51
|
Harper JW, Schulman BA. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Annu Rev Biochem 2021; 90:403-429. [PMID: 33823649 PMCID: PMC8217159 DOI: 10.1146/annurev-biochem-090120-013613] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany;
| |
Collapse
|
52
|
Tying up loose ends: the N-degron and C-degron pathways of protein degradation. Biochem Soc Trans 2021; 48:1557-1567. [PMID: 32627813 PMCID: PMC7458402 DOI: 10.1042/bst20191094] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Selective protein degradation by the ubiquitin-proteasome system (UPS) is thought to be governed primarily by the recognition of specific motifs — degrons — present in substrate proteins. The ends of proteins — the N- and C-termini – have unique properties, and an important subset of protein–protein interactions involve the recognition of free termini. The first degrons to be discovered were located at the extreme N-terminus of proteins, a finding which initiated the study of the N-degron (formerly N-end rule) pathways, but only in the last few years has it emerged that a diverse set of C-degron pathways target analogous degron motifs located at the extreme C-terminus of proteins. In this minireview we summarise the N-degron and C-degron pathways currently known to operate in human cells, focussing primarily on those that have been discovered in recent years. In each case we describe the cellular machinery responsible for terminal degron recognition, and then consider some of the functional roles of terminal degron pathways. Altogether, a broad spectrum of E3 ubiquitin ligases mediate the recognition of a diverse array of terminal degron motifs; these degradative pathways have the potential to influence a wide variety of cellular functions.
Collapse
|
53
|
Thrun A, Garzia A, Kigoshi-Tansho Y, Patil PR, Umbaugh CS, Dallinger T, Liu J, Kreger S, Patrizi A, Cox GA, Tuschl T, Joazeiro CAP. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell 2021; 81:2112-2122.e7. [PMID: 33909987 PMCID: PMC8141035 DOI: 10.1016/j.molcel.2021.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Anna Thrun
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yu Kigoshi-Tansho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Pratik R Patil
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Charles S Umbaugh
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Teresa Dallinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Jia Liu
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sylvia Kreger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group Leader at the German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
54
|
Jevtić P, Haakonsen DL, Rapé M. An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chem Biol 2021; 28:1000-1013. [PMID: 33891901 DOI: 10.1016/j.chembiol.2021.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Induced protein degradation accomplishes elimination, rather than inhibition, of pathological proteins. Key to the success of this novel therapeutic modality is the modification of proteins with ubiquitin chains, which is brought about by molecular glues or bivalent compounds that induce proximity between the target protein and an E3 ligase. The human genome encodes ∼600 E3 ligases that differ widely in their structures, catalytic mechanisms, modes of regulation, and physiological roles. While many of these enzymes hold great promise for drug discovery, few have been successfully engaged by small-molecule degraders. Here, we review E3 ligases that are being used for induced protein degradation. Based on these prior successes and our growing understanding of the biology and biochemistry of E3 ligases, we propose new ubiquitylation enzymes that can be harnessed for drug discovery to firmly establish induced protein degradation as a specific and efficient therapeutic approach.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
55
|
Hushpulian DM, Ammal Kaidery N, Ahuja M, Poloznikov AA, Sharma SM, Gazaryan IG, Thomas B. Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue. Front Aging Neurosci 2021; 13:673205. [PMID: 33897412 PMCID: PMC8060438 DOI: 10.3389/fnagi.2021.673205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 signaling axis is a validated and promising target for cellular defense and survival pathways. This minireview discusses the potential off-target effects and their impact on future drug development originating from Keap1-targeting small molecules that function as displacement activators of the redox-sensitive transcription factor Nrf2. We argue that small-molecule displacement activators, similarly to electrophiles, will release both Nrf2 and other Keap1 client proteins from the ubiquitin ligase complex. This non-specificity is likely unavoidable and may result in off-target effects during Nrf2 activation by targeting Keap1. The small molecule displacement activators may also target Kelch domains in proteins other than Keap1, causing additional off-target effects unless designed to ensure specificity for the Kelch domain only in Keap1. A potentially promising and alternative therapeutic approach to overcome this non-specificity emerging from targeting Keap1 is to inhibit the Nrf2 repressor Bach1 for constitutive activation of the Nrf2 pathway and bypass the Keap1-Nrf2 complex.
