissue and neuron subtype-specific splicing patterns. By using translating ribosome affinity purification coupled with deep-sequencing (TRAP-seq) in Caenorhabditis elegans, we have obtained high coverage profiles of ribosome-associated mRNA for three broad tissue classes (nervous system, muscle, and intestine) and two neuronal subtypes (dopaminergic and serotonergic neurons). We have identified hundreds of splice junctions that exhibit distinct splicing patterns between tissue types or within the nervous system. Alternative splicing events differentially regulated between tissues are more often frame-preserving, are more highly conserved across Caenorhabditis species, and are enriched in specific cis regulatory motifs, when compared with other types of exons. By using this information, we have identified a likely mechanism of splicing repression by the RNA-binding protein UNC-75/CELF via interactions with cis elements that overlap a 5′ splice site. Alternatively spliced exons also overlap more frequently with intrinsically disordered peptide regions than constitutive exons. Moreover, regulated exons are often shorter than constitutive exons but are flanked by longer intron sequences. Among these tissue-regulated exons are several highly conserved microexons <27 nt in length. Collectively, our results indicate a rich layer of tissue-specific gene regulation at the level of alternative splicing in C. elegans that parallels the evolutionary forces and constraints observed across metazoa.
Collapse
Affiliation(s)
- Bina Koterniak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Pallavi P Pilaka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Xicotencatl Gracida
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lisa-Marie Schneider
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yun Zhang
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
64
|
The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2020; 43:135-157. [PMID: 33108502 PMCID: PMC7925481 DOI: 10.1007/s00281-020-00822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost. Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS autoimmunity is required before this can be realised.
Collapse
|
65
|
Smith M. MRNA Transcription, Translation, and Defects in Developmental Cognitive and Behavioral Disorders. Front Mol Biosci 2020; 7:577710. [PMID: 33102526 PMCID: PMC7545264 DOI: 10.3389/fmolb.2020.577710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 12/03/2022] Open
Abstract
The growth of expertise in molecular techniques, their application to clinical evaluations, and the establishment of databases with molecular genetic information has led to greater insights into the roles of molecular processes related to gene expression in neurodevelopment and functioning. The goal of this review is to examine new insights into messenger RNA transcription, translation, and cellular protein synthesis and the relevance of genetically determined alterations in these processes in neurodevelopmental, cognitive, and behavioral disorders.
Collapse
|
66
|
Abstract
RNA-binding proteins are a critical group of multifunctional proteins that precisely regulate all aspects of gene expression, from alternative splicing to mRNA trafficking, stability, and translation. Converging evidence highlights aberrant RNA metabolism as a common pathogenic mechanism in several neurodevelopmental and neurodegenerative diseases. However, dysregulation of disease-linked RNA-binding proteins results in widespread, often tissue-specific and/or pleiotropic effects on the transcriptome, making it challenging to determine the underlying cellular and molecular mechanisms that contribute to disease pathogenesis. Understanding how splicing misregulation as well as alterations of mRNA stability and localization impact the activity and function of neuronal proteins is fundamental to addressing neurodevelopmental defects and synaptic dysfunction in disease. Here we highlight recent exciting studies that use high-throughput transcriptomic analysis and advanced genetic, cell biological, and imaging approaches to dissect the role of disease-linked RNA-binding proteins on different RNA processing steps. We focus specifically on efforts to elucidate the functional consequences of aberrant RNA processing on neuronal morphology, synaptic activity and plasticity in development and disease. We also consider new areas of investigation that will elucidate the molecular mechanisms RNA-binding proteins use to achieve spatiotemporal control of gene expression for neuronal homeostasis and plasticity.
Collapse
Affiliation(s)
- Shavanie Prashad
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, CT, USA.,Experimental Pathology Graduate Group, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, CT, USA.,Experimental Pathology Graduate Group, Yale University School of Medicine, Yale University, New Haven, CT, USA.,Yale Center for RNA Science and Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
67
|
Narita A, Nagai M, Mizuno S, Ogishima S, Tamiya G, Ueki M, Sakurai R, Makino S, Obara T, Ishikuro M, Yamanaka C, Matsubara H, Kuniyoshi Y, Murakami K, Ueno F, Noda A, Kobayashi T, Kobayashi M, Usuzaki T, Ohseto H, Hozawa A, Kikuya M, Metoki H, Kure S, Kuriyama S. Clustering by phenotype and genome-wide association study in autism. Transl Psychiatry 2020; 10:290. [PMID: 32807774 PMCID: PMC7431539 DOI: 10.1038/s41398-020-00951-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) has phenotypically and genetically heterogeneous characteristics. A simulation study demonstrated that attempts to categorize patients with a complex disease into more homogeneous subgroups could have more power to elucidate hidden heritability. We conducted cluster analyses using the k-means algorithm with a cluster number of 15 based on phenotypic variables from the Simons Simplex Collection (SSC). As a preliminary study, we conducted a conventional genome-wide association study (GWAS) with a data set of 597 ASD cases and 370 controls. In the second step, we divided cases based on the clustering results and conducted GWAS in each of the subgroups vs controls (cluster-based GWAS). We also conducted cluster-based GWAS on another SSC data set of 712 probands and 354 controls in the replication stage. In the preliminary study, which was conducted in conventional GWAS design, we observed no significant associations. In the second step of cluster-based GWASs, we identified 65 chromosomal loci, which included 30 intragenic loci located in 21 genes and 35 intergenic loci that satisfied the threshold of P < 5.0 × 10-8. Some of these loci were located within or near previously reported candidate genes for ASD: CDH5, CNTN5, CNTNAP5, DNAH17, DPP10, DSCAM, FOXK1, GABBR2, GRIN2A5, ITPR1, NTM, SDK1, SNCA, and SRRM4. Of these 65 significant chromosomal loci, rs11064685 located within the SRRM4 gene had a significantly different distribution in the cases vs controls in the replication cohort. These findings suggest that clustering may successfully identify subgroups with relatively homogeneous disease etiologies. Further cluster validation and replication studies are warranted in larger cohorts.
