51
|
Kim A, Wang GG. R-loop and its functions at the regulatory interfaces between transcription and (epi)genome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194750. [PMID: 34461314 PMCID: PMC8627470 DOI: 10.1016/j.bbagrm.2021.194750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
R-loop represents a prevalent and specialized chromatin structure critically involved in a wide range of biological processes. In particular, co-transcriptional R-loops, produced often due to RNA polymerase pausing or RNA biogenesis malfunction, can initiate molecular events to context-dependently regulate local gene transcription and crosstalk with chromatin modifications. Cellular "readers" of R-loops are identified, exerting crucial impacts on R-loop homeostasis and gene regulation. Mounting evidence also supports R-loop deregulation as a frequent, sometimes initiating, event during the development of human pathologies, notably cancer and neurological disorder. The purpose of this review is to cover recent advances in understanding the fundamentals of R-loop biology, which have started to unveil complex interplays of R-loops with factors involved in various biological processes such as transcription, RNA processing and epitranscriptomic modification (such as N6-methyladenosine), DNA damage sensing and repair, and epigenetic regulation.
Collapse
Affiliation(s)
- Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
52
|
Bunch H, Jeong J, Kang K, Jo DS, Cong ATQ, Kim D, Kim D, Cho DH, Lee YM, Chen BPC, Schellenberg MJ, Calderwood SK. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ. Open Biol 2021; 11:210221. [PMID: 34610268 PMCID: PMC8492178 DOI: 10.1098/rsob.210221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea,School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaehyeon Jeong
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Anh T. Q. Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donguk Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
53
|
Racca C, Britton S, Hédouin S, Francastel C, Calsou P, Larminat F. BRCA1 prevents R-loop-associated centromeric instability. Cell Death Dis 2021; 12:896. [PMID: 34599155 PMCID: PMC8486751 DOI: 10.1038/s41419-021-04189-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023]
Abstract
Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.
Collapse
Affiliation(s)
- Carine Racca
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Sabrine Hédouin
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris, F-75013, France.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris, F-75013, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Florence Larminat
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France. .,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France.
| |
Collapse
|
54
|
Brüning JG, Marians KJ. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 2021; 49:9870-9885. [PMID: 34469567 PMCID: PMC8464059 DOI: 10.1093/nar/gkab760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
55
|
Jimeno S, Prados-Carvajal R, Fernández-Ávila MJ, Silva S, Silvestris DA, Endara-Coll M, Rodríguez-Real G, Domingo-Prim J, Mejías-Navarro F, Romero-Franco A, Jimeno-González S, Barroso S, Cesarini V, Aguilera A, Gallo A, Visa N, Huertas P. ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nat Commun 2021; 12:5512. [PMID: 34535666 PMCID: PMC8448848 DOI: 10.1038/s41467-021-25790-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The maintenance of genomic stability requires the coordination of multiple cellular tasks upon the appearance of DNA lesions. RNA editing, the post-transcriptional sequence alteration of RNA, has a profound effect on cell homeostasis, but its implication in the response to DNA damage was not previously explored. Here we show that, in response to DNA breaks, an overall change of the Adenosine-to-Inosine RNA editing is observed, a phenomenon we call the RNA Editing DAmage Response (REDAR). REDAR relies on the checkpoint kinase ATR and the recombination factor CtIP. Moreover, depletion of the RNA editing enzyme ADAR2 renders cells hypersensitive to genotoxic agents, increases genomic instability and hampers homologous recombination by impairing DNA resection. Such a role of ADAR2 in DNA repair goes beyond the recoding of specific transcripts, but depends on ADAR2 editing DNA:RNA hybrids to ease their dissolution.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - María Jesús Fernández-Ávila
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Silva
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Domenico Alessandro Silvestris
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Martín Endara-Coll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Guillermo Rodríguez-Real
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Judit Domingo-Prim
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Moirai Biodesign SL, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Fernando Mejías-Navarro
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Amador Romero-Franco
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Barroso
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Valeriana Cesarini
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Andrés Aguilera
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|
56
|
Kumar C, Batra S, Griffith JD, Remus D. The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions. eLife 2021; 10:72286. [PMID: 34494544 PMCID: PMC8479836 DOI: 10.7554/elife.72286] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
R-loops are a major source of genome instability associated with transcription-induced replication stress. However, how R-loops inherently impact replication fork progression is not understood. Here, we characterize R-loop-replisome collisions using a fully reconstituted eukaryotic DNA replication system. We find that RNA:DNA hybrids and G-quadruplexes at both co-directional and head-on R-loops can impact fork progression by inducing fork stalling, uncoupling of leading strand synthesis from replisome progression, and nascent strand gaps. RNase H1 and Pif1 suppress replication defects by resolving RNA:DNA hybrids and G-quadruplexes, respectively. We also identify an intrinsic capacity of replisomes to maintain fork progression at certain R-loops by unwinding RNA:DNA hybrids, repriming leading strand synthesis downstream of G-quadruplexes, or utilizing R-loop transcripts to prime leading strand restart during co-directional R-loop-replisome collisions. Collectively, the data demonstrates that the outcome of R-loop-replisome collisions is modulated by R-loop structure, providing a mechanistic basis for the distinction of deleterious from non-deleterious R-loops.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sahil Batra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
57
|
San Martin-Alonso M, Soler-Oliva ME, García-Rubio M, García-Muse T, Aguilera A. Harmful R-loops are prevented via different cell cycle-specific mechanisms. Nat Commun 2021; 12:4451. [PMID: 34294712 PMCID: PMC8298424 DOI: 10.1038/s41467-021-24737-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying how R-loops are generated is crucial to know how transcription compromises genome integrity. We show by genome-wide analysis of conditional yeast mutants that the THO transcription complex, prevents R-loop formation in G1 and S-phase, whereas the Sen1 DNA-RNA helicase prevents them only in S-phase. Interestingly, damage accumulates asymmetrically downstream of the replication fork in sen1 cells but symmetrically in the hpr1 THO mutant. Our results indicate that: R-loops form co-transcriptionally independently of DNA replication; that THO is a general and cell-cycle independent safeguard against R-loops, and that Sen1, in contrast to previously believed, is an S-phase-specific R-loop resolvase. These conclusions have important implications for the mechanism of R-loop formation and the role of other factors reported to affect on R-loop homeostasis.