Collapse
Affiliation(s)
- Dmitry M. Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Andrey A. Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Sudarshana M. Sharma
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Irina G. Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
56
|
Ishida T, Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:484-502. [PMID: 33143537 PMCID: PMC8013866 DOI: 10.1177/2472555220965528] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to be degraded via the ubiquitin-proteasome system. The advent of nonpeptidic small-molecule E3 ligase ligands, notably for von Hippel-Lindau (VHL) and cereblon (CRBN), revolutionized the field and ushered in the design of drug-like PROTACs with potent and selective degradation activity. A first wave of PROTAC drugs are now undergoing clinical development in cancer, and the field is seeking to extend the repertoire of chemistries that allow hijacking new E3 ligases to improve the scope of targeted protein degradation.Here, we briefly review how traditional E3 ligase ligands were discovered, and then outline approaches and ligands that have been recently used to discover new E3 ligases for PROTACs. We will then take an outlook at current and future strategies undertaken that invoke either target-based screening or phenotypic-based approaches, including the use of DNA-encoded libraries (DELs), display technologies and cyclic peptides, smaller molecular glue degraders, and covalent warhead ligands. These approaches are ripe for expanding the chemical space of PROTACs and usher in the advent of other emerging bifunctional modalities of proximity-based pharmacology.
Collapse
Affiliation(s)
- Tasuku Ishida
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
57
|
Faust TB, Donovan KA, Yue H, Chamberlain PP, Fischer ES. Small-Molecule Approaches to Targeted Protein Degradation. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-051420-114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many essential biological processes are regulated through proximity, from membrane receptor signaling to transcriptional activity. The ubiquitin-proteasome system controls protein degradation, with ubiquitin ligases as the rate-limiting step. Ubiquitin ligases are commonly controlled at the level of substrate recruitment and, therefore, by proximity. There are natural and synthetic small molecules that also operate through induced proximity. For example, thalidomide is effective in treating multiple myeloma and functions as a molecular glue that stabilizes novel protein-protein interactions between a ubiquitin ligase and proteins not otherwise targeted by the ligase, leading to neo-substrate degradation. Emerging data on new degrader molecules have uncovered diverse mechanisms distinct from molecular glues, which often mirror the regulatory mechanisms that control substrate-ligase proximity in nature. In this review, we summarize our current understanding of biological and synthetic regulation of protein degradation and share our view on how these diverse mechanisms have inspired novel therapeutic directions.
Collapse
Affiliation(s)
- Tyler B. Faust
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
58
|
Hickey CM, Breckel C, Zhang M, Theune WC, Hochstrasser M. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics 2021; 217:1-19. [PMID: 33683364 PMCID: PMC8045714 DOI: 10.1093/genetics/iyaa031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Intracellular proteolysis by the ubiquitin-proteasome system regulates numerous processes and contributes to protein quality control (PQC) in all eukaryotes. Covalent attachment of ubiquitin to other proteins is specified by the many ubiquitin ligases (E3s) expressed in cells. Here we determine the E3s in Saccharomyces cerevisiae that function in degradation of proteins bearing various PQC degradation signals (degrons). The E3 Ubr1 can function redundantly with several E3s, including nuclear-localized San1, endoplasmic reticulum/nuclear membrane-embedded Doa10, and chromatin-associated Slx5/Slx8. Notably, multiple degrons are targeted by more ubiquitylation pathways if directed to the nucleus. Degrons initially assigned as exclusive substrates of Doa10 were targeted by Doa10, San1, and Ubr1 when directed to the nucleus. By contrast, very short hydrophobic degrons-typical targets of San1-are shown here to be targeted by Ubr1 and/or San1, but not Doa10. Thus, distinct types of PQC substrates are differentially recognized by the ubiquitin system in a compartment-specific manner. In human cells, a representative short hydrophobic degron appended to the C-terminus of GFP-reduced protein levels compared with GFP alone, consistent with a recent study that found numerous natural hydrophobic C-termini of human proteins can act as degrons. We also report results of bioinformatic analyses of potential human C-terminal degrons, which reveal that most peptide substrates of Cullin-RING ligases (CRLs) are of low hydrophobicity, consistent with previous data showing CRLs target degrons with specific sequences. These studies expand our understanding of PQC in yeast and human cells, including the distinct but overlapping PQC E3 substrate specificity of the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Carolyn Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Mengwen Zhang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - William C Theune
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
59
|
Chen X, Liao S, Makaros Y, Guo Q, Zhu Z, Krizelman R, Dahan K, Tu X, Yao X, Koren I, Xu C. Molecular basis for arginine C-terminal degron recognition by Cul2 FEM1 E3 ligase. Nat Chem Biol 2021; 17:254-262. [PMID: 33398168 DOI: 10.1038/s41589-020-00704-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023]
Abstract
Degrons are elements within protein substrates that mediate the interaction with specific degradation machineries to control proteolysis. Recently, a few classes of C-terminal degrons (C-degrons) that are recognized by dedicated cullin-RING ligases (CRLs) have been identified. Specifically, CRL2 using the related substrate adapters FEM1A/B/C was found to recognize C degrons ending with arginine (Arg/C-degron). Here, we uncover the molecular mechanism of Arg/C-degron recognition by solving a subset of structures of FEM1 proteins in complex with Arg/C-degron-bearing substrates. Our structural research, complemented by binding assays and global protein stability (GPS) analyses, demonstrates that FEM1A/C and FEM1B selectively target distinct classes of Arg/C-degrons. Overall, our study not only sheds light on the molecular mechanism underlying Arg/C-degron recognition for precise control of substrate turnover, but also provides valuable information for development of chemical probes for selectively regulating proteostasis.