Collapse
Affiliation(s)
- Akira Narita
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masato Nagai
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Mizuno
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Gen Tamiya
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.7597.c0000000094465255RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Masao Ueki
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.7597.c0000000094465255RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Rieko Sakurai
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.7597.c0000000094465255RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoshi Makino
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.7597.c0000000094465255RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Taku Obara
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Chizuru Yamanaka
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroko Matsubara
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasutaka Kuniyoshi
- grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Murakami
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Fumihiko Ueno
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Aoi Noda
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Tomoko Kobayashi
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Mika Kobayashi
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takuma Usuzaki
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hisashi Ohseto
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Kikuya
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.264706.10000 0000 9239 9995School of Medicine, Teikyo University, Tokyo, Japan
| | - Hirohito Metoki
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.412755.00000 0001 2166 7427School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shigeo Kure
- grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Medicine, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,Graduate School of Medicine, Tohoku University, Sendai, Japan. .,International Research Institute of Disaster Science, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
68
|
Zafarullah M, Tang HT, Durbin-Johnson B, Fourie E, Hessl D, Rivera SM, Tassone F. FMR1 locus isoforms: potential biomarker candidates in fragile X-associated tremor/ataxia syndrome (FXTAS). Sci Rep 2020; 10:11099. [PMID: 32632326 PMCID: PMC7338407 DOI: 10.1038/s41598-020-67946-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder that affects movement and cognition in male and female carriers of a premutation allele of 55-200 CGG repeats in the Fragile X mental retardation (FMR1) gene. It is currently unknown if and when an individual carrier of a premutation allele will develop FXTAS, as clinical assessment fails to identify carriers at risk before significant neurological symptoms are evident. The primary objective of this study was to investigate the alternative splicing landscape at the FMR1 locus in conjunction with brain measures in male individuals with a premutation allele enrolled in a very first longitudinal study, compared to age-matched healthy male controls, with the purpose of identifying biomarkers for early diagnosis, disease prediction and, a progression of FXTAS. Our findings indicate that increased expression of FMR1 mRNA isoforms, including Iso4/4b, Iso10/10b, as well as of the ASFMR1 mRNAs Iso131bp, are present in premutation carriers as compared to non-carrier healthy controls. More specifically, we observed a higher expression of Iso4/4b and Iso10/10b, which encode for truncated proteins, only in those premutation carriers who developed symptoms of FXTAS over time as compared to non-carrier healthy controls, suggesting a potential role in the development of the disorder. In addition, we found a significant association of these molecular changes with various measurements of brain morphology, including the middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), pons, and midbrain, indicating their potential contribution to the pathogenesis of FXTAS. Interestingly, the high expression levels of Iso4/4b observed both at visit 1 and visit 2 and found to be associated with a decrease in mean MCP width only in those individuals who developed FXTAS over time, suggests their role as potential biomarkers for early diagnosis of FXTAS.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA, USA
| | - Emily Fourie
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, 95817 CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
69
|
Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder. Curr Opin Genet Dev 2020; 65:22-33. [PMID: 32535349 DOI: 10.1016/j.gde.2020.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
The discovery and characterization of a network of highly conserved neuronal microexons has provided fundamental new insight into mechanisms underlying nervous system development and function, as well as an important basis for pathway convergence in autism spectrum disorder. In the past few years, considerable progress has been made in comprehensively determining the repertoires of factors that control neuronal microexons. These results have illuminated molecular mechanisms that activate the splicing of microexons, including those that control gene expression programs critical for neurogenesis, as well as synaptic protein translation and neuronal activity. Remarkably, individual disruption of specific microexons in these pathways results in autism-like phenotypes and cognitive impairment in mice. This review discusses these findings and their implications for delivering new therapeutic strategies for neurological disorders.
