51
|
Nouri R, Tang Z, Dong M, Liu T, Kshirsagar A, Guan W. CRISPR-based detection of SARS-CoV-2: A review from sample to result. Biosens Bioelectron 2021; 178:113012. [PMID: 33497879 PMCID: PMC7826142 DOI: 10.1016/j.bios.2021.113012] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
The current pandemic of the 2019 novel coronavirus (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has raised significant public health concern. Rapid, affordable, and accurate diagnostics of SARS-CoV-2 is essential for early treatment and control of the disease spread. In the past few years, CRISPR technology has shown great potential for highly sensitive and specific molecular diagnostics. Amid the ongoing COVID-19 pandemic, there is an increasing interest in implementing CRISPR-based diagnostic principles to develop fast and precise methods for detecting SARS-CoV-2. In this work, we reviewed and summarized these CRISPR-based diagnostic systems as well as their characteristics and challenges. We also provided future perspectives of CRISPR-based sensing towards point-of-care molecular diagnosis applications.
Collapse
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Aneesh Kshirsagar
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
52
|
Palaz F, Kalkan AK, Tozluyurt A, Ozsoz M. CRISPR-based tools: Alternative methods for the diagnosis of COVID-19. Clin Biochem 2021; 89:1-13. [PMID: 33428900 PMCID: PMC7796800 DOI: 10.1016/j.clinbiochem.2020.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spread all over the world rapidly and caused a global pandemic. To prevent the virus from spreading to more individuals, it is of great importance to identify and isolate infected individuals through testing. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold standard method for the diagnosis of coronavirus disease (COVID-19) worldwide. However, performing RT-qPCR is limited to centralized laboratories because of the need for sophisticated laboratory equipment and skilled personnel. Further, it can sometimes give false negative or uncertain results. Recently, new methods have been developed for nucleic acid detection and pathogen diagnosis using CRISPR-Cas systems. These methods present rapid and cost-effective diagnostic platforms that provide high sensitivity and specificity without the need for complex instrumentation. Using the CRISPR-based SARS-CoV-2 detection methods, it is possible to increase the number of daily tests in existing laboratories, reduce false negative or uncertain result rates obtained with RT-qPCR, and perform testing in resource-limited settings or at points of need where performing RT-qPCR is not feasible. Here, we briefly describe the RT-qPCR method, and discuss its limitations in meeting the current diagnostic needs. We explain how the unique properties of various CRISPR-associated enzymes are utilized for nucleic acid detection and pathogen diagnosis. Then, we highlight the important features of CRISPR-based diagnostic methods developed for SARS-CoV-2 detection. Finally, we examine the advantages and limitations of these methods, and discuss how they can contribute to improving the efficiency of the current testing systems for combating SARS-CoV-2.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Abdullah Tozluyurt
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, 10 Mersin, Turkey.
| |
Collapse
|
53
|
Tong B, Dong H, Cui Y, Jiang P, Jin Z, Zhang D. The Versatile Type V CRISPR Effectors and Their Application Prospects. Front Cell Dev Biol 2021; 8:622103. [PMID: 33614630 PMCID: PMC7889808 DOI: 10.3389/fcell.2020.622103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The class II clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems, characterized by a single effector protein, can be further subdivided into types II, V, and VI. The application of the type II CRISPR effector protein Cas9 as a sequence-specific nuclease in gene editing has revolutionized this field. Similarly, Cas13 as the effector protein of type VI provides a convenient tool for RNA manipulation. Additionally, the type V CRISPR–Cas system is another valuable resource with many subtypes and diverse functions. In this review, we summarize all the subtypes of the type V family that have been identified so far. According to the functions currently displayed by the type V family, we attempt to introduce the functional principle, current application status, and development prospects in biotechnology for all major members.
Collapse
Affiliation(s)
- Baisong Tong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yali Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingtao Jiang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Newsom S, Parameshwaran HP, Martin L, Rajan R. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Front Cell Infect Microbiol 2021; 10:619763. [PMID: 33585286 PMCID: PMC7876343 DOI: 10.3389/fcimb.2020.619763] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial and archaeal CRISPR-Cas systems offer adaptive immune protection against foreign mobile genetic elements (MGEs). This function is regulated by sequence specific binding of CRISPR RNA (crRNA) to target DNA/RNA, with an additional requirement of a flanking DNA motif called the protospacer adjacent motif (PAM) in certain CRISPR systems. In this review, we discuss how the same fundamental mechanism of RNA-DNA and/or RNA-RNA complementarity is utilized by bacteria to regulate two distinct functions: to ward off intruding genetic materials and to modulate diverse physiological functions. The best documented examples of alternate functions are bacterial virulence, biofilm formation, adherence, programmed cell death, and quorum sensing. While extensive complementarity between the crRNA and the targeted DNA and/or RNA seems to constitute an efficient phage protection system, partial complementarity seems to be the key for several of the characterized alternate functions. Cas proteins are also involved in sequence-specific and non-specific RNA cleavage and control of transcriptional regulator expression, the mechanisms of which are still elusive. Over the past decade, the mechanisms of RNA-guided targeting and auxiliary functions of several Cas proteins have been transformed into powerful gene editing and biotechnological tools. We provide a synopsis of CRISPR technologies in this review. Even with the abundant mechanistic insights and biotechnology tools that are currently available, the discovery of new and diverse CRISPR types holds promise for future technological innovations, which will pave the way for precision genome medicine.
Collapse
Affiliation(s)
- Sydney Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Hari Priya Parameshwaran
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Lindsie Martin
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
55
|
Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun 2021; 12:555. [PMID: 33483498 PMCID: PMC7822910 DOI: 10.1038/s41467-020-20633-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
The ever-expanding set of CRISPR technologies and their programmable RNA-guided nucleases exhibit remarkable flexibility in DNA targeting. However, this flexibility comes with an ever-present constraint: the requirement for a protospacer adjacent motif (PAM) flanking each target. While PAMs play an essential role in self/nonself discrimination by CRISPR-Cas immune systems, this constraint has launched a far-reaching expedition for nucleases with relaxed PAM requirements. Here, we review ongoing efforts toward realizing PAM-free nucleases through natural ortholog mining and protein engineering. We also address potential consequences of fully eliminating PAM recognition and instead propose an alternative nuclease repertoire covering all possible PAM sequences.
Collapse
Affiliation(s)
- Daphne Collias
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Chase L Beisel
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany.
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
56
|
Tiwari M, Trivedi P, Pandey A. Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food Energy Secur 2020. [DOI: 10.1002/fes3.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome Research New Delhi India
| | - Prabodh Trivedi
- CSIR‐Central Institute of Medicinal and Aromatic Plants Lucknow India
| | | |
Collapse
|