51
|
Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7. Sci Rep 2016; 6:27060. [PMID: 27257138 PMCID: PMC4891710 DOI: 10.1038/srep27060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 01/11/2023] Open
Abstract
The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms an alternative contact with the surface of the target protein. Based on this structural information, we designed a new series of bicyclic G7 peptides that progressively constrain the starting peptide, to arrive at the G7-B4 peptide that binds with an approximately 2-fold enhanced affinity to the Grb7-SH2 domain (KD = 0.83 μM) compared to G7-B1 and shows low affinity binding to Grb2-, Grb10- and Grb14-SH2 domains (KD > 100 μM). Furthermore, we determined the structure of the G7-B4 bicyclic peptide in complex with the Grb7-SH2 domain, both before and after ring closing metathesis to show that the closed staple is essential to the target interaction. The G7-B4 peptide represents an advance in the development of Grb7 inhibitors and is a classical example of structure aided inhibitor development.
Collapse
|
52
|
Bashari MH, Fan F, Vallet S, Sattler M, Arn M, Luckner-Minden C, Schulze-Bergkamen H, Zörnig I, Marme F, Schneeweiss A, Cardone MH, Opferman JT, Jäger D, Podar K. Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Res 2016; 18:26. [PMID: 26921175 PMCID: PMC4769490 DOI: 10.1186/s13058-016-0686-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/10/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Molecular mechanisms leading to the adaptation of breast cancer (BC) cells to hypoxia are largely unknown. The anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) is frequently amplified in BC; and elevated Mcl-1 levels have been correlated with poor prognosis. Here we investigated the pathophysiologic role of Mcl-1 in Her2-positive BC cells under hypoxic conditions. METHODS RNA interference and a novel small molecule inhibitor, EU-5346, were used to examine the role of Mcl-1 in Her2-positive BC cell lines and primary BC cells (sensitive or intrinsically resistant to Her2 inhibitors) under hypoxic conditions (using a hypoxic incubation chamber). Mechanisms-of-action were investigated by RT-PCR, mitochondrial isolation, as well as immunoprecipitation/blotting analysis, and microscopy. The specificity against Mcl-1 of the novel small molecule inhibitor EU5346 was verified in Mcl-1(Δ/null) versus Mcl-1(wt/wt) Murine Embryonic Fibroblasts (MEFs). Proliferation, survival, and spheroid formation were assessed in response to Mcl-1 and Her2 inhibition. RESULTS We demonstrate for a strong correlation between high Mcl-1 protein levels and hypoxia, predominantly in Her2-positive BC cells. Surprisingly, genetic depletion of Mcl-1 decreased Her2 and Hif-1α levels followed by inhibition of BC cell survival. In contrast, Mcl-1 protein levels were not downregulated after genetic depletion of Her2 indicating a regulatory role of Mcl-1 upstream of Her2. Indeed, Mcl-1 and Her2 co-localize within the mitochondrial fraction and form a Mcl-1/Her2- protein complex. Similar to genetically targeting Mcl-1 the novel small molecule Mcl-1 inhibitor EU-5346 induced cell death and decreased spheroid formation in Her2-positive BC cells. Of interest, EU-5346 induced ubiquitination of Mcl-1- bound Her2 demonstrating a previously unknown role for Mcl-1 to stabilize Her2 protein levels. Importantly, targeting Mcl-1 was also active in Her2-positive BC cells resistant to Her2 inhibitors, including a brain-primed Her2-positive cell line. CONCLUSION Our data demonstrate a critical role of Mcl-1 in Her2-positive BC cell survival under hypoxic conditions and provide the preclinical framework for the therapeutic use of novel Mcl-1- targeting agents to improve patient outcome in BC.
Collapse
Affiliation(s)
- Muhammad Hasan Bashari
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Jl. Eijkman 38, Bandung, 02215, Indonesia
| | - Fengjuan Fan
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Sonia Vallet
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Martin Sattler
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Melissa Arn
- Eutropics, Inc., 767C Concord Avenue, Cambridge, MA, 02138, USA
| | - Claudia Luckner-Minden
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Frederik Marme
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | | | - Joseph T Opferman
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany.
