51
|
Kim GB, Rincon Fernandez Pacheco D, Saxon D, Yang A, Sabet S, Dutra-Clarke M, Levy R, Watkins A, Park H, Abbasi Akhtar A, Linesch PW, Kobritz N, Chandra SS, Grausam K, Ayala-Sarmiento A, Molina J, Sedivakova K, Hoang K, Tsyporin J, Gareau DS, Filbin MG, Bannykh S, Santiskulvong C, Wang Y, Tang J, Suva ML, Chen B, Danielpour M, Breunig JJ. Rapid Generation of Somatic Mouse Mosaics with Locus-Specific, Stably Integrated Transgenic Elements. Cell 2020; 179:251-267.e24. [PMID: 31539496 DOI: 10.1016/j.cell.2019.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Gi Bum Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - David Saxon
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Amy Yang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sara Sabet
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Dutra-Clarke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rachelle Levy
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ashley Watkins
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hannah Park
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aslam Abbasi Akhtar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Linesch
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Naomi Kobritz
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Swasty S Chandra
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Katie Grausam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alberto Ayala-Sarmiento
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Molina
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kristyna Sedivakova
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kendy Hoang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Jeremiah Tsyporin
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Daniel S Gareau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY 10065, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Serguei Bannykh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Moise Danielpour
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
52
|
Charlton J, Jung EJ, Mattei AL, Bailly N, Liao J, Martin EJ, Giesselmann P, Brändl B, Stamenova EK, Müller FJ, Kiskinis E, Gnirke A, Smith ZD, Meissner A. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat Genet 2020; 52:819-827. [PMID: 32514123 PMCID: PMC7415576 DOI: 10.1038/s41588-020-0639-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022]
Abstract
Mammalian cells stably maintain high levels of DNA methylation despite expressing both positive (DNMT3A/B) and negative (TET1-3) regulators. Here, we analyzed the independent and combined effects of these regulators on the DNA methylation landscape using a panel of knockout human embryonic stem cell (ESC) lines. The greatest impact on global methylation levels was observed in DNMT3-deficient cells, including reproducible focal demethylation at thousands of normally methylated loci. Demethylation depends on TET expression and occurs only when both DNMT3s are absent. Dynamic loci are enriched for hydroxymethylcytosine and overlap with subsets of putative somatic enhancers that are methylated in ESCs and can be activated upon differentiation. We observe similar dynamics in mouse ESCs that were less frequent in epiblast stem cells (EpiSCs) and scarce in somatic tissues, suggesting a conserved pluripotency-linked mechanism. Taken together, our data reveal tightly regulated competition between DNMT3s and TETs at thousands of somatic regulatory sequences within pluripotent cells.
Collapse
Affiliation(s)
- Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eunmi J Jung
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Alexandra L Mattei
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jing Liao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Eric J Martin
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pay Giesselmann
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Zentrum für Integrative Psychiatrie gGmbH, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Zachary D Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
53
|
Enhancer DNA methylation: implications for gene regulation. Essays Biochem 2020; 63:707-715. [PMID: 31551326 DOI: 10.1042/ebc20190030] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
DNA methylation involves the addition of a methyl group to the fifth carbon of the pyrimidine cytosine ring (5-methylcytosine, 5mC). 5mC is widespread in vertebrate genomes where it is predominantly found within CpG dinucleotides. In mammals, 5mC participates in long-term silencing processes such as X-chromosome inactivation, genomic imprinting, somatic silencing of germline genes, and silencing of repetitive DNA elements. The evidence for 5mC as a dynamic gene-regulatory mechanism is mostly limited to specific examples, and is far from being completely understood. Recent work from diverse model systems suggests that 5mC might not always act as a dominant repressive mechanism and that hypermethylated promoters and enhancers can be permissive to transcription in vivo and in vitro. In this review, we discuss the links between 5mC and enhancer activity, and evaluate the role of this biochemical mechanism in various biological contexts.
Collapse
|
54
|
Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem 2020; 63:813-825. [PMID: 31724704 DOI: 10.1042/ebc20190029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
DNA methylation is an essential DNA modification that plays a crucial role in genome regulation during differentiation and development, and is disrupted in a range of disease states. The recent development of CRISPR/catalytically dead CRISPR/Cas9 (dCas9)-based targeted DNA methylation editing tools has enabled new insights into the roles and functional relevance of this modification, including its importance at regulatory regions and the role of aberrant methylation in various diseases. However, while these tools are advancing our ability to understand and manipulate this regulatory layer of the genome, they still possess a variety of limitations in efficacy, implementation, and targeting specificity. Effective targeted DNA methylation editing will continue to advance our fundamental understanding of the role of this modification in different genomic and cellular contexts, and further improvements may enable more accurate disease modeling and possible future treatments. In this review, we discuss strategies, considerations, and future directions for targeted DNA methylation editing.