Collapse
Affiliation(s)
- Marta San Martin-Alonso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-UPO, Seville, Spain
| | - María E Soler-Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-UPO, Seville, Spain
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-UPO, Seville, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-UPO, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-UPO, Seville, Spain.
| |
Collapse
|
58
|
Wang W, Li K, Yang Z, Hou Q, Zhao WW, Sun Q. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res 2021; 49:6771-6787. [PMID: 34133716 PMCID: PMC8266629 DOI: 10.1093/nar/gkab479] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Proper repair of damaged DNA is crucial for genetic integrity and organismal survival. As semi-autonomous organelles, plastids have their own genomes whose integrity must be preserved. Several factors have been shown to participate in plastid DNA damage repair; however, the underlying mechanism remains unclear. Here, we elucidate a mechanism of homologous recombination (HR) repair in chloroplasts that involves R-loops. We find that the recombinase RecA1 forms filaments in chloroplasts during HR repair, but aggregates as puncta when RNA:DNA hybrids accumulate. ssDNA-binding proteins WHY1/3 and chloroplast RNase H1 AtRNH1C are recruited to the same genomic sites to promote HR repair. Depletion of AtRNH1C or WHY1/3 significantly suppresses the binding of RNA polymerase to the damaged DNA, thus reducing HR repair and modulating microhomology-mediated double-strand break repair. Furthermore, we show that DNA polymerase IB works with AtRNH1C genetically to complete the DNA damage repair process. This study reveals the positive role of R-loops in facilitating the activities of WHY1/3 and RecA1, which in turn secures HR repair and organellar development.
Collapse
Affiliation(s)
- Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Quancan Hou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei W Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
59
|
Dettori LG, Torrejon D, Chakraborty A, Dutta A, Mohamed M, Papp C, Kuznetsov VA, Sung P, Feng W, Bah A. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Front Mol Biosci 2021; 8:691694. [PMID: 34179096 PMCID: PMC8222781 DOI: 10.3389/fmolb.2021.691694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
R-loops are non-canonical, three-stranded nucleic acid structures composed of a DNA:RNA hybrid, a displaced single-stranded (ss)DNA, and a trailing ssRNA overhang. R-loops perform critical biological functions under both normal and disease conditions. To elucidate their cellular functions, we need to understand the mechanisms underlying R-loop formation, recognition, signaling, and resolution. Previous high-throughput screens identified multiple proteins that bind R-loops, with many of these proteins containing folded nucleic acid processing and binding domains that prevent (e.g., topoisomerases), resolve (e.g., helicases, nucleases), or recognize (e.g., KH, RRMs) R-loops. However, a significant number of these R-loop interacting Enzyme and Reader proteins also contain long stretches of intrinsically disordered regions (IDRs). The precise molecular and structural mechanisms by which the folded domains and IDRs synergize to recognize and process R-loops or modulate R-loop-mediated signaling have not been fully explored. While studying one such modular R-loop Reader, the Fragile X Protein (FMRP), we unexpectedly discovered that the C-terminal IDR (C-IDR) of FMRP is the predominant R-loop binding site, with the three N-terminal KH domains recognizing the trailing ssRNA overhang. Interestingly, the C-IDR of FMRP has recently been shown to undergo spontaneous Liquid-Liquid Phase Separation (LLPS) assembly by itself or in complex with another non-canonical nucleic acid structure, RNA G-quadruplex. Furthermore, we have recently shown that FMRP can suppress persistent R-loops that form during transcription, a process that is also enhanced by LLPS via the assembly of membraneless transcription factories. These exciting findings prompted us to explore the role of IDRs in R-loop processing and signaling proteins through a comprehensive bioinformatics and computational biology study. Here, we evaluated IDR prevalence, sequence composition and LLPS propensity for the known R-loop interactome. We observed that, like FMRP, the majority of the R-loop interactome, especially Readers, contains long IDRs that are highly enriched in low complexity sequences with biased amino acid composition, suggesting that these IDRs could directly interact with R-loops, rather than being “mere flexible linkers” connecting the “functional folded enzyme or binding domains”. Furthermore, our analysis shows that several proteins in the R-loop interactome are either predicted to or have been experimentally demonstrated to undergo LLPS or are known to be associated with phase separated membraneless organelles. Thus, our overall results present a thought-provoking hypothesis that IDRs in the R-loop interactome can provide a functional link between R-loop recognition via direct binding and downstream signaling through the assembly of LLPS-mediated membrane-less R-loop foci. The absence or dysregulation of the function of IDR-enriched R-loop interactors can potentially lead to severe genomic defects, such as the widespread R-loop-mediated DNA double strand breaks that we recently observed in Fragile X patient-derived cells.
Collapse
Affiliation(s)
- Leonardo G Dettori
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Diego Torrejon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mohamed Mohamed
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Csaba Papp
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Vladimir A Kuznetsov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States.,Bioinformatics Institute, ASTAR Biomedical Institutes, Singapore, Singapore
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
60
|
Senataxin Ortholog Sen1 Limits DNA:RNA Hybrid Accumulation at DNA Double-Strand Breaks to Control End Resection and Repair Fidelity. Cell Rep 2021; 31:107603. [PMID: 32375052 DOI: 10.1016/j.celrep.2020.107603] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/07/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
An important but still enigmatic function of DNA:RNA hybrids is their role in DNA double-strand break (DSB) repair. Here, we show that Sen1, the budding yeast ortholog of the human helicase Senataxin, is recruited at an HO endonuclease-induced DSB and limits the local accumulation of DNA:RNA hybrids. In the absence of Sen1, hybrid accumulation proximal to the DSB promotes increased binding of the Ku70-80 (KU) complex at the break site, mutagenic non-homologous end joining (NHEJ), micro-homology-mediated end joining (MMEJ), and chromosome translocations. We also show that homology-directed recombination (HDR) by gene conversion is mostly proficient in sen1 mutants after single DSB. However, in the absence of Sen1, DNA:RNA hybrids, Mre11, and Dna2 initiate resection through a non-canonical mechanism. We propose that this resection mechanism through local DNA:RNA hybrids acts as a backup to prime HDR when canonical pathways are altered, but at the expense of genome integrity.