Collapse
|
70
|
Cabej NR. A neural mechanism of nuclear receptor expression and regionalization. Dev Dyn 2020; 249:1172-1181. [PMID: 32406963 DOI: 10.1002/dvdy.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022] Open
Abstract
Spatially restricted expression of genes by global circulating inducers (hormones, secreted proteins, growth factors, neuromodulators, etc.) was a prerequisite for the evolution of animals. Far from a random occurrence, it is a systematically occurring, certain event, implying that specific information is invested for it to happen. In this minireview, we show for the first time that the expression and regionalization takes place at the level of receptors via a neural mechanism and make an attempt to reconstruct the causal chain from neural signaling to expression of nuclear receptors.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
71
|
Thalhammer A, Jaudon F, Cingolani LA. Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Front Cell Neurosci 2020; 14:104. [PMID: 32477067 PMCID: PMC7235277 DOI: 10.3389/fncel.2020.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Homeostatic plasticity refers to the ability of neuronal networks to stabilize their activity in the face of external perturbations. Most forms of homeostatic plasticity ultimately depend on changes in the expression or activity of ion channels and synaptic proteins, which may occur at the gene, transcript, or protein level. The most extensively investigated homeostatic mechanisms entail adaptations in protein function or localization following activity-dependent posttranslational modifications. Numerous studies have also highlighted how homeostatic plasticity can be achieved by adjusting local protein translation at synapses or transcription of specific genes in the nucleus. In comparison, little attention has been devoted to whether and how alternative splicing (AS) of pre-mRNAs underlies some forms of homeostatic plasticity. AS not only expands proteome diversity but also contributes to the spatiotemporal dynamics of mRNA transcripts. Prominent in the brain where it can be regulated by neuronal activity, it is a flexible process, tightly controlled by a multitude of factors. Given its extensive use and versatility in optimizing the function of ion channels and synaptic proteins, we argue that AS is ideally suited to achieve homeostatic control of neuronal output. We support this thesis by reviewing emerging evidence linking AS to various forms of homeostatic plasticity: homeostatic intrinsic plasticity, synaptic scaling, and presynaptic homeostatic plasticity. Further, we highlight the relevance of this connection for brain pathologies.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
72
|
Shah S, Molinaro G, Liu B, Wang R, Huber KM, Richter JD. FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Rep 2020; 30:4459-4472.e6. [PMID: 32234480 PMCID: PMC7179797 DOI: 10.1016/j.celrep.2020.02.076] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/24/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Silencing of FMR1 and loss of its gene product, FMRP, results in fragile X syndrome (FXS). FMRP binds brain mRNAs and inhibits polypeptide elongation. Using ribosome profiling of the hippocampus, we find that ribosome footprint levels in Fmr1-deficient tissue mostly reflect changes in RNA abundance. Profiling over a time course of ribosome runoff in wild-type tissue reveals a wide range of ribosome translocation rates; on many mRNAs, the ribosomes are stalled. Sucrose gradient ultracentrifugation of hippocampal slices after ribosome runoff reveals that FMRP co-sediments with stalled ribosomes, and its loss results in decline of ribosome stalling on specific mRNAs. One such mRNA encodes SETD2, a lysine methyltransferase that catalyzes H3K36me3. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrates that loss of FMRP alters the deployment of this histone mark. H3K36me3 is associated with alternative pre-RNA processing, which we find occurs in an FMRP-dependent manner on transcripts linked to neural function and autism spectrum disorders.
Collapse
Affiliation(s)
- Sneha Shah
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
73
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
74
|
Velmeshev D, Magistri M, Mazza EMC, Lally P, Khoury N, D'Elia ER, Bicciato S, Faghihi MA. Cell-Type-Specific Analysis of Molecular Pathology in Autism Identifies Common Genes and Pathways Affected Across Neocortical Regions. Mol Neurobiol 2020; 57:2279-2289. [PMID: 32008165 DOI: 10.1007/s12035-020-01879-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Despite its heterogeneity, autism is characterized by a defined behavioral phenotype, suggesting that the molecular pathology affects specific neural substrates to cause behavioral dysfunction. Previous studies identified genes dysregulated in autism cortex but did not address their cell-type specificity. Moreover, it is unknown whether there is a core of genes dysregulated across multiple neocortical regions. We applied RNA sequencing to postmortem brain tissue samples from autism patients and neurologically normal controls and combined our data with previously published datasets. We then identified genes, pathways, and alternative splicing events which are dysregulated in five neocortical regions in autism. To gain information about cell-type specificity of the dysregulated genes, we analyzed single-nuclei RNA sequencing data of adult human cortex and intersected cell-type-specific gene signatures with genes dysregulated in autism in specific cortical regions. We found that autism-associated gene expression changes across 4 frontal and temporal cortex regions converge on 27 genes related to immune response and enriched in human astrocytes, microglia, and brain endothelium. Shared splicing changes, however, are found in genes predominantly associated with synaptic function and adult interneurons and projection neurons. Finally, we demonstrate that regions of DNA differentially methylated in autism overlap genes associated with development and enriched in human cortical oligodendrocytes. Our study identifies signatures of autism molecular pathology shared across neocortical regions, as well as neural cell types enriched for common dysregulated genes, thus paving way for assessing cell-type-specific mechanisms of autism pathology.