Collapse
Affiliation(s)
- Xinyan Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shanhui Liao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Qiong Guo
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongliang Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Rina Krizelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiaoming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
60
|
Molecular basis for ubiquitin ligase CRL2 FEM1C-mediated recognition of C-degron. Nat Chem Biol 2021; 17:263-271. [PMID: 33398170 DOI: 10.1038/s41589-020-00703-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023]
Abstract
Proteome integrity depends on the ubiquitin-proteasome system to degrade unwanted or abnormal proteins. In addition to the N-degrons, C-terminal residues of proteins can also serve as degradation signals (C-degrons) that are recognized by specific cullin-RING ubiquitin ligases (CRLs) for proteasomal degradation. FEM1C is a CRL2 substrate receptor that targets the C-terminal arginine degron (Arg/C-degron), but the molecular mechanism of substrate recognition remains largely elusive. Here, we present crystal structures of FEM1C in complex with Arg/C-degron and show that FEM1C utilizes a semi-open binding pocket to capture the C-terminal arginine and that the extreme C-terminal arginine is the major structural determinant in recognition by FEM1C. Together with biochemical and mutagenesis studies, we provide a framework for understanding molecular recognition of the Arg/C-degron by the FEM family of proteins.
Collapse
|
61
|
Yeh CW, Huang WC, Hsu PH, Yeh KH, Wang LC, Hsu PWC, Lin HC, Chen YN, Chen SC, Yeang CH, Yen HCS. The C-degron pathway eliminates mislocalized proteins and products of deubiquitinating enzymes. EMBO J 2021; 40:e105846. [PMID: 33469951 PMCID: PMC8013793 DOI: 10.15252/embj.2020105846] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Protein termini are determinants of protein stability. Proteins bearing degradation signals, or degrons, at their amino‐ or carboxyl‐termini are eliminated by the N‐ or C‐degron pathways, respectively. We aimed to elucidate the function of C‐degron pathways and to unveil how normal proteomes are exempt from C‐degron pathway‐mediated destruction. Our data reveal that C‐degron pathways remove mislocalized cellular proteins and cleavage products of deubiquitinating enzymes. Furthermore, the C‐degron and N‐degron pathways cooperate in protein removal. Proteome analysis revealed a shortfall in normal proteins targeted by C‐degron pathways, but not of defective proteins, suggesting proteolysis‐based immunity as a constraint for protein evolution/selection. Our work highlights the importance of protein termini for protein quality surveillance, and the relationship between the functional proteome and protein degradation pathways.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chieh Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Life Science, Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Chin Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | | | - Hsiu-Chuan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ning Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chuan Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
62
|
Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate targeting by PROTACs and molecular glues. Curr Opin Struct Biol 2020; 67:110-119. [PMID: 33271439 DOI: 10.1016/j.sbi.2020.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
E3 ubiquitin ligase machineries are emerging as attractive therapeutic targets because they confer specificity to substrate ubiquitination and can be hijacked for targeted protein degradation. In this review, we bring to focus our current structural understanding of E3 ligase complexes, in particular the multi-subunit cullin RING ligases, and modulation thereof by small-molecule glues and PROTAC degraders. We highlight recent advances in elucidating the modular assembly of E3 ligase machineries, their diverse substrate and degron recognition mechanisms, and how these structural features impact on ligase function. We then outline the emergence of structures of E3 ligases bound to neo-substrates and degrader molecules, and highlight the importance of studying such ternary complexes for structure-based degrader design.
