51
|
Ing YH, Md Salleh MS, Yahya MM, Ankathil R, Abdul Aziz AA. Association of ABCG2 Polymorphisms on Triple Negative Breast Cancer (TNBC) Susceptibility Risk. Asian Pac J Cancer Prev 2023; 24:3891-3897. [PMID: 38019248 PMCID: PMC10772757 DOI: 10.31557/apjcp.2023.24.11.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to elucidate the association of ATP-binding cassette super-family G member 2 (ABCG2) gene polymorphisms with individual susceptibility to Triple Negative Breast Cancer (TNBC) as well as clinicopathological variables in TNBC patients. Two common polymorphisms in Asian population, ABCG2 34 G>A and 421 C>A was selected in this study. METHODS Blood samples were collected from 75 TNBC patients and 83 controls. Genomic DNA was extracted from blood samples and the SNP genotyping was performed by using PCR-RFLP technique. The genotypes were characterized and grouped into homozygous wildtype, heterozygote and homozygous variant based on the band size. The result was subjected to statistical analysis. RESULTS The A allele and AA genotype of ABCG2 421 C>A had OR of 3.011 (p=0.003, 95% CI: 1.417-6.398) and 9.042 (p=0.011, 95% CI: 1.640-49.837), to develop advanced staging carcinoma respectively. The AA genotype of ABCG2 421 C>A polymorphism was also associated with metaplastic and medullary carcinoma with an OR of 6.429 (p=0.018, 95% CI: 1.373-30.109). A significant association was also found in haplotype 34G/421A of ABCG2 with advanced cancer staging as well as metaplastic and medullary carcinoma with OR of 2.347 (p=0.032, 95% CI: 1.010-5.560) and 2.546 (p=0.008, 95% CI: 1.005-6.447), respectively. Conclusion: The present study suggests that ABCG2 421 C>A polymorphism was associated with metaplastic and medullary histology and advanced cancer staging in TNBC patients.
Collapse
Affiliation(s)
- Yeoh Hao Ing
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Ravindran Ankathil
- Jubilee Centre for Medical Research, Jubilee Medical College and Research Institute, Thrissur, Kerala, India.
| | - Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
52
|
Duca-Barbu SA, Bratei AA, Lisievici AC, Georgescu TA, Nemes BM, Sajin M, Pop F. A Novel Algorithm for Evaluating Bone Metastatic Potential of Breast Cancer through Morphometry and Computational Mathematics. Diagnostics (Basel) 2023; 13:3338. [PMID: 37958234 PMCID: PMC10650224 DOI: 10.3390/diagnostics13213338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Bone metastases represent about 70% of breast cancer metastases and are associated with worse prognosis as the tumor cells acquire more aggressive features. The selection and investigation of patients with a high risk of developing bone metastasis would have a significant impact on patients' management and survival. The patients were selected from the database of Carol Davila Clinical Nephrology Hospital of Bucharest. Their tumor specimens were pathologically processed, and a representative area was selected. This area was scanned using an Olympus VS200 slide scanner and further analyzed using QuPath software v0.4.4. A representative group of approximately 60-100 tumor cells was selected from each section, for which the following parameters were analyzed: nuclear area, nuclear perimeter, long axis and cell surface. Starting from these measurements, the following were calculated: the mean nuclear area and mean nuclear volume, the nucleus to cytoplasm ratio, the length of the two axes, the long axis to short axis ratio, the acyclicity and anellipticity grade and the mean internuclear distance. The tumor cells belonging to patients known to have bone metastasis seemed to have a lower nuclear area (<55 µm2, p = 0.0035), smaller long axis (<9 µm, p = 0.0015), smaller values for the small axis (<7 µm, p = 0.0008), smaller mean nuclear volume (<200 µm3, p = 0.0146) and lower mean internuclear distance (<10.5 µm, p = 0.0007) but a higher nucleus to cytoplasm ratio (>1.1, p = 0.0418), higher axis ratio (>1.2, p = 0.088), higher acyclicity grade (>1.145, p = 0.0857) and higher anellipticity grade (>1.14, p = 0.1362). These parameters can be used for the evaluation of risk category of developing bone metastases. These results can be useful for the evaluation of bone metastatic potential of breast cancer and for the selection of high-risk patients whose molecular profiles would require further investigations and evaluation.
Collapse
Affiliation(s)
- Simona-Alina Duca-Barbu
- Department of Pathology, “Carol Davila” Clinical Nephrology Hospital, 010731 Bucharest, Romania
- Department of Pathology, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Alexandru Adrian Bratei
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest, Romania
| | - Antonia-Carmen Lisievici
- Department of Pathology, “Carol Davila” Clinical Nephrology Hospital, 010731 Bucharest, Romania
- Department of Pathology, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Tiberiu Augustin Georgescu
- Department of Pathology, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
- Department of Pathology, National Institute for Mother and Child Health, 011061 Bucharest, Romania
| | | | - Maria Sajin
- Department of Pathology, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Florinel Pop
- Department of Pathology, “Carol Davila” Clinical Nephrology Hospital, 010731 Bucharest, Romania
| |
Collapse
|
53
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
54
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
55
|
Feng S, Yin J. Dynamic contrast-enhanced magnetic resonance imaging radiomics analysis based on intratumoral subregions for predicting luminal and nonluminal breast cancer. Quant Imaging Med Surg 2023; 13:6735-6749. [PMID: 37869317 PMCID: PMC10585575 DOI: 10.21037/qims-22-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
Background Breast cancer is a heterogeneous disease with different morphological and biological characteristics. The molecular subtypes of breast cancer are closely related to the treatment and prognosis of patients. In order to predict the luminal type of breast cancer in a noninvasive manner, our study developed and validated a radiomics nomogram combining clinical factors with a radiomics score based on the features of the intratumoral subregion to distinguish between luminal and nonluminal breast cancer. Methods From January 2018 to January 2020, 153 women with clinically and pathologically diagnosed breast cancer with an average age of 50.08 years were retrospectively analyzed. Using a semiautomatic segmentation method, the whole tumor was divided into 3 subregions on the basis of the time required for the contrast agent to reach its peak; 540 features were extracted from 3 subregions and the whole tumor region. Subsequently, 2 machine learning classifiers were developed. The least absolute shrinkage and selection operator method was used for feature selection and radiomics score (Rad-score) construction. Moreover, multivariable logistic regression analysis was applied to select independent factors from the Rad-score and clinical factors to establish a prediction model in the form of a nomogram. The performance of the nomogram was evaluated through calibration, discrimination, and clinical usefulness. Results The prediction performance of texture features from the rapid subregion was the best in the 3 intratumoral subregions, and the area under the receiver operating characteristic curve (AUC) values in the training and validation cohort were 0.805 (95% CI: 0.719-0.892) and 0.737 (95% CI: 0.581-0.893), respectively. The Rad-score, consisting of 5 features from the rapid subregion, was associated with the luminal type of breast cancer (P=0.001 and P=0.035 in the training and validation cohorts, respectively). The predictors included in the personalized prediction nomogram included Rad-score, human epidermal growth factor receptor 2 (HER2) status, and tumor histological grade. The nomogram showed good discrimination, with an area under the receiver operating characteristic curve in the training and validation cohorts of 0.830 (95% CI: 0.746-0.896) and 0.879 (95% CI: 0.748-0.957), respectively. The calibration curve of the 2 cohorts and decision curve analysis demonstrated that the nomogram had good calibration and clinical usefulness. Conclusions We proposed a nomogram model that combined clinical factors and Rad-score, which showed good performance in predicting the luminal type of breast cancer.
Collapse
Affiliation(s)
- Shuqian Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
56
|
Kim HB, Han SJ, Kim EK, Eom JS, Han HH. Comparative Study of DIEP and PAP Flaps in Breast Reconstruction: Reconstructive Outcomes and Fat Necrosis. J Reconstr Microsurg 2023; 39:627-632. [PMID: 36809782 DOI: 10.1055/a-2040-1368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND This study compared the reconstructive outcomes and fat necrosis of the profunda artery perforator (PAP) flap with those of the deep inferior epigastric perforator (DIEP) flap. METHODS Data on all DIEP and PAP flap breast reconstructions performed between 2018 and 2021 at Asan Medical Center were compared. The overall reconstructive outcomes and presence of fat necrosis were analyzed through ultrasound evaluation performed by a board-certified radiologist. RESULTS The PAP (n = 43) and DIEP flaps (n = 99) were used to reconstruct 31 and 99 breasts, respectively. The average age of the patients in the PAP flap group (39.1 ± 7.3 years) was lower than in the DIEP flap group (47.4 ± 7.7 years), and the body mass index (BMI) of patients undergoing PAP flap reconstruction (22.7 ± 2.8 kg/m2) was lower than those undergoing DIEP flap reconstruction (24.3 ± 3.4 kg/m2). There was no total loss of both flaps. Donor site morbidity was higher in the PAP flap group (11.1%) compared with the DIEP flap (1.0%). The rate of fat necrosis was higher in the PAP flaps (40.7%) than in the DIEP flaps (17.8%) during ultrasound. CONCLUSION In our study, we found that PAP flap reconstruction tended to be performed in patients who were younger with lower BMIs compared with the DIEP flap. Successful reconstructive outcomes were observed in both the PAP and DIEP flaps; however, a higher rate of necrosis was observed in the PAP flap compared with the DIEP flap.