Collapse
Affiliation(s)
- Dmitry Velmeshev
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Marco Magistri
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Emilia Maria Cristina Mazza
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, 41121, Modena, Italy
| | - Patrick Lally
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Nathalie Khoury
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Evan Ross D'Elia
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, 41121, Modena, Italy
| | - Mohammad Ali Faghihi
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA. .,Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA.
| |
Collapse
|
75
|
Gonatopoulos-Pournatzis T, Niibori R, Salter EW, Weatheritt RJ, Tsang B, Farhangmehr S, Liang X, Braunschweig U, Roth J, Zhang S, Henderson T, Sharma E, Quesnel-Vallières M, Permanyer J, Maier S, Georgiou J, Irimia M, Sonenberg N, Forman-Kay JD, Gingras AC, Collingridge GL, Woodin MA, Cordes SP, Blencowe BJ. Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Mol Cell 2020; 77:1176-1192.e16. [PMID: 31999954 DOI: 10.1016/j.molcel.2020.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/15/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.
Collapse
Affiliation(s)
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tyler Henderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona 08003, Spain
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Barcelona 08010, Spain
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
76
|
New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:43-81. [PMID: 32006356 DOI: 10.1007/978-3-030-30402-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research.
Collapse
|
77
|
Abstract
The prevalence of autism spectrum disorder (ASD) has been increasing steadily over the last 20 years; however, the molecular basis for the majority of ASD cases remains unknown. Recent advances in next-generation sequencing and detection of DNA modifications have made methylation-dependent regulation of transcription an attractive hypothesis for being a causative factor in ASD etiology. Evidence for abnormal DNA methylation in ASD can be seen on multiple levels, from genetic mutations in epigenetic machinery to loci-specific and genome-wide changes in DNA methylation. Epimutations in DNA methylation can be acquired throughout life, as global DNA methylation reprogramming is dynamic during embryonic development and the early postnatal period that corresponds to the peak time of synaptogenesis. However, technical advances and causative evidence still need to be established before abnormal DNA methylation and ASD can be confidently associated.
Collapse
Affiliation(s)
- Martine W Tremblay
- Program in Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| | - Yong-Hui Jiang
- Program in Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Departments of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| |
Collapse
|
78
|
Lopez Soto EJ, Gandal MJ, Gonatopoulos-Pournatzis T, Heller EA, Luo D, Zheng S. Mechanisms of Neuronal Alternative Splicing and Strategies for Therapeutic Interventions. J Neurosci 2019; 39:8193-8199. [PMID: 31619487 PMCID: PMC6794923 DOI: 10.1523/jneurosci.1149-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023] Open
Abstract
Many cellular and physiological processes are coordinated by regulatory networks that produce a remarkable complexity of transcript isoforms. In the mammalian nervous system, alternative pre-mRNA splicing generates functionally distinct isoforms that play key roles in normal physiology, supporting development, plasticity, complex behaviors, and cognition. Neuronal splicing programs controlled by RNA-binding proteins, are influenced by chromatin modifications and can exhibit neuronal subtype specificity. As highlighted in recent publications, aberrant alternative splicing is a major contributor to disease phenotypes. Therefore, understanding the underlying mechanisms of alternative splicing regulation and identifying functional splicing isoforms with critical phenotypic roles are expected to provide a comprehensive resource for therapeutic development, as illuminated by recent successful interventions of spinal muscular atrophy. Here, we discuss the latest progress in the study of the emerging complexity of alternative splicing mechanisms in neurons, and how these findings inform new therapies to correct and control splicing defects.
Collapse
Affiliation(s)
| | - Michael J Gandal
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | | | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, and
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521
| |
Collapse
|
79
|
Segura-Bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cell Mol Life Sci 2019; 76:3827-3841. [PMID: 31302748 PMCID: PMC11105529 DOI: 10.1007/s00018-019-03208-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- The Francis Crick Institute, London, UK.