Collapse
|
61
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
62
|
Edwards DS, Maganti R, Tanksley JP, Luo J, Park JJH, Balkanska-Sinclair E, Ling J, Floyd SR. BRD4 Prevents R-Loop Formation and Transcription-Replication Conflicts by Ensuring Efficient Transcription Elongation. Cell Rep 2021; 32:108166. [PMID: 32966794 PMCID: PMC7507985 DOI: 10.1016/j.celrep.2020.108166] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/13/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Effective spatio-temporal control of transcription and replication during S-phase is paramount to maintaining genomic integrity and cell survival. Dysregulation of these systems can lead to conflicts between the transcription and replication machinery, causing DNA damage and cell death. BRD4 allows efficient transcriptional elongation by stimulating phosphorylation of RNA polymerase II (RNAPII). We report that bromodomain and extra-terminal domain (BET) protein loss of function (LOF) causes RNAPII pausing on the chromatin and DNA damage affecting cells in S-phase. This persistent RNAPII-dependent pausing leads to an accumulation of RNA:DNA hybrids (R-loops) at sites of BRD4 occupancy, leading to transcription-replication conflicts (TRCs), DNA damage, and cell death. Finally, our data show that the BRD4 C-terminal domain, which interacts with P-TEFb, is required to prevent R-loop formation and DNA damage caused by BET protein LOF.
Collapse
Affiliation(s)
- Drake S Edwards
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jarred P Tanksley
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jie Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James J H Park
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | - Scott R Floyd
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
63
|
Jimeno S, Balestra FR, Huertas P. The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Front Mol Biosci 2021; 8:664872. [PMID: 33996910 PMCID: PMC8116738 DOI: 10.3389/fmolb.2021.664872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 11/14/2022] Open
Abstract
The correct repair of DNA double-strand breaks is essential for maintaining the stability of the genome, thus ensuring the survival and fitness of any living organism. Indeed, the repair of these lesions is a complicated affair, in which several pathways compete for the DNA ends in a complex balance. Thus, the fine-tuning of the DNA double-strand break repair pathway choice relies on the different regulatory layers that respond to environmental cues. Among those different tiers of regulation, RNA modifications have just emerged as a promising field.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R. Balestra
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
64
|
Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. Repair of DNA Breaks by Break-Induced Replication. Annu Rev Biochem 2021; 90:165-191. [PMID: 33792375 DOI: 10.1146/annurev-biochem-081420-095551] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.
Collapse
Affiliation(s)
- Z W Kockler
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - B Osia
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - R Lee
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - K Musmaker
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - A Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
65
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|
66
|
Shiromoto Y, Sakurai M, Minakuchi M, Ariyoshi K, Nishikura K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat Commun 2021; 12:1654. [PMID: 33712600 PMCID: PMC7955049 DOI: 10.1038/s41467-021-21921-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
ADAR1 is involved in adenosine-to-inosine RNA editing. The cytoplasmic ADAR1p150 edits 3'UTR double-stranded RNAs and thereby suppresses induction of interferons. Loss of this ADAR1p150 function underlies the embryonic lethality of Adar1 null mice, pathogenesis of the severe autoimmune disease Aicardi-Goutières syndrome, and the resistance developed in cancers to immune checkpoint blockade. In contrast, the biological functions of the nuclear-localized ADAR1p110 remain largely unknown. Here, we report that ADAR1p110 regulates R-loop formation and genome stability at telomeres in cancer cells carrying non-canonical variants of telomeric repeats. ADAR1p110 edits the A-C mismatches within RNA:DNA hybrids formed between canonical and non-canonical variant repeats. Editing of A-C mismatches to I:C matched pairs facilitates resolution of telomeric R-loops by RNase H2. This ADAR1p110-dependent control of telomeric R-loops is required for continued proliferation of telomerase-reactivated cancer cells, revealing the pro-oncogenic nature of ADAR1p110 and identifying ADAR1 as a promising therapeutic target of telomerase positive cancers.
Collapse
Affiliation(s)
| | - Masayuki Sakurai
- The Wistar Institute, Philadelphia, PA, USA.,Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | - Kentaro Ariyoshi
- The Wistar Institute, Philadelphia, PA, USA.,Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima, Japan
| | | |
Collapse
|
67
|
Peritore M, Reusswig KU, Bantele SCS, Straub T, Pfander B. Strand-specific ChIP-seq at DNA breaks distinguishes ssDNA versus dsDNA binding and refutes single-stranded nucleosomes. Mol Cell 2021; 81:1841-1853.e4. [PMID: 33651987 DOI: 10.1016/j.molcel.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
In a first step of DNA double-strand break (DSB) repair by homologous recombination, DNA ends are resected such that single-stranded DNA (ssDNA) overhangs are generated. ssDNA is specifically bound by RPA and other factors, which constitutes a ssDNA-domain on damaged chromatin. The molecular organization of this ssDNA and the adjacent dsDNA domain is crucial during DSB signaling and repair. However, data regarding the presence of nucleosomes, the most basic chromatin components, in the ssDNA domain have been contradictory. Here, we use site-specific induction of DSBs and chromatin immunoprecipitation followed by strand-specific sequencing to analyze in vivo binding of key DSB repair and signaling proteins to either the ssDNA or dsDNA domain. In the case of nucleosomes, we show that recently proposed ssDNA nucleosomes are not a major, persistent species, but that nucleosome eviction and DNA end resection are intrinsically coupled. These results support a model of separated dsDNA-nucleosome and ssDNA-RPA domains during DSB repair.