Collapse
Affiliation(s)
- Hyung Bae Kim
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong John Han
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eon Key Kim
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Sup Eom
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ho Han
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Wang Y, Liang Y, Ye F, Luo D, Jin Y, Li Y, Zhao W, Chen B, Wang L, Yang Q. Histologic heterogeneity predicts patient prognosis of HER2-positive metastatic breast cancer: A retrospective study based on SEER database. Cancer Med 2023; 12:18597-18610. [PMID: 37605516 PMCID: PMC10557902 DOI: 10.1002/cam4.6469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2-positive (HER2+) metastatic breast cancer (MBC) is a subtype of breast cancer with a worse prognosis. Little is known about the relationship between histology and prognosis among different distant metastasis sites (DMS). Our aims were to explore the prognostic value of histologic subtypes in different DMS and screen out specific subtypes with particular DMS that need more attention in HER2+ MBC. METHODS HER2+ MBC patient data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2014. Chi-squared tests were utilized to compare histologic subtypes in four DMS. The logistic regression analyses were used to control confounding factors. The log-rank tests were used to analyze the correlation of histologic subtype with disease-specific survival and overall survival. The survival data was analyzed using Kaplan-Meier methods. RESULTS A total of 1174 HER2+ MBC patients were involved. First, the distribution of histological subtypes varied across metastatic sites, and the proportions of metastatic sites in different histological subtypes were also different. Furthermore, different histological subtypes within specific DMS showed divergent prognoses, and the different outcomes were shown by distinct DMS for specific histological subtypes. Among them, lobular carcinoma (ILC) subtypes showed the worst prognosis in bone metastasis, and lung metastasis predicted the worst prognosis in infiltration duct and lobular carcinoma (IDC-ILC) subtypes. After further consideration of hormone receptor (HR) status, the IDC-ILC subtype with liver metastasis in HR+/HER2+ MBC patients and the ILC subtype with bone metastasis in HR-/HER2+ MBC patients proved to be noteworthy. CONCLUSIONS Histological subtypes are involved in determining the heterogeneity of HER2+ MBC patient prognosis, which is helpful to guide the prognosis prediction and monitoring of HER2+ breast cancer patients in clinics.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Yiran Liang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Fangzhou Ye
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Dan Luo
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Yuhan Jin
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Yaming Li
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Wenjing Zhao
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanChina
| | - Bing Chen
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanChina
| | - Lijuan Wang
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanChina
| | - Qifeng Yang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanChina
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanChina
- Research Institute of Breast CancerShandong UniversityJinanChina
| |
Collapse
|
58
|
Sun Y, Gu Y, Gao X, Jin X, Wink M, Sharopov FS, Yang L, Sethi G. Lycorine suppresses the malignancy of breast carcinoma by modulating epithelial mesenchymal transition and β-catenin signaling. Pharmacol Res 2023; 195:106866. [PMID: 37499704 DOI: 10.1016/j.phrs.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Lycorine, an isoquinoline alkaloid can exhibit significant anti-cancer effects. The present study was conducted to illustrate the underlying mechanisms of action of lycorine on breast carcinoma under in vitro and in vivo settings Tandem Mass Tag assay and Kyoto Encyclopedia of Genes and Genomes analysis revealed that 20 signaling pathways were closely related to tumorigenesis, especially Wnt signaling pathway and tight junctions. The results demonstrated that lycorine evidently inhibited the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.84 ± 0.21 μM and 7.76 ± 1.16 μM, respectively. It also blocked cell cycle in G2/M phase, caused a decrease in mitochondrial membrane potential, and induced apoptosis pathways through regulating caspase-3, caspase-8, caspase-9, and PARP expression. Moreover, lycorine effectively repressed the β-catenin signaling and reversed epithelial-mesenchymal transition (EMT) process. Furthermore, 4T1/Luc homograft tumor model was used to further demonstrate that lycorine significantly inhibited the growth and metastasis of breast tumor. These findings highlight the significance of lycorine as potential anti-neoplastic agent to combat breast cancer.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China.
| | - Yi Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Jin
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, Heidelberg 69120, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, No. 267, Айнй Road, Dushanbe 734025, Tajikistan
| | - Linjun Yang
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China.
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore..
| |
Collapse
|
59
|
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, Chaubey KK, Dayal D, Chiang CW, Kumar S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci 2023; 10:1214489. [PMID: 37469704 PMCID: PMC10352522 DOI: 10.3389/fmolb.2023.1214489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a third-generation genome editing method that has revolutionized the world with its high throughput results. It has been used in the treatment of various biological diseases and infections. Various bacteria and other prokaryotes such as archaea also have CRISPR/Cas9 systems to guard themselves against bacteriophage. Reportedly, CRISPR/Cas9-based strategy may inhibit the growth and development of triple-negative breast cancer (TNBC) via targeting the potentially altered resistance genes, transcription, and epigenetic regulation. These therapeutic activities could help with the complex issues such as drug resistance which is observed even in TNBC. Currently, various methods have been utilized for the delivery of CRISPR/Cas9 into the targeted cell such as physical (microinjection, electroporation, and hydrodynamic mode), viral (adeno-associated virus and lentivirus), and non-viral (liposomes and lipid nano-particles). Although different models have been developed to investigate the molecular causes of TNBC, but the lack of sensitive and targeted delivery methods for in-vivo genome editing tools limits their clinical application. Therefore, based on the available evidences, this review comprehensively highlighted the advancement, challenges limitations, and prospects of CRISPR/Cas9 for the treatment of TNBC. We also underscored how integrating artificial intelligence and machine learning could improve CRISPR/Cas9 strategies in TNBC therapy.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tin-Hsien Ko
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei City, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York, NY, United States
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
60
|
Grossi I, Marchina E, De Petro G, Salvi A. The Biological Role and Translational Implications of the Long Non-Coding RNA GAS5 in Breast Cancer. Cancers (Basel) 2023; 15:3318. [PMID: 37444428 DOI: 10.3390/cancers15133318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The lncRNA GAS5 plays a significant role in tumorigenicity and progression of breast cancer (BC). In this review, we first summarize the role of GAS5 in cell biology, focusing on its expression data in human normal tissues. We present data on GAS5 expression in human BC tissues, highlighting its downregulation in all major BC classes. The main findings regarding the molecular mechanisms underlying GAS5 dysregulation are discussed, including DNA hypermethylation of the CpG island located in the promoter region of the gene. We focused on the action of GAS5 as a miRNA sponge, which is able to sequester microRNAs and modulate the expression levels of their mRNA targets, particularly those involved in cell invasion, apoptosis, and drug response. In the second part, we highlight the translational implications of GAS5 in BC. We discuss the current knowledge on the role of GAS5 as candidate prognostic factor, a responsive molecular therapeutic target, and a circulating biomarker in liquid biopsies with clinical importance in BC. The findings position GAS5 as a promising druggable biomolecule and stimulate the development of strategies to restore its expression levels for novel therapeutic approaches that could benefit BC patients in the future.
Collapse
Affiliation(s)
- Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
61
|
Abubakar S, More S, Tag N, Olabinjo A, Isah A, Lawal I. Differences in Tumour Aggressiveness Based on Molecular Subtype and Race Measured by [ 18F]FDG PET Metabolic Metrics in Patients with Invasive Carcinoma of the Breast. Diagnostics (Basel) 2023; 13:2059. [PMID: 37370954 PMCID: PMC10297178 DOI: 10.3390/diagnostics13122059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer in women of African descent tends to be more aggressive with poorer prognosis. This is irrespective of the molecular subtype. [18F]FDG PET/CT metrics correlate with breast cancer aggressiveness based on molecular subtype. This study investigated the differences in [18F]FDG PET/CT metrics of locally advanced invasive ductal carcinoma (IDC) among different racial groups and molecular subtypes. Qualitative and semiquantitative readings of [18F]FDG PET/CT acquired in women with locally advanced IDC were performed. Biodata including self-identified racial grouping and histopathological data of the primary breast cancer were retrieved. Statistical analysis for differences in SUVmax, MTV and TLG of the primary tumour and the presence of regional and distant metastases was conducted based on molecular subtype and race. The primary tumour SUVmax, MTV, TLG and the prevalence of distant metastases were significantly higher in Black patients compared with other races (p < 0.05). The primary tumour SUVmax and presence of distant metastases in the luminal subtype and the primary tumour SUVmax and TLG in the basal subtype were significantly higher in Black patients compared with other races (p < 0.05). The significantly higher PET parameters in Black patients with IDC in general and in those with luminal and basal carcinoma subtypes suggest a more aggressive disease phenotype in this race.