Collapse
|
55
|
Kremsky I, Corces VG. Protection from DNA re-methylation by transcription factors in primordial germ cells and pre-implantation embryos can explain trans-generational epigenetic inheritance. Genome Biol 2020; 21:118. [PMID: 32423419 PMCID: PMC7236515 DOI: 10.1186/s13059-020-02036-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background A growing body of evidence suggests that certain epiphenotypes can be passed across generations via both the male and female germlines of mammals. These observations have been difficult to explain owing to a global loss of the majority of known epigenetic marks present in parental chromosomes during primordial germ cell development and after fertilization. Results By integrating previously published BS-seq, DNase-seq, ATAC-seq, and RNA-seq data collected during multiple stages of primordial germ cell and pre-implantation development, we find that the methylation status of the majority of CpGs genome-wide is restored after global de-methylation, despite the fact that global CpG methylation drops to 10% in primordial germ cells and 20% in the inner cell mass of the blastocyst. We estimate the proportion of such CpGs with preserved methylation status to be 78%. Further, we find that CpGs at sites bound by transcription factors during the global re-methylation phases of germline and embryonic development remain hypomethylated across all developmental stages observed. On the other hand, CpGs at sites not bound by transcription factors during the global re-methylation phase have high methylation levels prior to global de-methylation, become de-methylated during global de-methylation, and then become re-methylated. Conclusions The results suggest that transcription factors can act as carriers of epigenetic information during germ cell and pre-implantation development by ensuring that the methylation status of CpGs is maintained. These findings provide the basis for a mechanistic description of trans-generational inheritance of epigenetic information in mammals.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
56
|
Jadhav U, Manieri E, Nalapareddy K, Madha S, Chakrabarti S, Wucherpfennig K, Barefoot M, Shivdasani RA. Replicational Dilution of H3K27me3 in Mammalian Cells and the Role of Poised Promoters. Mol Cell 2020; 78:141-151.e5. [PMID: 32027840 PMCID: PMC7376365 DOI: 10.1016/j.molcel.2020.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/02/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Polycomb repressive complex 2 (PRC2) places H3K27me3 at developmental genes and is causally implicated in keeping bivalent genes silent. It is unclear if that silence requires minimum H3K27me3 levels and how the mark transmits faithfully across mammalian somatic cell generations. Mouse intestinal cells lacking EZH2 methyltransferase reduce H3K27me3 proportionately at all PRC2 target sites, but ∼40% uniform residual levels keep target genes inactive. These genes, derepressed in PRC2-null villus cells, remain silent in intestinal stem cells (ISCs). Quantitative chromatin immunoprecipitation and computational modeling indicate that because unmodified histones dilute H3K27me3 by 50% each time DNA replicates, PRC2-deficient ISCs initially retain sufficient H3K27me3 to avoid gene derepression. EZH2 mutant human lymphoma cells also require multiple divisions before H3K27me3 dilution relieves gene silencing. In both cell types, promoters with high basal H3K4me2/3 activate in spite of some residual H3K27me3, compared to less-poised promoters. These findings have implications for PRC2 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Unmesh Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Manieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kodandaramireddy Nalapareddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shaon Chakrabarti
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
57
|
Perez-Cervantes C, Smith LA, Nadadur RD, Hughes AEO, Wang S, Corbo JC, Cepko C, Lonfat N, Moskowitz IP. Enhancer transcription identifies cis-regulatory elements for photoreceptor cell types. Development 2020; 147:dev184432. [PMID: 31915147 PMCID: PMC7033740 DOI: 10.1242/dev.184432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Identification of cell type-specific cis-regulatory elements (CREs) is crucial for understanding development and disease, although identification of functional regulatory elements remains challenging. We hypothesized that context-specific CREs could be identified by context-specific non-coding RNA (ncRNA) profiling, based on the observation that active CREs produce ncRNAs. We applied ncRNA profiling to identify rod and cone photoreceptor CREs from wild-type and mutant mouse retinas, defined by presence or absence, respectively, of the rod-specific transcription factor (TF) NrlNrl-dependent ncRNA expression strongly correlated with epigenetic profiles of rod and cone photoreceptors, identified thousands of candidate rod- and cone-specific CREs, and identified motifs for rod- and cone-specific TFs. Colocalization of NRL and the retinal TF CRX correlated with rod-specific ncRNA expression, whereas CRX alone favored cone-specific ncRNA expression, providing quantitative evidence that heterotypic TF interactions distinguish cell type-specific CRE activity. We validated the activity of novel Nrl-dependent ncRNA-defined CREs in developing cones. This work supports differential ncRNA profiling as a platform for the identification of cell type-specific CREs and the discovery of molecular mechanisms underlying TF-dependent CRE activity.