Collapse
Affiliation(s)
- Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Karl-Uwe Reusswig
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Susanne C S Bantele
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Tobias Straub
- Biomedizinisches Centrum, Core Facility Bioinformatics, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Boris Pfander
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
68
|
Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 2021; 40:e106394. [PMID: 33411340 PMCID: PMC7883053 DOI: 10.15252/embj.2020106394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la CelluleCNRSUMR 5239Univ LyonÉcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|
69
|
Liu L, Yan Z, Osia BA, Twarowski J, Sun L, Kramara J, Lee RS, Kumar S, Elango R, Li H, Dang W, Ira G, Malkova A. Tracking break-induced replication shows that it stalls at roadblocks. Nature 2021; 590:655-659. [PMID: 33473214 PMCID: PMC8219245 DOI: 10.1038/s41586-020-03172-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Break-induced replication (BIR) repairs one-ended double strand breaks (DSBs) similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human disease1,2. Previous studies have defined the enzymes required for BIR1–5; however, understanding of initial and extended BIR synthesis as well as how the migrating D-loop proceeds through known replication roadblocks has been precluded by technical limitations. Here, using a newly developed assay, we demonstrate that BIR synthesis initiates soon after strand invasion and proceeds slower than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but fails to proceed beyond 30 kb, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32 but does not proceed efficiently. We demonstrate that interstitial telomeric DNA disrupts and terminates BIR progression. Also, BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and on how BIR contributes to genome instability.
Collapse
Affiliation(s)
- Liping Liu
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Beth A Osia
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Jerzy Twarowski
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Rosemary S Lee
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hanzeng Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
70
|
Rinaldi C, Pizzul P, Longhese MP, Bonetti D. Sensing R-Loop-Associated DNA Damage to Safeguard Genome Stability. Front Cell Dev Biol 2021; 8:618157. [PMID: 33505970 PMCID: PMC7829580 DOI: 10.3389/fcell.2020.618157] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA transcription and replication are two essential physiological processes that can turn into a threat for genome integrity when they compete for the same DNA substrate. During transcription, the nascent RNA strongly binds the template DNA strand, leading to the formation of a peculiar RNA-DNA hybrid structure that displaces the non-template single-stranded DNA. This three-stranded nucleic acid transition is called R-loop. Although a programed formation of R-loops plays important physiological functions, these structures can turn into sources of DNA damage and genome instability when their homeostasis is altered. Indeed, both R-loop level and distribution in the genome are tightly controlled, and the list of factors involved in these regulatory mechanisms is continuously growing. Over the last years, our knowledge of R-loop homeostasis regulation (formation, stabilization, and resolution) has definitely increased. However, how R-loops affect genome stability and how the cellular response to their unscheduled formation is orchestrated are still not fully understood. In this review, we will report and discuss recent findings about these questions and we will focus on the role of ATM- and Rad3-related (ATR) and Ataxia-telangiectasia-mutated (ATM) kinases in the activation of an R-loop-dependent DNA damage response.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
71
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|
72
|
Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly. Neuron 2020; 109:241-256.e9. [PMID: 33220177 DOI: 10.1016/j.neuron.2020.10.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022]
Abstract
Autosomal-recessive cerebellar hypoplasia and ataxia constitute a group of heterogeneous brain disorders caused by disruption of several fundamental cellular processes. Here, we identified 10 families showing a neurodegenerative condition involving pontocerebellar hypoplasia with microcephaly (PCHM). Patients harbored biallelic mutations in genes encoding the spliceosome components Peptidyl-Prolyl Isomerase Like-1 (PPIL1) or Pre-RNA Processing-17 (PRP17). Mouse knockouts of either gene were lethal in early embryogenesis, whereas PPIL1 patient mutation knockin mice showed neuron-specific apoptosis. Loss of either protein affected splicing integrity, predominantly affecting short and high GC-content introns and genes involved in brain disorders. PPIL1 and PRP17 form an active isomerase-substrate interaction, but we found that isomerase activity is not critical for function. Thus, we establish disrupted splicing integrity and "major spliceosome-opathies" as a new mechanism underlying PCHM and neurodegeneration and uncover a non-enzymatic function of a spliceosomal proline isomerase.
Collapse
|
73
|
Mishra PK, Chakraborty A, Yeh E, Feng W, Bloom KS, Basrai MA. R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol Biol Cell 2020; 32:74-89. [PMID: 33147102 PMCID: PMC8098821 DOI: 10.1091/mbc.e20-06-0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
R-loops, the byproduct of DNA–RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA–RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Wenyi Feng
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
74
|
Brüning JG, Marians KJ. Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res 2020; 48:10353-10367. [PMID: 32926139 PMCID: PMC7544221 DOI: 10.1093/nar/gkaa741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The vast majority of the genome is transcribed by RNA polymerases. G+C-rich regions of the chromosomes and negative superhelicity can promote the invasion of the DNA by RNA to form R-loops, which have been shown to block DNA replication and promote genome instability. However, it is unclear whether the R-loops themselves are sufficient to cause this instability or if additional factors are required. We have investigated replisome collisions with transcription complexes and R-loops using a reconstituted bacterial DNA replication system. RNA polymerase transcription complexes co-directionally oriented with the replication fork were transient blockages, whereas those oriented head-on were severe, stable blockages. On the other hand, replisomes easily bypassed R-loops on either template strand. Replication encounters with R-loops on the leading-strand template (co-directional) resulted in gaps in the nascent leading strand, whereas lagging-strand template R-loops (head-on) had little impact on replication fork progression. We conclude that whereas R-loops alone can act as transient replication blocks, most genome-destabilizing replication fork stalling likely occurs because of proteins bound to the R-loops.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
75
|
Ketley RF, Gullerova M. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem 2020; 64:721-735. [PMID: 32618336 PMCID: PMC7592198 DOI: 10.1042/ebc20200008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
The mechanisms by which RNA acts in the DNA damage response (DDR), specifically in the repair of DNA double-strand breaks (DSBs), are emerging as multifaceted and complex. Different RNA species, including but not limited to; microRNA (miRNA), long non-coding RNA (lncRNA), RNA:DNA hybrid structures, the recently identified damage-induced lncRNA (dilncRNA), damage-responsive transcripts (DARTs), and DNA damage-dependent small RNAs (DDRNAs), have been shown to play integral roles in the DSB response. The diverse properties of these RNAs, such as sequence, structure, and binding partners, enable them to fulfil a variety of functions in different cellular contexts. Additionally, RNA can be modified post-transcriptionally, a process which is regulated in response to cellular stressors such as DNA damage. Many of these mechanisms are not yet understood and the literature contradictory, reflecting the complexity and expansive nature of the roles of RNA in the DDR. However, it is clear that RNA is pivotal in ensuring the maintenance of genome integrity. In this review, we will discuss and summarise recent evidence which highlights the roles of these various RNAs in preserving genomic integrity, with a particular focus on the emerging role of RNA in the DSB repair response.