Collapse
Affiliation(s)
- Sofiullah Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Al-Khoud, Muscat 123, Oman
| | - Stuart More
- Department of Nuclear Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town 7935, South Africa
| | - Naima Tag
- Department of Radiology and Nuclear Medicine, Sultan Qaboos University Hospital, Al-Khoud, Muscat 123, Oman
| | - Afusat Olabinjo
- Department of Obstetrics and Gynecology, Armed Forces Hospital, Al-Khoud, Muscat 123, Oman
| | - Ahmed Isah
- Department of Nuclear Medicine, National Hospital, Abuja 90001, Nigeria
| | - Ismaheel Lawal
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
62
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
63
|
Gao Y, Liu S, Yang J, Su M, Xu J, Wang H, Zhang J. The Comprehensive Analysis Illustrates the Role of CDCA5 in Breast Cancer: An Effective Diagnosis and Prognosis Biomarker. Int J Genomics 2023; 2023:7150141. [PMID: 37287817 PMCID: PMC10243952 DOI: 10.1155/2023/7150141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Background Several studies have been conducted to investigate the role of cell division cycle-associated 5 (CDCA5) in cancer. Its role in breast cancer, however, remains unknown. Methods The Gene Expression Omnibus and Cancer Genome Atlas Program databases provided the open-access information needed for the research. The CCK8 and colony formation assays were used to measure cell proliferation. The capacity of breast cancer cells to invade and migrate was assessed using the transwell assay. Results In our study, CDCA5 was identified as the interested gene through a series of bioinformatics analysis. We found a higher CDCA5 expression level in tissue and cells of breast cancer. Meanwhile, CDCA5 has been linked to increased proliferation, invasion, and migration of breast cancer cells, which was also associated with worse clinical features. The biochemical pathways, in which CDCA5 was engaged, were identified using biological enrichment analysis. Immune infiltration research revealed that CDCA5 was linked to enhanced activity of several immune function terms. Meanwhile, DNA methylation might be responsible for the aberrant level of CDCA5 in tumor tissue. In addition, CDCA5 could significantly increase the paclitaxel and docetaxel sensitivity, indicating that it has the potential for clinical application. Also, we found that CDCA5 is mainly localized in cell nucleoplasm. Moreover, in the breast cancer microenvironment, we found that CDCA5 is mainly expressed in malignant cells, proliferation T cells, and neutrophils. Conclusion Overall, our findings suggest that CDCA5 is a potential prognostic indicator and target for breast cancer, which can indicate the direction of the relevant research.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuting Liu
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junyuan Yang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Min Su
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jingjing Xu
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jingwei Zhang
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
64
|
Gul A, Alberty-Oller JJ, Sandhu J, Ayala-Bustamante E, Adams S. A Case of Pathologic Complete Response to Neoadjuvant Chemotherapy and Pembrolizumab in Metaplastic Breast Cancer. JCO Precis Oncol 2023; 7:e2200506. [PMID: 37196220 DOI: 10.1200/po.22.00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/15/2023] [Accepted: 03/21/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Anita Gul
- New York Medical College, Metropolitan Hospital, New York, NY
| | | | - Jagbir Sandhu
- New York Medical College, Metropolitan Hospital, New York, NY
| | | | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
65
|
Surabhi DM, Wilson JC, Singh M, Green L. Recognizing invasive breast carcinoma of no special type with medullary pattern. Radiol Case Rep 2023; 18:1788-1792. [PMID: 36923390 PMCID: PMC10009336 DOI: 10.1016/j.radcr.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Invasive breast carcinoma of no special type (IBC-NST) with medullary pattern is an uncommon histologic type of invasive breast carcinoma. It is associated with high-grade, poorly differentiated tumor cells that form large sheets of irregular confluent tumor cells associated with a prominent lymphocytic infiltrate. Patients with IBC-NST with medullary pattern are often postmenopausal women with a high body mass index and multiparity. We report the case of a 71-year-old woman who presented for routine screening mammography and breast mass suspicious for malignancy, initially thought to be invasive ductal carcinoma with an associated prominent lymphoid infiltrate. However, it was ultimately diagnosed as IBC-NST with medullary pattern, and radiologic imaging (particularly ultrasound and mammography) along with pathology review were critical in making the diagnosis. We make the case of the importance of radiographic imaging in diagnosing this condition, as the prognosis of IBC-NST with medullary pattern is typically more favorable compared to IBC-NST.
Collapse
Affiliation(s)
- Divya Meher Surabhi
- College of Medicine, University of Illinois at Chicago, 1835 W Polk St, Chicago IL 60612 USA
- Corresponding author.
| | - Joseph Charles Wilson
- Department of Radiology, The University of Chicago, 5841 South Maryland Ave MC2026, Chicago, IL 60637 USA
| | - Manmeet Singh
- Department of Pathology, University of Illinois Hospital and Health Sciences, 840 S. Wood St Suite 130 CSN MC 847, Chicago, IL 60612 USA
| | - Lauren Green
- Department of Radiology, University of Illinois Hospital and Health Sciences, 1740 W Taylor St 2600, Chicago, IL 60642 USA
| |
Collapse
|
66
|
Filippone A, Rossi C, Rossi MM, Di Micco A, Maggiore C, Forcina L, Natale M, Costantini L, Merendino N, Di Leone A, Franceschini G, Masetti R, Magno S. Endocrine Disruptors in Food, Estrobolome and Breast Cancer. J Clin Med 2023; 12:jcm12093158. [PMID: 37176599 PMCID: PMC10178963 DOI: 10.3390/jcm12093158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota is now recognized as one of the major players in human health and diseases, including cancer. Regarding breast cancer (BC), a clear link between microbiota and oncogenesis still needs to be confirmed. Yet, part of the bacterial gene mass inside the gut, constituting the so called "estrobolome", influences sexual hormonal balance and, since the increased exposure to estrogens is associated with an increased risk, may impact on the onset, progression, and treatment of hormonal dependent cancers (which account for more than 70% of all BCs). The hormonal dependent BCs are also affected by environmental and dietary endocrine disruptors and phytoestrogens which interact with microbiota in a bidirectional way: on the one side disruptors can alter the composition and functions of the estrobolome, ad on the other the gut microbiota influences the metabolism of endocrine active food components. This review highlights the current evidence about the complex interplay between endocrine disruptors, phytoestrogens, microbiome, and BC, within the frames of a new "oncobiotic" perspective.
Collapse
Affiliation(s)
- Alessio Filippone
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Maddalena Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Annalisa Di Micco
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Maggiore
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luana Forcina
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Natale
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Alba Di Leone
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Franceschini
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Masetti
- Breast Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Women's Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
67
|
Mumtaz S, Ali S, Mumtaz S, Pervaiz A, Tahir HM, Farooq MA, Mughal TA. Advanced treatment strategies in breast cancer: A comprehensive mechanistic review. Sci Prog 2023; 106:368504231175331. [PMID: 37231668 PMCID: PMC10450270 DOI: 10.1177/00368504231175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Breast cancer is a destructive lump type that affects women globally. Despite the availability of multi-directional therapeutic strategies, advanced stages of breast cancer are difficult to treat and impose major healthcare burdens. This situation reinforces the need to identify new potential therapeutic compounds with better clinical features. In this context, different treatment methods were included such as Endocrine therapy, chemotherapy, Radiation therapy, antimicrobial peptide-dependent growth inhibitor, liposome-based drug delivery, antibiotics used as a co-medication, photothermal, immunotherapy, and nano drug delivery systems such as Bombyx mori natural protein sericin and its mediated nanoparticles are promising biomedical agents. They have been tested as an anticancer agent against various malignancies in pre-clinical settings. The biocompatible and restricted breakdown properties of silk sericin and sericin-conjugated nanoparticles made them perfect contenders for a nanoscale drug-delivery system.
Collapse
Affiliation(s)
- Samaira Mumtaz
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Asim Pervaiz
- Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, Pakistan
| | - Hafiz M Tahir
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad A Farooq
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Tafail A Mughal
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
68
|
Romagnoli D, Nardone A, Galardi F, Paoli M, De Luca F, Biagioni C, Franceschini GM, Pestrin M, Sanna G, Moretti E, Demichelis F, Migliaccio I, Biganzoli L, Malorni L, Benelli M. MIMESIS: minimal DNA-methylation signatures to quantify and classify tumor signals in tissue and cell-free DNA samples. Brief Bioinform 2023; 24:6991124. [PMID: 36653909 DOI: 10.1093/bib/bbad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
DNA-methylation alterations are common in cancer and display unique characteristics that make them ideal markers for tumor quantification and classification. Here we present MIMESIS, a computational framework exploiting minimal DNA-methylation signatures composed by a few dozen informative DNA-methylation sites to quantify and classify tumor signals in tissue and cell-free DNA samples. Extensive analyses of multiple independent and heterogenous datasets including >7200 samples demonstrate the capability of MIMESIS to provide precise estimations of tumor content and to enable accurate classification of tumor type and molecular subtype. To assess our framework for clinical applications, we designed a MIMESIS-informed assay incorporating the minimal signatures for breast cancer. Using both artificial samples and clinical serial cell-free DNA samples from patients with metastatic breast cancer, we show that our approach provides accurate estimations of tumor content, sensitive detection of tumor signal and the ability to capture clinically relevant molecular subtype in patients' circulation. This study provides evidence that our extremely parsimonious approach can be used to develop cost-effective and highly scalable DNA-methylation assays that could support and facilitate the implementation of precision oncology in clinical practice.
Collapse
Affiliation(s)
| | - Agostina Nardone
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100 Prato, Italy
| | - Francesca Galardi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100 Prato, Italy
| | - Marta Paoli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Francesca De Luca
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100 Prato, Italy
| | - Chiara Biagioni
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy
| | - Gian Marco Franceschini
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Marta Pestrin
- Medical Oncology Unit, Azienda Sanitaria Universitaria Giuliano Isontina, 34170 Gorizia, Italy
| | - Giuseppina Sanna
- Medical Oncology, Ospedale Civile SS Annunziata, 07100 Sassari, Italy
| | - Erica Moretti
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100 Prato, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100 Prato, Italy
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy
| |
Collapse
|
69
|
Identifying tumour microenvironment-related signature that correlates with prognosis and immunotherapy response in breast cancer. Sci Data 2023; 10:119. [PMID: 36869083 PMCID: PMC9984471 DOI: 10.1038/s41597-023-02032-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Tumor microenvironment (TME) plays important roles in prognosis and immune evasion. However, the relationship between TME-related genes and clinical prognosis, immune cell infiltration, and immunotherapy response in breast cancer (BRCA) remains unclear. This study described the TME pattern to construct a TME-related prognosis signature, including risk factors PXDNL, LINC02038 and protective factors SLC27A2, KLRB1, IGHV1-12 and IGKV1OR2-108, as an independent prognostic factor for BRCA. We found that the prognosis signature was negatively correlated with the survival time of BRCA patients, infiltration of immune cells and the expression of immune checkpoints, while positively correlated with tumor mutation burden and adverse treatment effects of immunotherapy. Upregulation of PXDNL and LINC02038 and downregulation of SLC27A2, KLRB1, IGHV1-12 and IGKV1OR2-108 in high-risk score group synergistically contribute to immunosuppressive microenvironment which characterized by immunosuppressive neutrophils, impaired cytotoxic T lymphocytes migration and natural killer cell cytotoxicity. In summary, we identified a TME-related prognostic signature in BRCA, which was connected with immune cell infiltration, immune checkpoints, immunotherapy response and could be developed for immunotherapy targets.