| | - Travis H Stracker
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
80
|
Capponi S, Stöffler N, Irimia M, Van Schaik FMA, Ondik MM, Biniossek ML, Lehmann L, Mitschke J, Vermunt MW, Creyghton MP, Graybiel AM, Reinheckel T, Schilling O, Blencowe BJ, Crittenden JR, Timmers HTM. Neuronal-specific microexon splicing of TAF1 mRNA is directly regulated by SRRM4/nSR100. RNA Biol 2019; 17:62-74. [PMID: 31559909 PMCID: PMC6948980 DOI: 10.1080/15476286.2019.1667214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuronal microexons represent the most highly conserved class of alternative splicing events and their timed expression shapes neuronal biology, including neuronal commitment and differentiation. The six-nt microexon 34ʹ is included in the neuronal form of TAF1 mRNA, which encodes the largest subunit of the basal transcription factor TFIID. In this study, we investigate the tissue distribution of TAF1-34ʹ mRNA and protein and the mechanism responsible for its neuronal-specific splicing. Using isoform-specific RNA probes and antibodies, we observe that canonical TAF1 and TAF1-34ʹ have different distributions in the brain, which distinguish proliferating from post-mitotic neurons. Knockdown and ectopic expression experiments demonstrate that the neuronal-specific splicing factor SRRM4/nSR100 promotes the inclusion of microexon 34ʹ into TAF1 mRNA, through the recognition of UGC sequences in the poly-pyrimidine tract upstream of the regulated microexon. These results show that SRRM4 regulates temporal and spatial expression of alternative TAF1 mRNAs to generate a neuronal-specific TFIID complex.
Collapse
Affiliation(s)
- Simona Capponi
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nadja Stöffler
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Manuel Irimia
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Frederik M A Van Schaik
- Molecular Cancer Research and Stem Cells, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mercedes M Ondik
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Lehmann
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Mitschke
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marit W Vermunt
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK) partner site Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine-University of Freiburg, Freiburg, Germany
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jill R Crittenden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
81
|
Furlanis E, Traunmüller L, Fucile G, Scheiffele P. Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs. Nat Neurosci 2019; 22:1709-1717. [PMID: 31451803 PMCID: PMC6763336 DOI: 10.1038/s41593-019-0465-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/09/2019] [Indexed: 01/21/2023]
Abstract
Nervous system function relies on complex assemblies of distinct neuronal cell types that have unique anatomical and functional properties instructed by molecular programs. Alternative splicing is a key mechanism for the expansion of molecular repertoires, and protein splice isoforms shape neuronal cell surface recognition and function. However, the logic of how alternative splicing programs are arrayed across neuronal cells types is poorly understood. We systematically mapped ribosome-associated transcript isoforms in genetically defined neuron types of the mouse forebrain. Our dataset provides an extensive resource of transcript diversity across major neuron classes. We find that neuronal transcript isoform profiles reliably distinguish even closely related classes of pyramidal cells and inhibitory interneurons in the mouse hippocampus and neocortex. These highly specific alternative splicing programs selectively control synaptic proteins and intrinsic neuronal properties. Thus, transcript diversification via alternative splicing is a central mechanism for the functional specification of neuronal cell types and circuits.
Collapse
Affiliation(s)
| | | | - Geoffrey Fucile
- Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland
| | | |
Collapse
|
82
|
Sullivan JM, De Rubeis S, Schaefer A. Convergence of spectrums: neuronal gene network states in autism spectrum disorder. Curr Opin Neurobiol 2019; 59:102-111. [PMID: 31220745 DOI: 10.1016/j.conb.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by social deficits and restrictive and/or repetitive behaviors. The breadth of ASD symptoms is paralleled by the multiplicity of genes that have been implicated in its etiology. Initial findings revealed numerous ASD risk genes that contribute to synaptic function. More recently, genomic and gene expression studies point to altered chromatin function and impaired transcriptional control as additional risk factors for ASD. The consequences of impaired transcriptional alterations in ASD involve consistent changes in synaptic gene expression and cortical neuron specification during brain development. The multiplicity of genetic and environmental factors associated with ASD risk and their convergence onto common molecular pathways in neurons point to ASD as a disorder of gene regulatory networks.
Collapse
Affiliation(s)
- Josefa M Sullivan
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA
| | - Silvia De Rubeis
- Department of Psychiatry, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA.
| |
Collapse
|
83
|
Nakano Y, Wiechert S, Bánfi B. Overlapping Activities of Two Neuronal Splicing Factors Switch the GABA Effect from Excitatory to Inhibitory by Regulating REST. Cell Rep 2019; 27:860-871.e8. [PMID: 30995482 PMCID: PMC6556397 DOI: 10.1016/j.celrep.2019.03.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
A truncating mutation in the mouse Srrm4 gene, which encodes a neuronal splicing factor, causes alternative splicing defects selectively in the ear. The mechanism by which splicing is preserved in the brain of these mice is not known. Here, we show that SRRM3 limits the Srrm4 mutation-associated defects to the ear and that, in cortical neurons, overlapping SRRM3-SRRM4 activity regulates the development of interneuronal inhibition. In vitro, SRRM3 and SRRM4 regulate the same splicing events, but a mutation in mouse Srrm3 causes tremors and mild defects in neuronal alternative splicing, demonstrating unique SRRM3 roles in vivo. Mice harboring mutations in both Srrm3 and Srrm4 die neonatally and exhibit severe splicing defects. In these mice, splicing alterations prevent inactivation of the gene repressor REST, which maintains immature excitatory GABAergic neurotransmission by repressing K-Cl cotransporter 2. Thus, our data reveal that SRRM3 and SRRM4 act redundantly to regulate GABAergic neurotransmission by inactivating REST.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Susan Wiechert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Botond Bánfi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
84
|
|
85
|
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol 2019; 3:691-701. [DOI: 10.1038/s41559-019-0813-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
|
86
|
Witte H, Schreiner D, Scheiffele P. A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes. Eur J Neurosci 2019; 49:1436-1453. [PMID: 30589479 DOI: 10.1111/ejn.14332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.