Collapse
Affiliation(s)
- Ruth F Ketley
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
76
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
77
|
The ALPK1/TIFA/NF-κB axis links a bacterial carcinogen to R-loop-induced replication stress. Nat Commun 2020; 11:5117. [PMID: 33037203 PMCID: PMC7547021 DOI: 10.1038/s41467-020-18857-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate β-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of β-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage. The bacterial pathogen Helicobacter pylori is known for its ability to induce DNA double-strand breaks in the genome of its target cells. Here, we show that H. pylori-induced DNA damage and replication stress occurs in S-phase cells as a result of R-loop-mediated transcription/replication conflicts that are triggered by activation of the ALPK1/TIFA/NF-κB signaling axis.
Collapse
|
78
|
Crossley MP, Bocek MJ, Hamperl S, Swigut T, Cimprich KA. qDRIP: a method to quantitatively assess RNA-DNA hybrid formation genome-wide. Nucleic Acids Res 2020; 48:e84. [PMID: 32544226 PMCID: PMC7641308 DOI: 10.1093/nar/gkaa500] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
R-loops are dynamic, co-transcriptional nucleic acid structures that facilitate physiological processes but can also cause DNA damage in certain contexts. Perturbations of transcription or R-loop resolution are expected to change their genomic distribution. Next-generation sequencing approaches to map RNA–DNA hybrids, a component of R-loops, have so far not allowed quantitative comparisons between such conditions. Here, we describe quantitative differential DNA–RNA immunoprecipitation (qDRIP), a method combining synthetic RNA–DNA-hybrid internal standards with high-resolution, strand-specific sequencing. We show that qDRIP avoids biases inherent to read-count normalization by accurately profiling signal in regions unaffected by transcription inhibition in human cells, and by facilitating accurate differential peak calling between conditions. We also use these quantitative comparisons to make the first estimates of the absolute count of RNA–DNA hybrids per cell and their half-lives genome-wide. Finally, we identify a subset of RNA–DNA hybrids with high GC skew which are partially resistant to RNase H. Overall, qDRIP allows for accurate normalization in conditions where R-loops are perturbed and for quantitative measurements that provide previously unattainable biological insights.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephan Hamperl
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
79
|
Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson JY, Richard S. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020; 2:zcaa028. [PMID: 33015627 PMCID: PMC7520851 DOI: 10.1093/narcan/zcaa028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops genome-wide causing genomic instability. In this study, we define a pivotal role for DDX5 in clearing R-loops at or near DSBs enabling proper DNA repair to avoid aberrations such as chromosomal deletions. Remarkably, using the non-homologous end joining reporter gene (EJ5-GFP), we show that DDX5-deficient U2OS cells exhibited asymmetric end deletions on the side of the DSBs where there is overlap with a transcribed gene. Cross-linking and immunoprecipitation showed that DDX5 bound RNA transcripts near DSBs and required its helicase domain and the presence of DDX5 near DSBs was also shown by chromatin immunoprecipitation. DDX5 was excluded from DSBs in a transcription- and ATM activation-dependent manner. Using DNA/RNA immunoprecipitation, we show DDX5-deficient cells had increased R-loops near DSBs. Finally, DDX5 deficiency led to delayed exonuclease 1 and replication protein A recruitment to laser irradiation-induced DNA damage sites, resulting in homologous recombination repair defects. Our findings define a role for DDX5 in facilitating the clearance of RNA transcripts overlapping DSBs to ensure proper DNA repair.
Collapse
Affiliation(s)
- Zhenbao Yu
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Sofiane Y Mersaoui
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Jingwen Song
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| |
Collapse
|
80
|
Li M, Klungland A. Modifications and interactions at the R-loop. DNA Repair (Amst) 2020; 96:102958. [PMID: 32961406 DOI: 10.1016/j.dnarep.2020.102958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
R-loops are tripartite structures consisting of an RNA:DNA hybrid and a displaced single-stranded DNA [1]. They are widespread and occupy up to 5 % of the mammalian genomes [2]. R-loops have a key role in genome stability, and known functions associated with gene regulation, DNA replication, chromatin patterning, immunoglobuline gene recombination and DNA Double-strand break repair [3-7]. Novel methodology, including the application of the S9.6 antibody, have more recently led to detailed knowledge on the genome-wide distribution of the R-loops as well as the identification of the R-loop interactome [8-10]. The regulation of R-loops was recently shown to also depend on dynamic RNA-methylation, including METTL3/14 dependent 6-methylAdenines (m6As) and METTL8 dependent 3-methylCytosines (m3Cs) [11-13].
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
81
|
Promonet A, Padioleau I, Liu Y, Sanz L, Biernacka A, Schmitz AL, Skrzypczak M, Sarrazin A, Mettling C, Rowicka M, Ginalski K, Chedin F, Chen CL, Lin YL, Pasero P. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat Commun 2020; 11:3940. [PMID: 32769985 PMCID: PMC7414224 DOI: 10.1038/s41467-020-17858-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
R-loops have both positive and negative impacts on chromosome functions. To identify toxic R-loops in the human genome, here, we map RNA:DNA hybrids, replication stress markers and DNA double-strand breaks (DSBs) in cells depleted for Topoisomerase I (Top1), an enzyme that relaxes DNA supercoiling and prevents R-loop formation. RNA:DNA hybrids are found at both promoters (TSS) and terminators (TTS) of highly expressed genes. In contrast, the phosphorylation of RPA by ATR is only detected at TTS, which are preferentially replicated in a head-on orientation relative to the direction of transcription. In Top1-depleted cells, DSBs also accumulate at TTS, leading to persistent checkpoint activation, spreading of γ-H2AX on chromatin and global replication fork slowdown. These data indicate that fork pausing at the TTS of highly expressed genes containing R-loops prevents head-on conflicts between replication and transcription and maintains genome integrity in a Top1-dependent manner.