Collapse
|
70
|
Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, Wu S. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol 2023; 236:123855. [PMID: 36868337 DOI: 10.1016/j.ijbiomac.2023.123855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.
Collapse
Affiliation(s)
- Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
71
|
Hernandez-Juarez J, Gonzalez-Cruz AO, Miranda-Espino R, Ronquillo-Sanchez MD, Ramirez-Estrada K, Balderas-Renteria I, Arredondo-Espinoza E. Effects of siRNA-mediated Silencing of ERBB2, IGF-1R, and ITGB1 in HER2-positive Breast Cancer Cells. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:183-188. [PMID: 36875302 PMCID: PMC9949539 DOI: 10.21873/cdp.10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND/AIM One of the hallmarks of cancer is deregulation of multiple signaling pathways, which can lead to uncontrolled proliferation and migration of cells. Over-expression and mutations in human epidermal growth factor receptor 2 (HER2) can lead to overactivation of these pathways, potentially developing cancer in different tissues, including breast tissue. IGF-1R and ITGB-1 are two receptors that have been linked to cancer development. Therefore, the aim of this study was to investigate the effects of silencing of the corresponding genes using specific siRNAs. MATERIALS AND METHODS Transient silencing of HER2, ITGB-1, and IGF-1R was conducted using siRNAs and expression was quantified by reverse transcription-quantitative polymerase chain reaction. Viability in human breast cancer cells SKBR3, MCF-7, and HCC1954 and cytotoxicity in HeLa cells were tested using WST-1 assay. RESULTS The use of anti-HER2 siRNAs in a breast cancer cell line over-expressing HER2 (SKBR3) led to a decrease in cell viability. However, silencing of ITGB-1 and IGF-1R in the same cell line had no significant effects. Silencing of any of the genes encoding any of the three receptors in MCF-7, HCC1954, and HeLa had no significant effects. CONCLUSION Our results provide evidence towards using siRNAs against HER2-positive breast cancer. Silencing of ITGB-1 and IGF-R1 did not significantly inhibit the growth of SKBR3 cells. Therefore, there is need for testing the effect of silencing ITGB-1 and IGF-R1 in other cancer cell lines over-expressing these biomarkers and explore their potential use in cancer therapy.
Collapse
Affiliation(s)
- Javier Hernandez-Juarez
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aldo O Gonzalez-Cruz
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Rodolfo Miranda-Espino
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Maria Dolores Ronquillo-Sanchez
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Karla Ramirez-Estrada
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Isaias Balderas-Renteria
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Eder Arredondo-Espinoza
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| |
Collapse
|
72
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
73
|
Expression of RBMS3 in Breast Cancer Progression. Int J Mol Sci 2023; 24:ijms24032866. [PMID: 36769184 PMCID: PMC9917836 DOI: 10.3390/ijms24032866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the study was to evaluate the localization and intensity of RNA-binding motif single-stranded-interacting protein 3 (RBMS3) expression in clinical material using immunohistochemical (IHC) reactions in cases of ductal breast cancer (in vivo), and to determine the level of RBMS3 expression at both the protein and mRNA levels in breast cancer cell lines (in vitro). Moreover, the data obtained in the in vivo and in vitro studies were correlated with the clinicopathological profiles of the patients. Material for the IHC studies comprised 490 invasive ductal carcinoma (IDC) cases and 26 mastopathy tissues. Western blot and RT-qPCR were performed on four breast cancer cell lines (MCF-7, BT-474, SK-BR-3 and MDA-MB-231) and the HME1-hTERT (Me16C) normal immortalized breast epithelial cell line (control). The Kaplan-Meier plotter tool was employed to analyze the predictive value of overall survival of RBMS3 expression at the mRNA level. Cytoplasmatic RBMS3 IHC expression was observed in breast cancer cells and stromal cells. The statistical analysis revealed a significantly decreased RBMS3 expression in the cancer specimens when compared with the mastopathy tissues (p < 0.001). An increased expression of RBMS3 was corelated with HER2(+) cancer specimens (p < 0.05) and ER(-) cancer specimens (p < 0.05). In addition, a statistically significant higher expression of RBMS3 was observed in cancer stromal cells in comparison to the control and cancer cells (p < 0.0001). The statistical analysis demonstrated a significantly higher expression of RBMS3 mRNA in the SK-BR-3 cell line compared with all other cell lines (p < 0.05). A positive correlation was revealed between the expression of RBMS3, at both the mRNA and protein levels, and longer overall survival. The differences in the expression of RBMS3 in cancer cells (both in vivo and in vitro) and the stroma of breast cancer with regard to the molecular status of the tumor may indicate that RBMS3 could be a potential novel target for the development of personalized methods of treatment. RBMS3 can be an indicator of longer overall survival for potential use in breast cancer diagnostic process.
Collapse
|
74
|
Kada Mohammed S, Billa O, Ladoire S, Jankowski C, Desmoulins I, Poillot ML, Coutant C, Beltjens F, Dabakuyo S, Arnould L. HER2-positive invasive lobular carcinoma: a rare breast cancer which may not necessarily require anti-HER2 therapy. A population-based study. Breast Cancer 2023; 30:343-353. [PMID: 36715845 DOI: 10.1007/s12282-022-01432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND HER2-positive (HER2 +) invasive lobular breast cancer (ILC) is rare and poorly characterised. In particular, patient outcomes compared to those associated with HER2 + invasive ductal cancer (IDC) and HER2-negative (HER2 -) ILC, as well as the benefits of anti-HER2 therapy, are not well established. METHODS We analysed the data from the Côte d'Or Registry of Breast and Gynaecological Cancers (France) for all patients diagnosed with early-stage HER2 + ILC (62 cases), HER2 + IDC (833 cases) and HER2 - ILC (685 cases) between 1998 and 2015 to compare overall and disease-free survival (OS and DFS) between these groups in correlation with anti-HER2 therapy. RESULTS ILCs were associated with older age, larger tumours, lower histological grades, higher hormonal receptor positivity rates and multifocality, and more common endocrine therapy. OS and DFS between the three groups did not differ. We found that anti-HER2 therapy was associated with a survival benefit in patients with HER2 + IDC. In contrast, the survival of HER2 + ILC patients was not improved by anti-HER2 treatment, remaining close to that of HER2 - ILC patients. CONCLUSION HER2 + ILC seems not to be associated with better outcomes than HER2 + IDC but may not differ from HER2 - ILC in terms of survival.
Collapse
Affiliation(s)
- Samia Kada Mohammed
- Department of Gynaecology and Obstetrics, Jean Verdier Hospital, Assistance Publique Des Hôpitaux de Paris (APHP), Avenue du 14 Juillet, 93140, Bondy, France.
| | - Oumar Billa
- Department of Epidemiology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
- INSERM U1231, 21000, Dijon, France
- University of Burgundy-Franche Comté, 21000, Dijon, France
| | - Clementine Jankowski
- Department of Surgery, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Marie-Laure Poillot
- Department of Epidemiology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Charles Coutant
- University of Burgundy-Franche Comté, 21000, Dijon, France
- Department of Surgery, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Françoise Beltjens
- Unit of Pathology, Department of Tumour Biology and Pathology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Sandrine Dabakuyo
- Department of Epidemiology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Laurent Arnould
- INSERM U1231, 21000, Dijon, France
- Unit of Pathology, Department of Tumour Biology and Pathology, Georges-François Leclerc Centre, 1 Rue du Professeur Marion, 21000, Dijon, France
| |
Collapse
|
75
|
Ogundokun RO, Misra S, Akinrotimi AO, Ogul H. MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:656. [PMID: 36679455 PMCID: PMC9863875 DOI: 10.3390/s23020656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Many individuals worldwide pass away as a result of inadequate procedures for prompt illness identification and subsequent treatment. A valuable life can be saved or at least extended with the early identification of serious illnesses, such as various cancers and other life-threatening conditions. The development of the Internet of Medical Things (IoMT) has made it possible for healthcare technology to offer the general public efficient medical services and make a significant contribution to patients' recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures can be used to achieve this. However, the majority of deep learning (DL)-based image classification approaches are of a large number of parameters and unsuitable for application in IoMT-centered imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight DTL-based model "MobileNet-SVM", which is the hybridization of MobileNet and Support Vector Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of precision. According to the simulation findings, the suggested model requires a small computation speed and time.