Collapse
|
63
|
Baek K, Scott DC, Schulman BA. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr Opin Struct Biol 2020; 67:101-109. [PMID: 33160249 DOI: 10.1016/j.sbi.2020.10.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023]
Abstract
RING E3s comprise the largest family of ubiquitin (UB) and ubiquitin-like protein (UBL) ligases. RING E3s typically promote UB or UBL transfer from the active site of an associated E2 enzyme to a distally-recruited substrate. Many RING E3s - including the cullin-RING ligase family - are multifunctional, interacting with various E2s (or other E3s) to target distinct proteins, transfer different UBLs, or to initially modify substrates with UB or subsequently elongate UB chains. Here we consider recent structures of cullin-RING ligases, and their partner E2 enzymes, representing ligation reactions. The studies collectively reveal multimodal mechanisms - interactions between ancillary E2 or E3 domains, post-translational modifications, or auxiliary binding partners - directing cullin-RING E3-E2 enzyme active sites to modify their specific targets.
Collapse
Affiliation(s)
- Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
64
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
65
|
Timms RT, Zhang Z, Rhee DY, Harper JW, Koren I, Elledge SJ. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science 2020; 365:365/6448/eaaw4912. [PMID: 31273098 DOI: 10.1126/science.aaw4912] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
Abstract
The N-terminal residue influences protein stability through N-degron pathways. We used stability profiling of the human N-terminome to uncover multiple additional features of N-degron pathways. In addition to uncovering extended specificities of UBR E3 ligases, we characterized two related Cullin-RING E3 ligase complexes, Cul2ZYG11B and Cul2ZER1, that act redundantly to target N-terminal glycine. N-terminal glycine degrons are depleted at native N-termini but strongly enriched at caspase cleavage sites, suggesting roles for the substrate adaptors ZYG11B and ZER1 in protein degradation during apoptosis. Furthermore, ZYG11B and ZER1 were found to participate in the quality control of N-myristoylated proteins, in which N-terminal glycine degrons are conditionally exposed after a failure of N-myristoylation. Thus, an additional N-degron pathway specific for glycine regulates the stability of metazoan proteomes.
Collapse
Affiliation(s)
- Richard T Timms
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiqian Zhang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Itay Koren
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA. .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA. .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
66
|
Okumura F, Fujiki Y, Oki N, Osaki K, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Cul5-type Ubiquitin Ligase KLHDC1 Contributes to the Elimination of Truncated SELENOS Produced by Failed UGA/Sec Decoding. iScience 2020; 23:100970. [PMID: 32200094 PMCID: PMC7090344 DOI: 10.1016/j.isci.2020.100970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The UGA codon signals protein translation termination, but it can also be translated into selenocysteine (Sec, U) to produce selenocysteine-containing proteins (selenoproteins) by dedicated machinery. As Sec incorporation can fail, Sec-containing longer and Sec-lacking shorter proteins co-exist. Cul2-type ubiquitin ligases were recently shown to destabilize such truncated proteins; however, which ubiquitin ligase targets truncated proteins for degradation remained unclear. We report that the Cul5-type ubiquitin ligase KLHDC1 targets truncated SELENOS, a selenoprotein, for proteasomal degradation. SELENOS is involved in endoplasmic reticulum (ER)-associated degradation, which is linked to reactive oxygen species (ROS) production, and the knockdown of KLHDC1 in U2OS cells decreased ER stress-induced cell death. Knockdown of SELENOS increased the cell population with lower ROS levels. Our findings reveal that, in addition to Cul2-type ubiquitin ligases, KLHDC1 is involved in the elimination of truncated oxidoreductase-inactive SELENOS, which would be crucial for maintaining ROS levels and preventing cancer development. KLHDC1 is a Cul5-type ubiquitin ligase KLHDC1 targets immature SELENOS for proteasomal degradation KLHDC1 knockdown in U2OS cells decreases ER stress-induced cell death
Collapse
Affiliation(s)
- Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan.
| | - Yuha Fujiki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Nodoka Oki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Kana Osaki
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8582, Japan
| | - Akihiko Nishikimi
- Laboratory of Biosafety Research, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience and Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan.