Collapse
Affiliation(s)
- Harald Witte
- Biozentrum of the University of Basel, Basel, Switzerland
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Basel, Switzerland.,Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | | |
Collapse
|
87
|
Lipscombe D, Lopez Soto EJ. Alternative splicing of neuronal genes: new mechanisms and new therapies. Curr Opin Neurobiol 2019; 57:26-31. [PMID: 30703685 DOI: 10.1016/j.conb.2018.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Dynamic changes in alternative splicing during the life cycle of neurons support development and plasticity, and are implicated in disease pathology. Cell-specific alternative splicing programs coordinate exon selection across networks of functionally connected genes. In this opinion piece, we highlight recent publications that identify some of the molecular mechanisms-RNA and DNA binding proteins and epigenetic modifications-which direct cell-specific exon selection during pre-mRNA splicing. Aberrant splicing patterns are signature features of a growing number of diseases of the nervous system. Recent publications demonstrate the value of delineating basic mechanisms that dictate exon choice to inform the development of new therapeutic strategies that correct or compensate for damaging deficits in alternative splicing.
Collapse
Affiliation(s)
- Diane Lipscombe
- Robert J and Nancy D Carney Institute for Brain Science, Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| | - Eduardo Javier Lopez Soto
- Robert J and Nancy D Carney Institute for Brain Science, Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
88
|
Sapkota D, Lake AM, Yang W, Yang C, Wesseling H, Guise A, Uncu C, Dalal JS, Kraft AW, Lee JM, Sands MS, Steen JA, Dougherty JD. Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Rep 2019; 26:594-607.e7. [PMID: 30650354 PMCID: PMC6392083 DOI: 10.1016/j.celrep.2018.12.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative translation initiation and stop codon readthrough in a few well-studied cases have been shown to allow the same transcript to generate multiple protein variants. Because the brain shows a particularly abundant use of alternative splicing, we sought to study alternative translation in CNS cells. We show that alternative translation is widespread and regulated across brain transcripts. In neural cultures, we identify alternative initiation on hundreds of transcripts, confirm several N-terminal protein variants, and show the modulation of the phenomenon by KCl stimulation. We also detect readthrough in cultures and show differential levels of normal and readthrough versions of AQP4 in gliotic diseases. Finally, we couple translating ribosome affinity purification to ribosome footprinting (TRAP-RF) for cell-type-specific analysis of neuronal and astrocytic translational readthrough in the mouse brain. We demonstrate that this unappreciated mechanism generates numerous and diverse protein isoforms in a cell-type-specific manner in the brain.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Guise
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ceren Uncu
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasbir S Dalal
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew W Kraft
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Sands
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Deparment of Medicine, Washington University School of Medicine, St. Louis, MO 63112, USA
| | - Judith A Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
89
|
Montes M, Sanford BL, Comiskey DF, Chandler DS. RNA Splicing and Disease: Animal Models to Therapies. Trends Genet 2019; 35:68-87. [PMID: 30466729 PMCID: PMC6339821 DOI: 10.1016/j.tig.2018.10.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing of pre-mRNA increases genetic diversity, and recent studies estimate that most human multiexon genes are alternatively spliced. If this process is not highly regulated and accurate, it leads to mis-splicing events, which may result in proteins with altered function. A growing body of work has implicated mis-splicing events in a range of diseases, including cancer, neurodegenerative diseases, and muscular dystrophies. Understanding the mechanisms that cause aberrant splicing events and how this leads to disease is vital for designing effective therapeutic strategies. In this review, we focus on advances in therapies targeting splicing, and highlight the animal models developed to recapitulate disease phenotypes as a model for testing these therapies.
Collapse
Affiliation(s)
- Matías Montes
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brianne L Sanford
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel F Comiskey
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dawn S Chandler
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
90
|
Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, Won H, van Bakel H, Varghese M, Wang Y, Shieh AW, Haney J, Parhami S, Belmont J, Kim M, Losada PM, Khan Z, Mleczko J, Xia Y, Dai R, Wang D, Yang YT, Xu M, Fish K, Hof PR, Warrell J, Fitzgerald D, White K, Jaffe AE, PsychENCODE Consortium, Peters MA, Gerstein M, Liu C, Iakoucheva LM, Pinto D, Geschwind DH. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018; 362:eaat8127. [PMID: 30545856 PMCID: PMC6443102 DOI: 10.1126/science.aat8127] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.