Collapse
Affiliation(s)
- Roseline Oluwaseun Ogundokun
- Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Department of Computer Science, Landmark University, Omu Aran 251103, Kwara, Nigeria
| | - Sanjay Misra
- Department of Computer Science and Communication, Østfold University College, 1757 Halden, Norway
| | | | - Hasan Ogul
- Department of Computer Science and Communication, Østfold University College, 1757 Halden, Norway
| |
Collapse
|
76
|
Gozalishvilli-Boncheva A, Gonzalez-Espinoza IR, Castro-Ponce A, Bravo-Gutiérrez OA, Juárez-Salazar G, Montes-de-Oca-Moreda RI, Aguirre-Flores E, Coyotl-Huexotl M, Orozco-Luis J, Chiquillo-Domínguez M, Garibay-Díaz JC, Aranda-Claussen JE, Ponce-de-León EA, Sánchez-Sosa S, Sabaté-Fernández M, García-Reyna JC, Cordero-Vargas C, González-Blanco MJ, Aguilar-Priego JM, Sánchez-Fernández NJ, Cortés-García CA, González-Lozada LE, Miguel-Cruz E, Ceja-Utrera FJ, Hernández-Garcia MS, Piña-Vazquez M, Aguilar-Jiménez C. Observational analysis of clinical and pathological characteristics and their prognostic impact in Mexican patients with breast cancer: A multi-center study. Breast Dis 2023; 42:305-313. [PMID: 37807773 DOI: 10.3233/bd-230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Breast cancer is the most incidental and deadly neoplasm worldwide; in Mexico, very few epidemiologic reports have analyzed the pathological features and its impact on their clinical outcome. Here, we studied the relation between pathological features and the clinical presentation at diagnosis and their impact on the overall and progression-free survival of patients with breast cancer. For this purpose, we collected 199 clinical records of female patients, aged at least 18 years old (y/o), with breast cancer diagnosis confirmed by biopsy. We excluded patients with incomplete or conflicting clinical records. Afterward, we performed an analysis of overall and progression-free survival and associated risks. Our results showed an average age at diagnosis of 52 y/o (24-85), the most common features were: upper outer quadrant tumor (32%), invasive ductal carcinoma (76.8%), moderately differentiated (44.3%), early clinical stages (40.8%), asymptomatic patients (47.8%), luminal A subtype (47.8%). Median overall survival was not reached, but median progression-free survival was 32.2 months (29.75-34.64, CI 95%) associated risk were: clinical stage (p < 0.0001) symptomatic presentation (p = 0.009) and histologic grade (p = 0.02). Therefore, we concluded that symptom presence at diagnosis impacts progression-free survival, and palpable symptoms are related to an increased risk for mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Orozco-Luis
- Centro oncológico integral Hospital Ángeles Puebla, Puebla, México
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One 2022; 17:e0279746. [PMID: 36584207 PMCID: PMC9803305 DOI: 10.1371/journal.pone.0279746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is highly metastatic and of poor prognosis. Metastasis involves coordinated actin filament dynamics mediated by cofilin and associated proteins. Activated androgen receptor (AR) is believed to contribute to TNBC tumorigenesis. Our current work studied roles of activated AR and cofilin phospho-regulation during migration of three AR+ TNBC cell lines to determine if altered cofilin regulation can explain their migratory differences. Untreated or AR agonist-treated BT549, MDA-MB-453, and SUM159PT cells were compared to cells silenced for cofilin (KD) or AR expression/function (bicalutamide). Cofilin-1 was found to be the only ADF/cofilin isoform expressed in each TNBC line. Despite a significant increase in cofilin kinase caused by androgens, the ratio of cofilin:p-cofilin (1:1) did not change in SUM159PT cells. BT549 and MDA-MB-453 cells contain high p-cofilin levels which underwent androgen-induced dephosphorylation through increased cofilin phosphatase expression, but surprisingly maintain a leading-edge with high p-cofilin/total cofilin not found in SUM159PT cells. Androgens enhanced cell polarization in all lines, stimulated wound healing and transwell migration rates and increased N/E-cadherin mRNA ratios while reducing cell adhesion in BT549 and MDA-MB-453 cells. Cofilin KD negated androgen effects in MDA-MB-453 except for cell adhesion, while in BT549 cells it abrogated androgen-reduced cell adhesion. In SUM159PT cells, cofilin KD with and without androgens had similar effects in almost all processes studied. AR dependency of the processes were confirmed. In conclusion, cofilin regulation downstream of active AR is dependent on which actin-mediated process is being examined in addition to being cell line-specific. Although MDA-MB-453 cells demonstrated some control of cofilin through an AR-dependent mechanism, other AR-dependent pathways need to be further studied. Non-cofilin-dependent mechanisms that modulate migration of SUM159PT cells need to be investigated. Categorizing TNBC behavior as AR responsive and/or cofilin dependent can inform on decisions for therapeutic treatment.
Collapse
Affiliation(s)
- Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: ,
| | - Ahmad Alzghoul
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sydney Alderfer
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
78
|
Pinto CA, Fonseca BM, Sá SI. Effects of chronic tamoxifen treatment in female rat sexual behaviour. Heliyon 2022; 8:e12362. [PMID: 36593822 PMCID: PMC9803792 DOI: 10.1016/j.heliyon.2022.e12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The medial preoptic (MPN) and the ventromedial hypothalamic nuclei (VMN) modulate the estrogen receptor (ER)-dependent female sexual behavior, a response that is inhibited by tamoxifen (TAM), a modulator of the steroid receptor activation. With the objective to assess TAM action in the brain areas involved in the modulation sexual cues, an animal model on long-term TAM therapy to intact female rats, was used to mimic the 5-year prophylactic TAM therapy offered to women at higher risk of breast cancer. After three months treatment, female sexual behavior with a stud male rat was evaluated. Upon sacrifice, the brains were removed and the MPN and the ventrolateral division of the VMN were screened for the effects of TAM in the expression of ERα, ERβ and progesterone receptor. Results show that TAM inhibited the receptive component of the female sexual behavior. Even though TAM decreased estrogen and progesterone levels to values similar to the ones of estrous and diestrus rats, the biochemical data failed to demonstrate such possible causation for the behavioral response. In fact, TAM administration induced a constant low level of ovarian hormones that changed the pattern of ER and PR expression as well as receptor co-expression in the brain areas regulating the behavioral response, dissimilar to the ones seen in the cycle phases with the same low hormone levels. Nevertheless, present data suggests that by affecting ER- and/or PR-dependent mechanisms, TAM may modulate the hypothalamus, a region known to participate in several social behaviors.
Collapse
Affiliation(s)
- Cláudia A. Pinto
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Al Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Bruno M. Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº. 228, 4050-313 Porto, Portugal
| | - Susana I. Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Al Professor Hernani Monteiro, 4200-319 Porto, Portugal,CINTESIS@RISE Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto. Al Professor Hernani Monteiro, 4200-319 Porto, Portugal,Corresponding author.
| |
Collapse
|
79
|
Applying Deep Learning for Breast Cancer Detection in Radiology. Curr Oncol 2022; 29:8767-8793. [PMID: 36421343 PMCID: PMC9689782 DOI: 10.3390/curroncol29110690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in deep learning have enhanced medical imaging research. Breast cancer is the most prevalent cancer among women, and many applications have been developed to improve its early detection. The purpose of this review is to examine how various deep learning methods can be applied to breast cancer screening workflows. We summarize deep learning methods, data availability and different screening methods for breast cancer including mammography, thermography, ultrasound and magnetic resonance imaging. In this review, we will explore deep learning in diagnostic breast imaging and describe the literature review. As a conclusion, we discuss some of the limitations and opportunities of integrating artificial intelligence into breast cancer clinical practice.
Collapse
|
80
|
Kolyvas EA, Caldas C, Kelly K, Ahmad SS. Androgen receptor function and targeted therapeutics across breast cancer subtypes. Breast Cancer Res 2022; 24:79. [PMID: 36376977 PMCID: PMC9664788 DOI: 10.1186/s13058-022-01574-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant progress in breast cancer (BC) therapy, it is globally the most commonly diagnosed cancer and leads to the death of over 650,000 women annually. Androgen receptor (AR) is emerging as a potential new therapeutic target in BC. While the role of AR is well established in prostate cancer (PCa), its function in BC remains incompletely understood. Emerging data show that AR's role in BC is dependent on several factors including, but not limited to, disease subtype, tumour microenvironment, and levels of circulating oestrogens and androgens. While targeting AR in PCa is becoming increasingly effective, these advances have yet to make any significant impact on the care of BC patients. However, this approach is increasingly being evaluated in BC and it is clear that improvements in our understanding of AR's role in BC will increase the likelihood of success for AR-targeted therapies. This review summarizes our current understanding of the function of AR across BC subtypes. We highlight limitations in our current knowledge and demonstrate the importance of categorizing BC subtypes effectively, in relation to determining AR activity. Further, we describe the current state of the art regarding AR-targeted approaches for BC as monotherapy or in combination with radiotherapy.