Collapse
Affiliation(s)
- Alexy Promonet
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Ismaël Padioleau
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
- Institut Gustave Roussy, Villejuif, France
| | - Yaqun Liu
- Institut Curie, PSL Research University, CNRS, UMR3244, Sorbonne Université, Paris, France
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anne-Lyne Schmitz
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Amélie Sarrazin
- BioCampus Montpellier, CNRS et Université de Montpellier, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Montpellier, France
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Frédéric Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS, UMR3244, Sorbonne Université, Paris, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
82
|
|
83
|
Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, Bartholomeu D, McCulloch R. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16:e1008828. [PMID: 32609721 PMCID: PMC7360064 DOI: 10.1371/journal.pgen.1008828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/14/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.
Collapse
Affiliation(s)
- Jeziel D. Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| | - João Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Luiz R. O. Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Daniella Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| |
Collapse
|
84
|
Tanaka H, Watanabe T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer 2020; 6:462-477. [PMID: 32383436 PMCID: PMC7285850 DOI: 10.1016/j.trecan.2020.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Focal copy-number increases (genomic amplification) pinpoint oncogenic driver genes and therapeutic targets in cancer genomes. With the advent of genomic technologies, recurrent genomic amplification has been mapped throughout the genome. Recurrent amplification could be solely due to positive selection for the tumor-promoting effects of amplified gene products. Alternatively, recurrence could result from the susceptibility of the loci to amplification. Distinguishing between these possibilities requires a full understanding of the amplification mechanisms. Two mechanisms, the formation of double minute (DM) chromosomes and breakage-fusion-bridge (BFB) cycles, have been repeatedly linked to genomic amplification, and the impact of both mechanisms has been confirmed in cancer genomics data. We review the details of these mechanisms and discuss the mechanisms underlying recurrence.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA.
| | - Takaaki Watanabe
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
85
|
Vydzhak O, Luke B, Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J Mol Biol 2020; 432:4287-4304. [PMID: 32446803 DOI: 10.1016/j.jmb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and human cells. We discuss the protein players that regulate R-loops at rDNA and how their misregulation contributes to DNA damage and disease. Furthermore, we speculate how DNA lesions such as rNMPs or 8-oxo-dG might affect RNA-DNA hybrid formation. The transcription of lncRNA from rDNA has been observed in yeast, plants, flies, worms, mouse and human cells. This evolutionary conservation highlights the importance of lncRNAs in rDNA function and maintenance.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Natalie Schindler
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
86
|
Langston RE, Palazzola D, Bonnell E, Wellinger RJ, Weinert T. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 2020; 16:e1008733. [PMID: 32287268 PMCID: PMC7205313 DOI: 10.1371/journal.pgen.1008733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/07/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes. Eukaryotic chromosomes are linear molecules with specialized end structures called telomeres. Telomeres contain both unique repetitive DNA sequences and specialized proteins that solve several biological problems by differentiating chromosomal ends from internal breaks, thus preventing chromosome instability. When telomeres are defective, the entire chromosome can become unstable and change, causing mutations and pathology (cancer, aging, etc.). Here we study how a defect in specific telomere proteins causes chromosomal rearrangements, using the model organism Saccharomyces cerevisiae (budding or brewer’s yeast). We find that when specific telomere proteins are defective, errors in DNA replication generate a type of damage that likely involves extensive single-stranded DNA that forms inherently unstable chromosomes, subject to many subsequent instances of instability (e.g. allelic recombinants, chromosome loss, truncations, dicentrics). The telomere protein Cdc13 is part of a protein complex called CST that is conserved in most organisms including mammalian cells. The technical capacity of studies in budding yeast allow a detailed, real-time examination of how telomere defects compromise chromosome stability in a single cell cycle, generating lessons likely relevant to how human telomeres keep human chromosomes stable.
Collapse
Affiliation(s)
- Rachel E. Langston
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominic Palazzola
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
87
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
88
|
Storci G, Bacalini MG, Bonifazi F, Garagnani P, De Carolis S, Salvioli S, Olivieri F, Bonafè M. Ribosomal DNA instability: An evolutionary conserved fuel for inflammaging. Ageing Res Rev 2020; 58:101018. [PMID: 31926964 DOI: 10.1016/j.arr.2020.101018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Across eukaryotes, ribosomal DNA (rDNA) loci are characterized by intrinsic genomic instability due to their repetitive nature and their base composition that facilitate DNA double strand breaks and RNA:DNA hybrids formation. In the yeast, ribosomal DNA instability affects lifespan via the formation of extrachromosomal rDNA circles (ERC) that accrue into aged cells. In humans, rDNA instability has long been reported in a variety of progeric syndromes caused by the dysfunction of DNA helicases, but its role in physiological aging and longevity still needs to be clarified. Here we propose that rDNA instability leads to the activation of innate immunity and inflammation via the interaction with the cytoplasmic DNA sensing machinery. Owing to the recent clarified role of cytoplasmic DNA in the pro-inflammatory phenotype of senescent cells, we hypothesize that the accrual of rDNA derived molecules (i.e. ERC and RNA:DNA hybrids) may have a role in aging by contributing to inflammaging i.e. the systemic pro-inflammatory drift that associates with the onset of geriatric syndromes and age related dysfunctions in humans.
Collapse
Affiliation(s)
- Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| | | | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| |
Collapse
|
89
|
Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108300. [PMID: 32430097 DOI: 10.1016/j.mrrev.2020.108300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
RNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases. In this review, we summarize recent advances in the understanding of the mechanisms by which the impairment of hybrid turnover promotes DNA damage and genome instability via the interference with DNA replication and DNA double-strand break repair. We also discuss how hybrids could contribute to cancer, neurodegeneration and susceptibility to viral infections, focusing on dysfunctions associated with the anti-R-loop helicase Senataxin.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Luca Zardoni
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; Scuola Universitaria Superiore, IUSS, 27100, Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; IFOM Foundation, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
90
|
From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. Int J Mol Sci 2020; 21:ijms21041506. [PMID: 32098397 PMCID: PMC7073102 DOI: 10.3390/ijms21041506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Replicating the entire genome is one of the most complex tasks for all organisms. Research carried out in the last few years has provided us with a clearer picture on how cells preserve genomic information from the numerous insults that may endanger its stability. Different DNA repair pathways, coping with exogenous or endogenous threat, have been dissected at the molecular level. More recently, there has been an increasing interest towards intrinsic obstacles to genome replication, paving the way to a novel view on genomic stability. Indeed, in some cases, the movement of the replication fork can be hindered by the presence of stable DNA: RNA hybrids (R-loops), the folding of G-rich sequences into G-quadruplex structures (G4s) or repetitive elements present at Common Fragile Sites (CFS). Although differing in their nature and in the way they affect the replication fork, all of these obstacles are a source of replication stress. Replication stress is one of the main hallmarks of cancer and its prevention is becoming increasingly important as a target for future chemotherapeutics. Here we will try to summarize how these three obstacles are generated and how the cells handle replication stress upon their encounter. Finally, we will consider their role in cancer and their exploitation in current chemotherapeutic approaches.