Collapse
Affiliation(s)
- Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Linsin A Smith
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew E O Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sui Wang
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Constance Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nicolas Lonfat
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
58
|
Barnett KR, Decato BE, Scott TJ, Hansen TJ, Chen B, Attalla J, Smith AD, Hodges E. ATAC-Me Captures Prolonged DNA Methylation of Dynamic Chromatin Accessibility Loci during Cell Fate Transitions. Mol Cell 2020; 77:1350-1364.e6. [PMID: 31999955 DOI: 10.1016/j.molcel.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/08/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
DNA methylation of enhancers is dynamic, cell-type specific, and vital for cell fate progression. However, current models inadequately define its role within the hierarchy of gene regulation. Analysis of independent datasets shows an unanticipated overlap between DNA methylation and chromatin accessibility at enhancers of steady-state stem cells, suggesting that these two opposing features might exist concurrently. To define their temporal relationship, we developed ATAC-Me, which probes accessibility and methylation from single DNA library preparations. We identified waves of accessibility occurring rapidly across thousands of myeloid enhancers in a monocyte-to-macrophage cell fate model. Prolonged methylation states were observed at a majority of these sites, while transcription of nearby genes tracked closely with accessibility. ATAC-Me uncovers a significant disconnect between chromatin accessibility, DNA methylation status, and gene activity. This unexpected observation highlights the value of ATAC-Me in constructing precise molecular timelines for understanding the role of DNA methylation in gene regulation.
Collapse
Affiliation(s)
- Kelly R Barnett
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Benjamin E Decato
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Timothy J Scott
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew D Smith
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
59
|
Brumbaugh J, Di Stefano B, Hochedlinger K. Reprogramming: identifying the mechanisms that safeguard cell identity. Development 2019; 146:146/23/dev182170. [PMID: 31792064 DOI: 10.1242/dev.182170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development and homeostasis rely upon concerted regulatory pathways to establish the specialized cell types needed for tissue function. Once a cell type is specified, the processes that restrict and maintain cell fate are equally important in ensuring tissue integrity. Over the past decade, several approaches to experimentally reprogram cell fate have emerged. Importantly, efforts to improve and understand these approaches have uncovered novel molecular determinants that reinforce lineage commitment and help resist cell fate changes. In this Review, we summarize recent studies that have provided insights into the various chromatin factors, post-transcriptional processes and features of genomic organization that safeguard cell identity in the context of reprogramming to pluripotency. We also highlight how these factors function in other experimental, physiological and pathological cell fate transitions, including direct lineage conversion, pluripotency-to-totipotency reversion and cancer.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA .,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
60
|
Abstract
The word diaphragm comes from the Greek (διάϕραγμα), which meant something that divides, but also expressed a concept related to emotions and intellect. Breath is part of a concept of symmorphosis, that is the maximum ability to adapt to multiple functional questions in a defined biological context. The act of breathing determines and defines our holobiont: how we react and who we are. The article reviews the fascial structure that involves and forms the diaphragm muscle with the aim of changing the vision of this complex muscle: from an anatomical and mechanistic form to a fractal and asynchronous form. Another step forward for understanding the diaphragm muscle is that it is not only covered, penetrated and made up of connective tissue, but the contractile tissue itself is a fascial tissue with the same embryological derivation. All the diaphragm muscle is fascia.
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | | | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| |
Collapse
|
61
|
Stratton MS, Farina FM, Elia L. Epigenetics and vascular diseases. J Mol Cell Cardiol 2019; 133:148-163. [PMID: 31211956 DOI: 10.1016/j.yjmcc.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention. Herein, we provide an overview of epigenetic mechanism, and review recent findings related to epigenetics in vascular diseases, highlighting classical epigenetic mechanism such as DNA methylation and histone modification as well as the newly discovered non-coding RNA mechanisms.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, United States of America.
| | - Floriana Maria Farina
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Leonardo Elia
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|