Collapse
Affiliation(s)
- Emily A Kolyvas
- Cancer Research UK Cambridge Institute, Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
- Breast Cancer Programme, CRUK Cambridge Centre, Cambridge, CB2 0RE, UK
- Cambridge Breast Cancer Research Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Saif S Ahmad
- Cancer Research UK Cambridge Institute, Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
- Department of Oncology, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
81
|
Liu T, Liu C, Yan M, Zhang L, Zhang J, Xiao M, Li Z, Wei X, Zhang H. Single cell profiling of primary and paired metastatic lymph node tumors in breast cancer patients. Nat Commun 2022; 13:6823. [PMID: 36357424 PMCID: PMC9649678 DOI: 10.1038/s41467-022-34581-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
The microenvironment of lymph node metastasized tumors (LNMT) determines tumor progression and response to therapy, but a systematic study of LNMT is lacking. Here, we generate single-cell maps of primary tumors (PTs) and paired LNMTs in 8 breast cancer patients. We demonstrate that the activation, cytotoxicity, and proliferation of T cells are suppressed in LNMT compared with PT. CD4+CXCL13+ T cells in LNMT are more likely to differentiate into an exhausted state. Interestingly, LAMP3+ dendritic cells in LNMT display lower T cell priming and activating ability than in PT. Additionally, we identify a subtype of PLA2G2A+ cancer-associated fibroblasts enriched in HER2+ breast cancer patients that promotes immune infiltration. We also show that the antigen-presentation pathway is downregulated in malignant cells of the metastatic lymph node. Altogether, we characterize the microenvironment of LNMT and PT, which may shed light on the individualized therapeutic strategies for breast cancer patients with lymph node metastasis.
Collapse
Affiliation(s)
- Tong Liu
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Cheng Liu
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Meisi Yan
- grid.410736.70000 0001 2204 9268Department of Pathology, Harbin Medical University, Harbin, 150081 China
| | - Lei Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Jing Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Min Xiao
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhigao Li
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaofan Wei
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Hongquan Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China ,grid.263488.30000 0001 0472 9649Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055 China
| |
Collapse
|
82
|
Gómez-Archila JD, Espinosa-García AM, Palacios-Reyes C, Trujillo-Cabrera Y, Mejía ALS, González AVDA, Rangel-López E, Alonso-Themann PG, Solís NDS, Hernández-Zavala A, López PG, Contreras-Ramos A, Palma-Lara I. NOTCH expression variability and relapse of breast cancer in high-risk groups. Am J Med Sci 2022; 364:583-594. [PMID: 35508283 DOI: 10.1016/j.amjms.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/21/2021] [Accepted: 12/17/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND In regards to breast cancer (BC), survival or disease-free periods are still compromised mainly in Triple Negative (TN) and HER2 tumors. The participation of estrogen receptor (ER) has been reported as crucial in the signaling pathways, including the NOTCH pathway. The study was aimed to evaluate the expression of NOTCH1 and NOTCH3 in BC and its relationship with the presence of ER, as well as with relapses. METHODS NOTCH1 and NOTCH3 expression was evaluated in BC using Oncomine database, Breast Cancer Gene Expression Miner database and Kaplan Meier Plotter. Subsequently, detection of NOTCH1 and NOTCH3 in 100 paraffin-embedded BC samples from Mexican patients was achieved by immunohistochemistry (IHC) and RT-qPCR, a group of benign breast tumors were included as controls. Relapses were evaluated by BC subtypes and their relationship with NOTCH1 and NOTCH3 expression, as well as with ER expression. RESULTS The analyses from public databases of TN and HER2 groups, which are estrogen receptor-negative (ERN), revealed NOTCH1 and NOTCH3 expression variability. The overexpression was associated with lower relapse-free survival (P = 0.00019). These data were concordant with results from tumor samples of patients included in this study, which showed overexpression of NOTCH1 and NOTCH3 in ERN tumors, as well as lower relapse-free survival (P < 0.0001). CONCLUSIONS NOTCH1 and NOTCH3 were found to be overexpressed mainly in ERN tumors. HER2 and TN groups, are related to higher relapse rates. Therefore, anti-NOTCH therapy could be justified and implemented in conventional treatments of high-risk BC groups.
Collapse
Affiliation(s)
- José Damián Gómez-Archila
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico; Servicio de Oncología Quirúrgica, Servicio de Patología, Hospital de Gineco-Obstetricia No.3, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | | | | | | | - Ana Lilia Sandoval Mejía
- Servicio de Oncología Quirúrgica, Servicio de Patología, Hospital de Gineco-Obstetricia No.3, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | - Ana Victoria De Alba González
- Servicio de Oncología Quirúrgica, Servicio de Patología, Hospital de Gineco-Obstetricia No.3, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | | | - Nereo Damaso Sandoval Solís
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico
| | - Pedro Grajeda López
- Servicio de Cirugía Plástica y Reconstructiva, Hospital de Especialidades, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | - Alejandra Contreras-Ramos
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, Mexico
| | - Icela Palma-Lara
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico.
| |
Collapse
|
83
|
Tokareva A, Chagovets V, Starodubtseva N, Rodionov V, Kometova V, Chingin K, Frankevich V. Lipidomic markers of breast cancer malignant tumor histological types. BIOMEDITSINSKAYA KHIMIYA 2022; 68:375-382. [DOI: 10.18097/pbmc20226805375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular profile of a tumor is associated with its histological type and can be used both to study the mechanisms of tumor progression and to diagnose it. In this work, changes in the lipid profile of a malignant breast tumor and the adjacent tissue were studied. The potential possibility of determining the histological type of the tumor by its lipid profile was evaluated. Lipid profiling was performed by reverse-phase chromato-mass-spectrometric analysis the tissue of lipid extract with identification of lipids by characteristic fragments. Potential lipid markers of the histological type of tumor were determined using the Kruskal-Wallis test. Impact of lipid markers was calculated by MetaboAnalyst. Classification models were built by support vector machines with linear kernel and 1-vs-1 architecture. Models were validated by leave-one out cross-validation. Accuracy of models based on microenvironment tissue, were 99% and 75%, accuracy of models, based on tumor tissue, were 90% and 40% for the positive ion mode and negative ion mode respectively. The lipid profile of marginal (adjacent) tissue can be used for identification histological types of breast cancer. Glycerophospholipid metabolism pathway changes were statistically significant in the adjacent tissue and tumor tissue.
Collapse
Affiliation(s)
- A.O. Tokareva
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V.V. Chagovets
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - N.L. Starodubtseva
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V.V. Rodionov
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V.V. Kometova
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - K.S. Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - V.E. Frankevich
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; Siberian State Medical University, Tomsk, 634050 Russia
| |
Collapse
|
84
|
The Role of MicroRNAs in HER2-Positive Breast Cancer: Where We Are and Future Prospective. Cancers (Basel) 2022; 14:cancers14215326. [PMID: 36358746 PMCID: PMC9657949 DOI: 10.3390/cancers14215326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Breast cancer is the most diagnosed malignancy in woman worldwide and, despite the availability of new innovative therapies, it remains the first cause of death for tumor in woman. 20% of all breast cancer cases are HER2 positive, meaning that they are characterized by an aberrant expression of the growth factor receptor HER2. This receptor is involved in survival and proliferation mechanisms, conferring to this breast cancer subtype a particular aggressiveness. The introduction of anti-HER2 agents, such as trastuzumab, in the clinical practice, significantly improved the prognosis. However, a great portion of patients is not responsive to this therapy. Thus, cancer research is working to provide new tools to better manage HER2 positive breast cancers, such as biomarkers and therapeutic approaches. MicroRNAs could be used for these purposes. They are small molecules involved in almost all biological processes, including cancer promoting pathways. Researchers consider microRNAs as promising clinical tools because they are easily detectable and stable in both tissues and blood samples, and an increasing body of evidence supports their potential use as targets of therapy, prognostic and predictive biomarkers, or therapeutic agents. This review sums up the most recent scientific publications about microRNAs in HER2 positive breast cancer. Abstract Breast cancer that highly expresses human epidermal growth factor receptor 2 (HER2+) represents one of the major breast cancer subtypes, and was associated with a poor prognosis until the introduction of HER2-targeted therapies such as trastuzumab. Unfortunately, up to 30% of patients with HER2+ localized breast cancer continue to relapse, despite treatment. MicroRNAs (miRNAs) are small (approximately 20 nucleotides long) non-coding regulatory oligonucleotides. They function as post-transcriptional regulators of gene expression, binding complementarily to a target mRNA and leading to the arrest of translation or mRNA degradation. In the last two decades, translational research has focused on these small molecules because of their highly differentiated expression patterns in blood and tumor tissue, as well as their potential biological function. In cancer research, they have become pivotal for the thorough understanding of oncogenic biological processes. They might also provide an efficient approach to early monitoring of tumor progression or response to therapy. Indeed, changes in their expression patterns can represent a flag for deeper biological changes. In this review, we sum up the recent literature regarding miRNAs in HER2+ breast cancer, taking into account their potential as powerful prognostic and predictive biomarkers, as well as therapeutic tools.
Collapse
|
85
|
Comparison of GATA3, GCDFP15, Mammaglobin and SOX10 Immunocytochemistry in Aspirates of Metastatic Breast Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Introduction: Metastatic cancers are frequently detected on fine-needle aspiration (FNA) cytology, and confirmation of metastatic breast cancer often requires immunocytochemistry. Tissue provisioning for FNA specimens is important. In this study, GATA3, gross cystic disease fluid protein-15 (GCDFP15), mammaglobin (MMG), and SOX10 were performed on cell block preparations from aspirates of histologically confirmed metastatic breast cancers. The diagnostic performance of single markers and combinations of these markers were investigated with the aim to construct a tissue-efficient immunopanel. Methodology: Aspirates of metastatic breast cancer with corresponding histology and biomarker (estrogen receptor (ER), progesterone receptor (PR), HER2 and ki67) profile were retrieved. ER, GATA3, GCDFP15, MMG and SOX10 immunostains were performed on cell block sections and their expressions were assessed and compared. Results: Immunostaining was performed on a total of 115 aspirates. GATA3 showed the highest expression, followed by MMG, GCDFP15 and SOX10. Twenty-three, five and five cases expressed GATA3, MMG and SOX10 only. The five cases expressing SOX10 only were ER negative, and SOX10 expression was negatively associated with ER (p = 0.001), MMG (p = 0.001), GCDFP15 (p = 0.010) and GATA3 (p = 0.002), whereas GATA3 expression showed positive correlation with ER positivity (p < 0.001). MMG and GCDFP15 showed association with high Ki67 (p < 0.05), and no correlations were found with HER2 expression. Conclusion: In this cohort, GATA3 was the most sensitive single marker. The addition of MMG and SOX10 increases the sensitivity for detection of ER positive and ER negative breast cancers, respectively. These findings support the use of a combination of GATA3/MMG/SOX10 for confirmation of metastatic breast cancer.