Collapse
|
91
|
Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G. Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability. Cell Rep 2020; 30:2094-2105.e9. [PMID: 32075754 PMCID: PMC7034062 DOI: 10.1016/j.celrep.2020.01.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/06/2019] [Accepted: 01/24/2020] [Indexed: 01/21/2023] Open
Abstract
DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome via the components Ctf4 and Mrc1. We generated a separation of function mutant, sen1-3, which abolishes replisome binding without affecting transcription termination. We observe that the sen1-3 mutants show increased genome instability and recombination levels. Moreover, sen1-3 is synthetically defective with mutations in genes involved in RNA metabolism and the S phase checkpoint. RNH1 overexpression suppresses defects in the former, but not the latter. These findings illustrate how Sen1 plays a key function at replication forks during DNA replication to promote fork progression and chromosome stability.
Collapse
Affiliation(s)
- Rowin Appanah
- Warwick Medical School, University of Warwick, CV4 7AL Coventry, UK
| | | | - Umberto Aiello
- Institut Jacques Monod, CNRS, UMR7592, Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS, UMR7592, Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | | |
Collapse
|
92
|
Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 2020; 11:809. [PMID: 32041946 PMCID: PMC7010754 DOI: 10.1038/s41467-020-14595-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability. Transcription-replication conflicts (TRC) can contribute to genome instability. Here the authors reveal that under replication stress H3K4 methylation can play a role in TRC prevention.
Collapse
Affiliation(s)
- Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Sam Cutler
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
93
|
Pérez-Martínez L, Öztürk M, Butter F, Luke B. Npl3 stabilizes R-loops at telomeres to prevent accelerated replicative senescence. EMBO Rep 2020; 21:e49087. [PMID: 32026548 PMCID: PMC7054685 DOI: 10.15252/embr.201949087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/12/2023] Open
Abstract
Telomere shortening rates must be regulated to prevent premature replicative senescence. TERRA R‐loops become stabilized at critically short telomeres to promote their elongation through homology‐directed repair (HDR), thereby counteracting senescence onset. Using a non‐bias proteomic approach to detect telomere binding factors, we identified Npl3, an RNA‐binding protein previously implicated in multiple RNA biogenesis processes. Using chromatin immunoprecipitation and RNA immunoprecipitation, we demonstrate that Npl3 interacts with TERRA and telomeres. Furthermore, we show that Npl3 associates with telomeres in an R‐loop‐dependent manner, as changes in R‐loop levels, for example, at short telomeres, modulate the recruitment of Npl3 to chromosome ends. Through a series of genetic and biochemical approaches, we reveal that Npl3 binds to TERRA and stabilizes R‐loops at short telomeres, which in turn promotes HDR and prevents premature replicative senescence onset. This may have implications for diseases associated with excessive telomere shortening.
Collapse
Affiliation(s)
| | - Merve Öztürk
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany.,Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg Universität, Mainz, Germany
| |
Collapse
|
94
|
Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 2020; 21:167-178. [PMID: 32005969 DOI: 10.1038/s41580-019-0206-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.
Collapse
|
95
|
Carrasco-Salas Y, Malapert A, Sulthana S, Molcrette B, Chazot-Franguiadakis L, Bernard P, Chédin F, Faivre-Moskalenko C, Vanoosthuyse V. The extruded non-template strand determines the architecture of R-loops. Nucleic Acids Res 2020; 47:6783-6795. [PMID: 31066439 PMCID: PMC6648340 DOI: 10.1093/nar/gkz341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
Three-stranded R-loop structures have been associated with genomic instability phenotypes. What underlies their wide-ranging effects on genome stability remains poorly understood. Here we combined biochemical and atomic force microscopy approaches with single molecule R-loop footprinting to demonstrate that R-loops formed at the model Airn locus in vitro adopt a defined set of three-dimensional conformations characterized by distinct shapes and volumes, which we call R-loop objects. Interestingly, we show that these R-loop objects impose specific physical constraints on the DNA, as revealed by the presence of stereotypical angles in the surrounding DNA. Biochemical probing and mutagenesis experiments revealed that the formation of R-loop objects at Airn is dictated by the extruded non-template strand, suggesting that R-loops possess intrinsic sequence-driven properties. Consistent with this, we show that R-loops formed at the fission yeast gene sum3 do not form detectable R-loop objects. Our results reveal that R-loops differ by their architectures and that the organization of the non-template strand is a fundamental characteristic of R-loops, which could explain that only a subset of R-loops is associated with replication-dependent DNA breaks.