Collapse
Affiliation(s)
- Michael J. Gandal
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Evi Hadjimichael
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca L. Walker
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chao Chen
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Hyejung Won
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Merina Varghese
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongjun Wang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Annie W. Shieh
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jillian Haney
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Sepideh Parhami
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Judson Belmont
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minsoo Kim
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patricia Moran Losada
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justyna Mleczko
- Departments of Medicine and Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xia
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Rujia Dai
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Daifeng Wang
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Yucheng T. Yang
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Min Xu
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Kenneth Fish
- Departments of Medicine and Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick R. Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Dominic Fitzgerald
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kevin White
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago IL 60637
- Tempus Labs, Inc. Chicago IL 60654
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mette A. Peters
- CNS Data Coordination group, Sage Bionetworks, Seattle, WA 98109, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Chunyu Liu
- The School of Life Science, Central South University, Changsha, Hunan 410078, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Dalila Pinto
- Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel H. Geschwind
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
91
|
Haslinger D, Waltes R, Yousaf A, Lindlar S, Schneider I, Lim CK, Tsai MM, Garvalov BK, Acker-Palmer A, Krezdorn N, Rotter B, Acker T, Guillemin GJ, Fulda S, Freitag CM, Chiocchetti AG. Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model. Mol Autism 2018; 9:56. [PMID: 30443311 PMCID: PMC6220561 DOI: 10.1186/s13229-018-0239-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.
Collapse
Affiliation(s)
- Denise Haslinger
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Regina Waltes
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Afsheen Yousaf
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Silvia Lindlar
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ines Schneider
- Institute of Experimental Cancer Research in Pediatrics, Frankfurt am Main, Germany
| | - Chai K Lim
- 3Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Meng-Miao Tsai
- 4Neuropathology, University of Giessen, Giessen, Germany
| | - Boyan K Garvalov
- 4Neuropathology, University of Giessen, Giessen, Germany.,5Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Amparo Acker-Palmer
- 6Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), JW Goethe University of Frankfurt, Frankfurt am Main, Germany
| | | | | | - Till Acker
- 4Neuropathology, University of Giessen, Giessen, Germany
| | - Gilles J Guillemin
- 3Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Simone Fulda
- Institute of Experimental Cancer Research in Pediatrics, Frankfurt am Main, Germany
| | - Christine M Freitag
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
92
|
Quesnel-Vallières M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 2018; 20:51-63. [DOI: 10.1038/s41576-018-0066-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
93
|
Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons. Mol Cell 2018; 72:510-524.e12. [DOI: 10.1016/j.molcel.2018.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
94
|
Furlanis E, Scheiffele P. Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing. Annu Rev Cell Dev Biol 2018; 34:451-469. [PMID: 30028642 DOI: 10.1146/annurev-cellbio-100617-062826] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type-specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.
Collapse
|
95
|
Stilling RM, Moloney GM, Ryan FJ, Hoban AE, Bastiaanssen TF, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. eLife 2018; 7:33070. [PMID: 29809134 PMCID: PMC5995540 DOI: 10.7554/elife.33070] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). In our bodies, there are at least as many microbial cells as human cells. These microbes, known collectively as the microbiome, influence the activity of our brain and also our behaviour. Studies in species from insects to primates have shown that the microbiome affects social behaviour in particular. For example, germ-free mice, which grow up in a sterile environment and thus have no bacteria in or on their bodies, are less sociable than normal mice. For animals to show behaviours such as social interaction, cells in specific regions of the brain must change the activity of their genes. These brain regions include the amygdala, which is part of the brain’s emotion processing network, and also contributes to fear and anxiety responses. Stilling et al. set out to determine whether gene activity in the amygdala during social interaction differs between germ-free mice and those with a normal microbiome. Stilling et al. placed each mouse into a box with three chambers. One chamber contained an unfamiliar mouse while another contained an inanimate object. Germ-free mice were less sociable and spent less time than control animals interacting with the unfamiliar mouse. Before entering either test chamber, the germ-free animals showed signs of excessive activity in the amygdala. During social interaction, they displayed a strikingly different pattern of gene activity in this brain region compared to controls. In particular, they had increased levels of a process called alternative splicing. This process enables cells to produce many different proteins from a single gene. These results reveal one of the steps leading from absence of bacteria during brain development to reduced sociability in adulthood in mice. Increases in gene activity in the amygdala may provide clues to the processes underlying reduced sociability in people with autism spectrum disorders. This new study thus deepens our understanding of the link between the microbiome and brain health.