Collapse
|
86
|
Singh D, Agarwal A, Anthony ML, Paul P, Singh M, Rao S, Ravi B, Chowdhury N. Relationship of Tubule Formation, Indian File Pattern and Apocrine Change With Estrogen and Progesterone Receptors and HER2 Immunostaining. Cureus 2022; 14:e30204. [PMID: 36381921 PMCID: PMC9650915 DOI: 10.7759/cureus.30204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Objectives: In breast carcinomas, histomorphological features like low-grade and lobular differentiation are associated with estrogen receptor (ER) and progesterone receptor (PR) expression. Apocrine carcinoma is associated with human epidermal growth factor receptor 2 (HER2) positivity. Studies have not emphasized the association between other histological features like tubule formation, Indian file pattern and apocrine change (which may be found in all grades of tumors or as a part of a mixed pattern of no special type) and immunohistochemistry (IHC). The study was designed to find the association between these morphological factors and ER, PR and HER2 status. Materials and methods: The presence or absence of tubule formation, Indian file pattern and apocrine change was correlated with ER, PR and HER2 expression in core biopsies of 102 invasive breast carcinomas. Statistical analysis: Fisher exact test with median unbiased odds ratio was used. Results: Tubule formation and/or Indian file pattern were significantly associated with ER in all tumors (P-value <0.001), as well as separately for grade II, grade III, HER2-negative and HER2-positive tumors. Comparable results were obtained for their association with PR. Apocrine change was significantly associated with HER2 in all tumors (P-value <0.001), as well as separately for grade III, ER-positive and ER-negative tumors. Conclusion: These histomorphological patterns are modest predictors of IHC status in breast carcinomas, even in tumors of higher grade. Knowledge of these morphological correlates of ER, PR and HER2 in breast cancer may serve as an aid in the quality management of breast carcinoma reporting.
Collapse
|
87
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
88
|
Schneider N, Reed E, Kamel F, Ferrari E, Soloviev M. Rational Approach to Finding Genes Encoding Molecular Biomarkers: Focus on Breast Cancer. Genes (Basel) 2022; 13:genes13091538. [PMID: 36140706 PMCID: PMC9498645 DOI: 10.3390/genes13091538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Early detection of cancer facilitates treatment and improves patient survival. We hypothesized that molecular biomarkers of cancer could be rationally predicted based on even partial knowledge of transcriptional regulation, functional pathways and gene co-expression networks. To test our data mining approach, we focused on breast cancer, as one of the best-studied models of this disease. We were particularly interested to check whether such a ‘guilt by association’ approach would lead to pan-cancer markers generally known in the field or whether molecular subtype-specific ‘seed’ markers will yield subtype-specific extended sets of breast cancer markers. The key challenge of this investigation was to utilize a small number of well-characterized, largely intracellular, breast cancer-related proteins to uncover similarly regulated and functionally related genes and proteins with the view to predicting a much-expanded range of disease markers, especially that of extracellular molecular markers, potentially suitable for the early non-invasive detection of the disease. We selected 23 previously characterized proteins specific to three major molecular subtypes of breast cancer and analyzed their established transcription factor networks, their known metabolic and functional pathways and the existing experimentally derived protein co-expression data. Having started with largely intracellular and transmembrane marker ‘seeds’ we predicted the existence of as many as 150 novel biomarker genes to be associated with the selected three major molecular sub-types of breast cancer all coding for extracellularly targeted or secreted proteins and therefore being potentially most suitable for molecular diagnosis of the disease. Of the 150 such predicted protein markers, 114 were predicted to be linked through the combination of regulatory networks to basal breast cancer, 48 to luminal and 7 to Her2-positive breast cancer. The reported approach to mining molecular markers is not limited to breast cancer and therefore offers a widely applicable strategy of biomarker mining.
Collapse
Affiliation(s)
- Nathalie Schneider
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ellen Reed
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Faddy Kamel
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence:
| |
Collapse
|
89
|
Zhu Q, Wang J, Shi Y, Zha X, Wang S. Bioinformatics Prediction and in vivo Verification Identify SLC7A5 as Immune Infiltration Related Biomarker in Breast Cancer. Cancer Manag Res 2022; 14:2545-2559. [PMID: 36060214 PMCID: PMC9433126 DOI: 10.2147/cmar.s370397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Qiannan Zhu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jue Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yuenian Shi
- Nanjing Medical University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xiaoming Zha
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Shui Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Correspondence: Shui Wang; Xiaoming Zha, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210000, People’s Republic of China, Email ;
| |
Collapse
|
90
|
Metabolomics of Breast Cancer: A Review. Metabolites 2022; 12:metabo12070643. [PMID: 35888767 PMCID: PMC9325024 DOI: 10.3390/metabo12070643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Major advances have been made towards breast cancer prevention and treatment. Unfortunately, the incidence of breast cancer is still increasing globally. Metabolomics is the field of science which studies all the metabolites in a cell, tissue, system, or organism. Metabolomics can provide information on dynamic changes occurring during cancer development and progression. The metabolites identified using cutting-edge metabolomics techniques will result in the identification of biomarkers for the early detection, diagnosis, and treatment of cancers. This review briefly introduces the metabolic changes in cancer with particular focus on breast cancer.
Collapse
|
91
|
Mathew T, Niyas S, Johnpaul C, Kini JR, Rajan J. A novel deep classifier framework for automated molecular subtyping of breast carcinoma using immunohistochemistry image analysis. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Akanksha, Mishra SP, Kar AG, Karthik JS, Srivastava A, Khanna R, Meena RN. Expression of Poly(Adenosine Diphosphate-Ribose) Polymerase Protein in Breast Cancer. J Midlife Health 2022; 13:213-224. [PMID: 36950213 PMCID: PMC10025820 DOI: 10.4103/jmh.jmh_132_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023] Open
Abstract
Background The use of poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors for breast cancer (BC) therapy is the subject of debate, and there is an urgent need to understand much the expression and prognostic role of the PARP1 protein. In this study, we have compared the expression of PARP between BC and benign breast disease (BBD) patients and also analyzed the association of PARP expression with clinicopathological parameters in BC. Methods The study consists of 30 patients with newly diagnosed operable BC who were planned for surgery without neoadjuvant chemotherapy and 15 patients of BBD as a control between 2019 and 2021. Immunohistochemical analyses were performed prospectively on tissue samples. Anti-human PARP1 rabbit polyclonal antibody gives strong nuclear positivity. Internal control was the adipose tissue and the BBD acted as the external control. PARP1 expression was evaluated using the multiplicative quickscore method. Results The mean age for BC patients was 51.30 ± 10.694 years (range: 25-75 years) while BBD was below 30 years. Overexpression of PARP was present in 25 (83.3%) and weak expression in 5 (16.7%) of BC patients compared to BBD, only 2 (13.3%) patients demonstrated an overexpression of PARP, and 13 (86.6%) patients showed weak expression which showed significant association (P < 0.001). In BC, nuclear PARP (nPARP) overexpression was seen in 22 (73.3%) patients and weak expression of nPARP in 8 (26.7%), whereas 5 (16.7%) patients showed cytoplasmic overexpression. On comparing expression of PARP with clinicopathological parameters, PARP overexpression was significantly associated with older population (age >50 years) (P = 0.002), postmenopausal women (P = 0.029), higher TNM stage (Stage II and III) (P = 0.014), higher histological grade (grade 2) (P = 0.043), and presence of lymphovascular invasion (P = 0.015). Enhanced PARP1 expression is closely correlated with positive estrogen receptor status (P = 0.001) and PR status (P = 0.001). Overall PARP and nPARP overexpression was significantly associated with ER- (P = 0.006 and P = 0.008) and PR-positive (P = 0.006 and P = 0.008) patients. The PARP and nPARP overexpression was significantly associated with nontriple-negative BC patients (P = 0.001 and P = 0.001). Conclusion We have not come across any study in the literature to compare PARP expression in BC and BBD patients. On the basis of our observations, we concluded that PARP overexpression is a poor prognostic marker in BC.