Collapse
Affiliation(s)
- Yeraldinne Carrasco-Salas
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Amélie Malapert
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Shaheen Sulthana
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Bastien Molcrette
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Léa Chazot-Franguiadakis
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Pascal Bernard
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Vincent Vanoosthuyse
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
96
|
Hao H, Han T, Xuan B, Sun Y, Tang S, Yue N, Qian Z. Dissecting the Role of DDX21 in Regulating Human Cytomegalovirus Replication. J Virol 2019; 93:e01222-19. [PMID: 31554690 PMCID: PMC6880175 DOI: 10.1128/jvi.01222-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
DDX21 regulates the biogenesis of rRNA and transcription of ribonucleoprotein genes. Recently, it has been reported that DDX21 regulates the growth of some RNA viruses through various mechanisms, such as inhibiting viral genome replication, suppressing virion assembly and release, and modulating antiviral immune responses (Chen et al., Cell Host Microbe 15:484-493, 2014, https://doi.org/10.1016/j.chom.2014.03.002; Dong et al., Biophys Res Commun, 473:648-653, 2016, https://doi.org/10.1016/j.bbrc.2016.03.120; and Watanabe et al., PLoS Pathog 5:e1000654, 2009, https://doi.org/10.1371/journal.ppat.1000654). The relationship between DDX21 and DNA viruses has not yet been explored. In this study, we used human cytomegalovirus (HCMV), a large human DNA virus, to investigate the potential role of DDX21 in DNA virus replication. We found that HCMV infection prevented the repression of DDX21 at protein and mRNA levels. Knockdown of DDX21 inhibited HCMV growth in human fibroblast cells (MRC5). Immunofluorescence and quantitative PCR (qPCR) results showed that knockdown of DDX21 did not affect viral DNA replication or the formation of the viral replication compartment but did significantly inhibit viral late gene transcription. Some studies have reported that DDX21 knockdown promotes the accumulation of R-loops that could restrain RNA polymerase II elongation and inhibit the transcription of certain genes. Thus, we used the DNA-RNA hybrid-specific S9.6 antibody to stain R-loops and observed that more R-loops formed in DDX21-knockdown cells than in control cells. Moreover, an DNA-RNA immunoprecipitation assay showed that more R-loops accumulated on a viral late gene in DDX21-knockdown cells. Altogether, these results suggest that DDX21 knockdown promotes the accumulation of R-loops, which prevents viral late gene transcription and consequently results in the suppression of HCMV growth. This finding provides new insight into the relationship between DDX21 and DNA virus replication.IMPORTANCE Previous studies have confirmed that DDX21 is vital for the regulation of various aspects of RNA virus replication. Our research is the first report on the role of DDX21 in HCMV DNA virus replication. We identified that DDX21 knockdown affected HCMV growth and viral late gene transcription. In order to elucidate how DDX21 regulated this transcription, we applied DNA-RNA immunoprecipitation by using the DNA-RNA hybrid-specific S9.6 antibody to test whether more R-loops accumulated on the viral late gene. Consistent with our expectation, more R-loops were detected on the viral late gene at late HCMV infection time points, which demonstrated that the accumulation of R-loops caused by DDX21 knockdown prevented viral late gene transcription and consequently impaired HCMV replication. These results reveal that DDX21 plays an important role in regulating HCMV replication and also provide a basis for investigating the role of DDX21 in regulating other DNA viruses.
Collapse
Affiliation(s)
- Hongyun Hao
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tian Han
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yamei Sun
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shubing Tang
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Yue
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
97
|
Drolet M, Brochu J. R-loop-dependent replication and genomic instability in bacteria. DNA Repair (Amst) 2019; 84:102693. [DOI: 10.1016/j.dnarep.2019.102693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
98
|
Matos DA, Zhang JM, Ouyang J, Nguyen HD, Genois MM, Zou L. ATR Protects the Genome against R Loops through a MUS81-Triggered Feedback Loop. Mol Cell 2019; 77:514-527.e4. [PMID: 31708417 DOI: 10.1016/j.molcel.2019.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/11/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
R loops arising during transcription induce genomic instability, but how cells respond to the R loop-associated genomic stress is still poorly understood. Here, we show that cells harboring high levels of R loops rely on the ATR kinase for survival. In response to aberrant R loop accumulation, the ataxia telangiectasia and Rad3-related (ATR)-Chk1 pathway is activated by R loop-induced reversed replication forks. In contrast to the activation of ATR by replication inhibitors, R loop-induced ATR activation requires the MUS81 endonuclease. ATR protects the genome from R loops by suppressing transcription-replication collisions, promoting replication fork recovery, and enforcing a G2/M cell-cycle arrest. Furthermore, ATR prevents excessive cleavage of reversed forks by MUS81, revealing a MUS81-triggered and ATR-mediated feedback loop that fine-tunes MUS81 activity at replication forks. These results suggest that ATR is a key sensor and suppressor of R loop-induced genomic instability, uncovering a signaling circuitry that safeguards the genome against R loops.
Collapse
Affiliation(s)
- Dominick A Matos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marie-Michelle Genois
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
99
|
Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B. RNase H1 and H2 Are Differentially Regulated to Process RNA-DNA Hybrids. Cell Rep 2019; 29:2890-2900.e5. [DOI: 10.1016/j.celrep.2019.10.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022] Open
|
100
|
Morafraile EC, Hänni C, Allen G, Zeisner T, Clarke C, Johnson MC, Santos MM, Carroll L, Minchell NE, Baxter J, Banks P, Lydall D, Zegerman P. Checkpoint inhibition of origin firing prevents DNA topological stress. Genes Dev 2019; 33:1539-1554. [PMID: 31624083 PMCID: PMC6824463 DOI: 10.1101/gad.328682.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
A universal feature of DNA damage and replication stress in eukaryotes is the activation of a checkpoint-kinase response. In S-phase, the checkpoint inhibits replication initiation, yet the function of this global block to origin firing remains unknown. To establish the physiological roles of this arm of the checkpoint, we analyzed separation of function mutants in the budding yeast Saccharomyces cerevisiae that allow global origin firing upon replication stress, despite an otherwise normal checkpoint response. Using genetic screens, we show that lack of the checkpoint-block to origin firing results in a dependence on pathways required for the resolution of topological problems. Failure to inhibit replication initiation indeed causes increased DNA catenation, resulting in DNA damage and chromosome loss. We further show that such topological stress is not only a consequence of a failed checkpoint response but also occurs in an unperturbed S-phase when too many origins fire simultaneously. Together we reveal that the role of limiting the number of replication initiation events is to prevent DNA topological problems, which may be relevant for the treatment of cancer with both topoisomerase and checkpoint inhibitors.
Collapse
Affiliation(s)
- Esther C Morafraile
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Christine Hänni
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - George Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Theresa Zeisner
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Caroline Clarke
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Mark C Johnson
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Miguel M Santos
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Lauren Carroll
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| | - Nicola E Minchell
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Jonathan Baxter
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Peter Banks
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Dave Lydall
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Philip Zegerman
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge CB2 1QN, United Kingdom
| |
Collapse
|