| |
Collapse
|
67
|
Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Mol Cell 2020; 77:150-163.e9. [DOI: 10.1016/j.molcel.2019.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
|
68
|
Abstract
Cullin-RING ubiquitin ligases (CRLs) represent the largest superfamily of multi-subunit E3s conserved in all eukaryotes. Soon after the discovery of these important ubiquitin ligase machineries, structural studies have made tremendous contributions to our understanding of their functions. Identification of the key components of CRLs by early studies raised immediate questions as to how these multi-subunit complexes assemble to promote the polyubiquitination of substrates. Specifically, how do the CRL subunits interact with each other to form a versatile E3 platform? How do they recognize specific substrates? How are the CRL-substrate interactions regulated in response to upstream signals? How are the CRL E3s themselves activated and deactivated, and how are substrate receptor subunits of CRLs exchanged in the cell? Even though we might not yet have complete answers to these questions, extensive structural analyses of CRL complexes in the past two decades have begun to unveil the themes and variations of CRL biology. In this chapter we will discuss both classic and emerging structures that help elucidate the overall architecture of CRLs, their substrate recognition modes, and regulatory mechanism of CRLs by NEDD8 modification.
Collapse
|
69
|
Ha HY, Alfulaij N, Berry MJ, Seale LA. From Selenium Absorption to Selenoprotein Degradation. Biol Trace Elem Res 2019; 192:26-37. [PMID: 31222623 PMCID: PMC6801053 DOI: 10.1007/s12011-019-01771-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Selenium is an essential dietary micronutrient. Ingested selenium is absorbed by the intestines and transported to the liver where it is mostly metabolized to selenocysteine (Sec). Sec is then incorporated into selenoproteins, including selenoprotein P (SELENOP), which is secreted into plasma and serves as a source of selenium to other tissues of the body. Herein, we provide an overview of the biology of selenium from its absorption and distribution to selenoprotein uptake and degradation, with a particular focus on the latter. Molecular mechanisms of selenoprotein degradation include the lysosome-mediated pathway for SELENOP and endoplasmic reticulum-mediated degradation of selenoproteins via ubiquitin-activated proteasomal pathways. Ubiquitin-activated pathways targeting full-length selenoproteins include the peroxisome proliferator-activated receptor gamma-dependent pathway and substrate-dependent ubiquitination. An alternate mechanism is utilized for truncated selenoproteins, in which cullin-RING E3 ubiquitin ligase 2 targets the defective proteins for ubiquitin-proteasomal degradation. Selenoproteins, particularly SELENOP, may have their Sec residues reutilized for new selenoprotein synthesis via Sec decomposition. This review will explore these aspects in selenium biology, providing insights to knowledge gaps that remain to be uncovered.
Collapse
Affiliation(s)
- Herena Y Ha
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Naghum Alfulaij
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Lucia A Seale
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
70
|
Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 2019; 18:949-963. [PMID: 31666732 DOI: 10.1038/s41573-019-0047-y] [Citation(s) in RCA: 580] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) and related molecules that induce targeted protein degradation by the ubiquitin-proteasome system represent a new therapeutic modality and are the focus of great interest, owing to potential advantages over traditional occupancy-based inhibitors with respect to dosing, side effects, drug resistance and modulating 'undruggable' targets. However, the technology is still maturing, and the design elements for successful PROTAC-based drugs are currently being elucidated. Importantly, fewer than 10 of the more than 600 E3 ubiquitin ligases have so far been exploited for targeted protein degradation, and expansion of knowledge in this area is a key opportunity. Here, we briefly discuss lessons learned about targeted protein degradation in chemical biology and drug discovery and systematically review the expression profile, domain architecture and chemical tractability of human E3 ligases that could expand the toolbox for PROTAC discovery.