Collapse
Affiliation(s)
- Akanksha
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Shashi Prakash Mishra
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - J. S. Karthik
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Aviral Srivastava
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Rahul Khanna
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ram Niwas Meena
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| |
Collapse
|
93
|
Zhu L, Chen H, Yang Y, Miao Y, Lu J, Zhang J. The Role of lncRNA SNHG1 in Breast Cancer Cells by Targeting miRNA-101. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.924.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
94
|
Li YZ, Chen B, Lin XY, Zhang GC, Lai JG, Li C, Lin JL, Guo LP, Xiao WK, Mok H, Ren CY, Wen LZ, Cao FR, Lin X, Qi XF, Liu Y, Liao N. Clinicopathologic and Genomic Features in Triple-Negative Breast Cancer Between Special and No-Special Morphologic Pattern. Front Oncol 2022; 12:830124. [PMID: 35402236 PMCID: PMC8989735 DOI: 10.3389/fonc.2022.830124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is refractory and heterogeneous, comprising various entities with divergent phenotype, biology, and clinical presentation. As an aggressive subtype, Chinese TNBC patients with special morphologic patterns (STs) were restricted to its incidence of 10-15% in total TNBC population. Methods We recruited 89 patients with TNBC at Guangdong Provincial People’s Hospital (GDPH) from October 2014 to May 2021, comprising 72 cases of invasive ductal carcinoma of no-special type (NSTs) and 17 cases of STs. The clinical data of these patients was collected and statistically analyzed. Formalin-fixed, paraffin-embedded (FFPE) tumor tissues and matched blood samples were collected for targeted next-generation sequencing (NGS) with cancer-related, 520- or 33-gene assay. Immunohistochemical analysis of FFPE tissue sections was performed using anti-programmed cell death-ligand 1(PD-L1) and anti-androgen receptor antibodies. Results Cases with NSTs presented with higher histologic grade and Ki-67 index rate than ST patients (NSTs to STs: grade I/II/III 1.4%, 16.7%,81.9% vs 0%, 29.4%, 58.8%; p<0.05; Ki-67 ≥30%: 83.3% vs. 58.8%, p<0.05), while androgen receptor (AR) and PD-L1 positive (combined positive score≥10) rates were lower than of STs cases (AR: 11.1% vs. 47.1%; PD-L1: 9.6% vs. 33.3%, p<0.05). The most commonly altered genes were TP53 (88.7%), PIK3CA (26.8%), MYC (18.3%) in NSTs, and TP53 (68.8%), PIK3CA (50%), JAK3 (18.8%), KMT2C (18.8%) in STs respectively. Compared with NSTs, PIK3CA and TP53 mutation frequency showed difference in STs (47.1% vs 19.4%, p=0.039; 64.7% vs 87.5%, p=0.035). Conclusions In TNBC patients with STs, decrease in histologic grade and ki-67 index, as well as increase in PD-L1 and AR expression were observed when compared to those with NSTs, suggesting that TNBC patients with STs may better benefit from immune checkpoint inhibitors and/or AR inhibitors. Additionally, lower TP53 and higher PIK3CA mutation rates were also found in STs patients, providing genetic evidence for deciphering at least partly potential mechanism of action.
Collapse
Affiliation(s)
- Ying-Zi Li
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical College, Shantou University, Shantou, China
| | - Bo Chen
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Yi Lin
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Medical College, Shantou University, Shantou, China
| | - Guo-Chun Zhang
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Medical College, Shantou University, Shantou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jian-Guo Lai
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheukfai Li
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jia-Li Lin
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li-Ping Guo
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Kai Xiao
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chong-Yang Ren
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ling-Zhu Wen
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang-Rong Cao
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Lin
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Yang Liu
- OrigiMed Co. Ltd., Shanghai, China
| | - Ning Liao
- Department of Breast, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical College, Shantou University, Shantou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
95
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
96
|
Costa B, Vale N. Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. Int J Mol Sci 2022; 23:3181. [PMID: 35328602 PMCID: PMC8951384 DOI: 10.3390/ijms23063181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is classified into four major molecular subtypes, and is considered a heterogenous disease. The risk profiles and treatment of breast cancer differ according to these subtypes. Early detection dramatically improves the prospects of successful treatment, resulting in a reduction in overall mortality rates. However, almost 30% of women primarily diagnosed with the early-stage disease will eventually develop metastasis or resistance to chemotherapies. Immunotherapies are among the most promising cancer treatment options; however, long-term clinical benefit has only been observed in a small subset of responding patients. The current strategies for diagnosis and treatment rely heavily on histopathological examination and molecular diagnosis, disregarding the tumor microenvironment and microbiome involving cancer cells. In this review, we aim to praise the use of pharmacogenomics and pharmacomicrobiomics as a strategy to identify potential biomarkers for guiding and monitoring therapy in real-time. The finding of these biomarkers can be performed by studying the metabolism of drugs, more specifically, immunometabolism, and its relationship with the microbiome, without neglecting the information provided by genetics. A larger understanding of cancer biology has the potential to improve patient care, enable clinical decisions, and deliver personalized medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory RISE-Health Research Network, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
97
|
Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022; 12:70. [PMID: 35223356 PMCID: PMC8841383 DOI: 10.1007/s13205-022-03121-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with different intrinsic subtypes. The conventional treatment of surgical resection, chemotherapy, immunotherapy and radiotherapy has not shown significant improvement in the survival rate of breast cancer patients. The therapeutics used cause bystander toxicities deteriorating healthy tissues. The breakthroughs of nanotechnology have been a promising feat in selective targeting of tumor site thus increasing the therapeutic gain. By the application of nanoenabled carriers, nanomedicines ensure targeted delivery, stability, enhanced cellular uptake, biocompatibility and higher apoptotic efficacy. The present review focuses on breakthrough of nanoscale intervention in targeted drug delivery as novel class of therapeutics. Nanoenabled carriers like polymeric and metallic nanoparticles, dendrimers, quantum dots, liposomes, solid lipid nanoparticles, carbon nanotubes, drug-antibody conjugates and exosomes revolutionized the targeted therapeutic delivery approach. These nanoassemblies have shown additional effect of improving the solubility of drugs such as paclitaxel, reducing the dose and toxicity. The present review provides an insight on the different drug conjugates employed/investigated to curb breast cancer using nanocarrier mediated targeted drug delivery. However, identification of appropriate biomarkers to target, clearer insight of the biological processes, batch uniformity, reproducibility, nanomaterial toxicity and stabilities are the hurdles faced by nanodrugs. The potential of nano-therapeutics delivery necessitates the agglomerated efforts of research community to bridge the route of nanodrugs for scale-up, commercialization and clinical applications.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan India
| | - Dhiraj Daga
- Department of Radiation Oncology, JLN Medical College, Ajmer, Rajasthan India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Rishabh Chaudhary
- Department of Emergency Medicine, Institute of Bioelectronic Medicine, Feinstein Institute of Medical Research, Northwell Health, New Hyde Park, NY USA
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| |
Collapse
|
98
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
99
|
A novel peptide-based electrochemical biosensor for breast cancer characterization over a poly 3-(3-aminophenyl) propionic acid matrix. Biosens Bioelectron 2022; 205:114081. [PMID: 35217253 DOI: 10.1016/j.bios.2022.114081] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
In this work, a new electrochemical biosensor was developed using peptides selected by Phage Display as biorecognition phase to Breast Cancer (BC) characterization. Phage clones were selected against MCF-7 (ER-positive BC) proteins, in order to characterize patients with aggressive luminal BC. Biotin-C3 and biotin-H2 peptides were chemically synthesized and validated by flow cytometry, immunofluorescence assays, and ELISA assays, being more reactive to the MCF-7 lineage. Furthermore, a new matrix for the coupling of biomolecules on the surface of graphite electrodes was generated, through electrochemical modification with a new material derived from 3-(3-aminophenyl)propionic acid (3-3-APPA). Electrochemical and morphological characterizations were carried out, and the mechanism of electropolymerization of poly(3-3-APPA) was proposed, in which the carboxylate groups are kept in the structure of the formed polymer. Then, a biosensor was developed by immobilizing the biotin-C3 and biotin-H2 peptides in the SPE/poly(3-3-APPA)/avidin system for the detection of BC tumor markers in serological samples. Finally, peptides were validated using samples from patients with BC and Benign Breast Disease. Biotin-C3 peptide characterized luminal BC according to p53 status and to HER2 expression, being the biosensor a better strategy when compared to ELISA test. This new biosensor will open a new perspective for a rapid and electrochemical platform for the characterization of BC and its molecular subtypes.
Collapse
|
100
|
Xia T, Kumar A, Fulham M, Feng D, Wang Y, Kim EY, Jung Y, Kim J. Fused feature signatures to probe tumour radiogenomics relationships. Sci Rep 2022; 12:2173. [PMID: 35140267 PMCID: PMC8828715 DOI: 10.1038/s41598-022-06085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Radiogenomics relationships (RRs) aims to identify statistically significant correlations between medical image features and molecular characteristics from analysing tissue samples. Previous radiogenomics studies mainly relied on a single category of image feature extraction techniques (ETs); these are (i) handcrafted ETs that encompass visual imaging characteristics, curated from knowledge of human experts and, (ii) deep ETs that quantify abstract-level imaging characteristics from large data. Prior studies therefore failed to leverage the complementary information that are accessible from fusing the ETs. In this study, we propose a fused feature signature (FFSig): a selection of image features from handcrafted and deep ETs (e.g., transfer learning and fine-tuning of deep learning models). We evaluated the FFSig's ability to better represent RRs compared to individual ET approaches with two public datasets: the first dataset was used to build the FFSig using 89 patients with non-small cell lung cancer (NSCLC) comprising of gene expression data and CT images of the thorax and the upper abdomen for each patient; the second NSCLC dataset comprising of 117 patients with CT images and RNA-Seq data and was used as the validation set. Our results show that our FFSig encoded complementary imaging characteristics of tumours and identified more RRs with a broader range of genes that are related to important biological functions such as tumourigenesis. We suggest that the FFSig has the potential to identify important RRs that may assist cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Tian Xia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ashnil Kumar
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Fulham
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Eun Young Kim
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Younhyun Jung
- School of Computing, Gachon University, Seongnam, Republic of Korea
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|