Collapse
Affiliation(s)
- Roman M Stilling
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Feargal J Ryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Alan E Hoban
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz Fs Bastiaanssen
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
96
|
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition with no current treatment available. Although advances in genetics and genomics have identified hundreds of genes associated with ASD, very little is known about the pathophysiology of ASD and the functional contribution of specific genes to ASD phenotypes. Improved understanding of the biological function of ASD-associated genes and how this heterogeneous group of genetic variants leads to the disease is needed in order to develop therapeutic strategies. Here, we review the current state of ASD research related to gene discovery and examples of emerging molecular mechanisms (protein translation and alternative splicing). In addition, we discuss how patient-derived three-dimensional brain organoids might provide an opportunity to model specific genetic variants in order to define molecular and cellular defects that could be amenable for developing and screening personalized therapies related to ASD.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| |
Collapse
|
97
|
Blue RE, Curry EG, Engels NM, Lee EY, Giudice J. How alternative splicing affects membrane-trafficking dynamics. J Cell Sci 2018; 131:jcs216465. [PMID: 29769303 PMCID: PMC6031328 DOI: 10.1242/jcs.216465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cell biology field has outstanding working knowledge of the fundamentals of membrane-trafficking pathways, which are of critical importance in health and disease. Current challenges include understanding how trafficking pathways are fine-tuned for specialized tissue functions in vivo and during development. In parallel, the ENCODE project and numerous genetic studies have revealed that alternative splicing regulates gene expression in tissues and throughout development at a post-transcriptional level. This Review summarizes recent discoveries demonstrating that alternative splicing affects tissue specialization and membrane-trafficking proteins during development, and examines how this regulation is altered in human disease. We first discuss how alternative splicing of clathrin, SNAREs and BAR-domain proteins influences endocytosis, secretion and membrane dynamics, respectively. We then focus on the role of RNA-binding proteins in the regulation of splicing of membrane-trafficking proteins in health and disease. Overall, our aim is to comprehensively summarize how trafficking is molecularly influenced by alternative splicing and identify future directions centered on its physiological relevance.
Collapse
Affiliation(s)
- R Eric Blue
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ennessa G Curry
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M Engels
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
98
|
Activity-dependent aberrations in gene expression and alternative splicing in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 2018; 115:E5363-E5372. [PMID: 29769330 DOI: 10.1073/pnas.1722546115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that affects about 1 in 10,000 female live births. The underlying cause of RTT is mutations in the X-linked gene, methyl-CpG-binding protein 2 (MECP2); however, the molecular mechanism by which these mutations mediate the RTT neuropathology remains enigmatic. Specifically, although MeCP2 is known to act as a transcriptional repressor, analyses of the RTT brain at steady-state conditions detected numerous differentially expressed genes, while the changes in transcript levels were mostly subtle. Here we reveal an aberrant global pattern of gene expression, characterized predominantly by higher levels of expression of activity-dependent genes, and anomalous alternative splicing events, specifically in response to neuronal activity in a mouse model for RTT. Notably, the specific splicing modalities of intron retention and exon skipping displayed a significant bias toward increased retained introns and skipped exons, respectively, in the RTT brain compared with the WT brain. Furthermore, these aberrations occur in conjunction with higher seizure susceptibility in response to neuronal activity in RTT mice. Our findings advance the concept that normal MeCP2 functioning is required for fine-tuning the robust and immediate changes in gene transcription and for proper regulation of alternative splicing induced in response to neuronal stimulation.
Collapse
|
99
|
Waye MMY, Cheng HY. Genetics and epigenetics of autism: A Review. Psychiatry Clin Neurosci 2018; 72:228-244. [PMID: 28941239 DOI: 10.1111/pcn.12606] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Autism is a developmental disorder that starts before age 3 years, and children with autism have impairment in both social interaction and communication, and have restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. There is a strong heritable component of autism and autism spectrum disorder (ASD) as studies have shown that parents who have a child with ASD have a 2-18% chance of having a second child with ASD. The prevalence of autism and ASD have been increasing during the last 3 decades and much research has been carried out to understand the etiology, so as to develop novel preventive and treatment strategies. This review aims at summarizing the latest research studies related to autism and ASD, focusing not only on the genetics but also some epigenetic findings of autism/ASD. Some promising areas of research using transgenic/knockout animals and some ideas related to potential novel treatment and prevention strategies will be discussed.
Collapse
Affiliation(s)
- Mary M Y Waye
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yu Cheng
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
100
|
Pohodich AE, Yalamanchili H, Raman AT, Wan YW, Gundry M, Hao S, Jin H, Tang J, Liu Z, Zoghbi HY. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity. eLife 2018; 7:34031. [PMID: 29570050 PMCID: PMC5906096 DOI: 10.7554/elife.34031] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer's patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17-24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Amy E Pohodich
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Hari Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Ayush T Raman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, United States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Michael Gundry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Haijing Jin
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, United States.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| |
Collapse
|