Collapse
|
71
|
Canzani D, Rusnac DV, Zheng N, Bush MF. Degronomics: Mapping the Interacting Peptidome of a Ubiquitin Ligase Using an Integrative Mass Spectrometry Strategy. Anal Chem 2019; 91:12775-12783. [PMID: 31525912 PMCID: PMC6959985 DOI: 10.1021/acs.analchem.9b02331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cells make use of hundreds of unique ubiquitin E3 ligases to ensure proteome fidelity and control cellular functions by promoting protein degradation. These processes require exquisite selectivity, but the individual roles of most E3s remain poorly characterized in part due to the challenges associated with identifying, quantifying, and validating substrates for each E3. We report an integrative mass spectrometry (MS) strategy for characterizing protein fragments that interact with KLHDC2, a human E3 that recognizes the extreme C-terminus of substrates. Using a combination of native MS, native top-down MS, MS of destabilized samples, and liquid chromatography MS, we identified and quantified a near complete fraction of the KLHDC2-binding peptidome in E. coli cells. This degronome includes peptides that originate from a variety of proteins. Although all identified protein fragments are terminated by diglycine or glycylalanine, the preceding amino acids are diverse. These results significantly expand our understanding of the sequences that can be recognized by KLHDC2, which provides insight into the potential substrates of this E3 in humans. We anticipate that this integrative MS strategy could be leveraged more broadly to characterize the degronomes of other E3 ligase substrate receptors, including those that adhere to the more common N-end rule for substrate recognition. Therefore, this work advances "degronomics," i.e., identifying, quantifying, and validating functional E3:peptide interactions in order to determine the individual roles of each E3.
Collapse
Affiliation(s)
- Daniele Canzani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Domnița-Valeria Rusnac
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
72
|
Ella H, Reiss Y, Ravid T. The Hunt for Degrons of the 26S Proteasome. Biomolecules 2019; 9:biom9060230. [PMID: 31200568 PMCID: PMC6628059 DOI: 10.3390/biom9060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of ubiquitin conjugation as a cellular mechanism that triggers proteasomal degradation, the mode of substrate recognition by the ubiquitin-ligation system has been the holy grail of research in the field. This entails the discovery of recognition determinants within protein substrates, which are part of a degron, and explicit E3 ubiquitin (Ub)-protein ligases that trigger their degradation. Indeed, many protein substrates and their cognate E3′s have been discovered in the past 40 years. In the course of these studies, various degrons have been randomly identified, most of which are acquired through post-translational modification, typically, but not exclusively, protein phosphorylation. Nevertheless, acquired degrons cannot account for the vast diversity in cellular protein half-life times. Obviously, regulation of the proteome is largely determined by inherent degrons, that is, determinants integral to the protein structure. Inherent degrons are difficult to predict since they consist of diverse sequence and secondary structure features. Therefore, unbiased methods have been employed for their discovery. This review describes the history of degron discovery methods, including the development of high throughput screening methods, state of the art data acquisition and data analysis. Additionally, it summarizes major discoveries that led to the identification of cognate E3 ligases and hitherto unrecognized complexities of degron function. Finally, we discuss future perspectives and what still needs to be accomplished towards achieving the goal of understanding how the eukaryotic proteome is regulated via coordinated action of components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hadar Ella
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yuval Reiss
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Tommer Ravid
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
73
|
On the cause of sleep: Protein fragments, the concept of sentinels, and links to epilepsy. Proc Natl Acad Sci U S A 2019; 116:10773-10782. [PMID: 31085645 DOI: 10.1073/pnas.1904709116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular-level cause of sleep is unknown. In 2012, we suggested that the cause of sleep stems from cumulative effects of numerous intracellular and extracellular protein fragments. According to the fragment generation (FG) hypothesis, protein fragments (which are continually produced through nonprocessive cleavages by intracellular, intramembrane, and extracellular proteases) can be beneficial but toxic as well, and some fragments are eliminated slowly during wakefulness. We consider the FG hypothesis and propose that, during wakefulness, the degradation of accumulating fragments is delayed within natural protein aggregates such as postsynaptic densities (PSDs) in excitatory synapses and in other dense protein meshworks, owing to an impeded diffusion of the ∼3,000-kDa 26S proteasome. We also propose that a major function of sleep involves a partial and reversible expansion of PSDs, allowing an accelerated destruction of PSD-localized fragments by the ubiquitin/proteasome system. Expansion of PSDs would alter electrochemistry of synapses, thereby contributing to a decreased neuronal firing during sleep. If so, the loss of consciousness, a feature of sleep, would be the consequence of molecular processes (expansions of protein meshworks) that are required for degradation of protein fragments. We consider the concept of FG sentinels, which signal to sleep-regulating circuits that the levels of fragments are going up. Also discussed is the possibility that protein fragments, which are known to be overproduced during an epileptic seizure, may contribute to postictal sleep and termination of seizures. These and related suggestions, described in the paper, are compatible with current evidence about sleep and lead to testable predictions.
Collapse
|