| |
Collapse
|
53
|
Qian L, Bradford AM, Cooke PH, Lyons BA. Grb7 and Hax1 may colocalize partially to mitochondria in EGF-treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1. J Mol Recognit 2016; 29:318-33. [PMID: 26869103 DOI: 10.1002/jmr.2533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 11/11/2022]
Abstract
Growth factor receptor bound protein 7 (Grb7) is a signal-transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, is members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes, and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the erythroblastosis oncogene B 2 (human epidermal growth factor receptor 2) receptor, focal adhesion kinase, Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm that the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in epidermal growth factor-treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of Hax1 isoform 1 in vitro, and Grb7 expression may slow Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time-dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lei Qian
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Andrew M Bradford
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Peter H Cooke
- Core University Research Resources Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
54
|
A phase 1b study of the Akt-inhibitor MK-2206 in combination with weekly paclitaxel and trastuzumab in patients with advanced HER2-amplified solid tumor malignancies. Breast Cancer Res Treat 2016; 155:521-30. [PMID: 26875185 DOI: 10.1007/s10549-016-3701-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Akt plays a key role in the aggressive pathogenesis of HER2+ malignancies, suggesting that Akt-inhibitors may be of therapeutic value in the treatment of HER2+ tumors. Preclinical studies demonstrate synergy between MK-2206, a selective allosteric Akt-inhibitor, with paclitaxel and trastuzumab. We aimed to evaluate the safety of this combination in patients with HER2+ malignancies. METHODS We conducted a phase 1b study of weekly MK-2206 in combination with weekly paclitaxel 80 mg/m(2) and trastuzumab 2 mg/kg in patients with HER2+ malignancies. Dose escalation was performed using a modified toxicity probability interval method. Molecular profiling of archived tissue samples and limited PK analyses were performed. RESULTS 16 patients with HER2+ tumors were enrolled (12 breast, 3 gastric, 1 esophageal). 81 and 75 % had received prior trastuzumab and taxane chemotherapy, respectively. MK-2206 135 mg/week was determined to be tolerable. Three dose-limiting toxicities were observed including two grade 3 rashes and 1 grade 3 neutropenia resulting in a > 7 day delay in treatment. Grade 3/4 adverse events include neutropenia (44 %), rash (13 %), peripheral neuropathy (6 %), and depression (6 %). 10 patients (63 %) demonstrated tumor response (3 complete, 7 partial). Median duration of response was 6 months. Exploratory analyses identified STARD3, TM7SF2, and G3BP1 as potential biomarkers of response. CONCLUSIONS MK-2206 at a dose of 135 mg/week in combination with weekly paclitaxel and trastuzumab is safe and well tolerated, and is the recommended phase 2 dose for this combination. Preliminary data indicate significant clinical activity in patients with HER2+ tumors despite prior HER2-directed therapy.
Collapse
|
55
|
Wu L, Liu Z, Xu J, Chen M, Fang H, Tong W, Xiao W. NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis. Biomark Med 2015; 9:1053-65. [PMID: 26501477 DOI: 10.2217/bmm.15.96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To evaluate gene signature and network-based approach for cancer subtyping and classification. MATERIALS & METHODS Here we introduced NETwork Based clustering Approach with Gene signatures (NETBAGs) algorithm, which clustered samples based on gene signatures and identified molecular markers based on their significantly expressed gene network profiles. RESULTS Applying NETBAGs to multiple independent breast cancer datasets, we demonstrated that the clustering results were highly associated with the clinical subtypes and clearly revealed the genomic diversity of breast cancer samples. CONCLUSION NETBAGs algorithm is able to classify samples by their genomic signatures into clinically significant phenotypes so that potential biomarkers can be identified. The approach may contribute to cancer research and clinical study of complex diseases.
Collapse
Affiliation(s)
- Leihong Wu
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zhichao Liu
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Joshua Xu
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Minjun Chen
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Hong Fang
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Weida Tong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wenming Xiao
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
56
|
Sawada G, Niida A, Hirata H, Komatsu H, Uchi R, Shimamura T, Takahashi Y, Kurashige J, Matsumura T, Ueo H, Takano Y, Ueda M, Sakimura S, Shinden Y, Eguchi H, Sudo T, Sugimachi K, Yamasaki M, Tanaka F, Tachimori Y, Kajiyama Y, Natsugoe S, Fujita H, Tanaka Y, Calin G, Miyano S, Doki Y, Mori M, Mimori K. An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma. PLoS One 2015; 10:e0139808. [PMID: 26465158 PMCID: PMC4605796 DOI: 10.1371/journal.pone.0139808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Few driver genes have been well established in esophageal squamous cell carcinoma (ESCC). Identification of the genomic aberrations that contribute to changes in gene expression profiles can be used to predict driver genes. Methods We searched for driver genes in ESCC by integrative analysis of gene expression microarray profiles and copy number data. To narrow down candidate genes, we performed survival analysis on expression data and tested the genetic vulnerability of each genes using public RNAi screening data. We confirmed the results by performing RNAi experiments and evaluating the clinical relevance of candidate genes in an independent ESCC cohort. Results We found 10 significantly recurrent copy number alterations accompanying gene expression changes, including loci 11q13.2, 7p11.2, 3q26.33, and 17q12, which harbored CCND1, EGFR, SOX2, and ERBB2, respectively. Analysis of survival data and RNAi screening data suggested that GRB7, located on 17q12, was a driver gene in ESCC. In ESCC cell lines harboring 17q12 amplification, knockdown of GRB7 reduced the proliferation, migration, and invasion capacities of cells. Moreover, siRNA targeting GRB7 had a synergistic inhibitory effect when combined with trastuzumab, an anti-ERBB2 antibody. Survival analysis of the independent cohort also showed that high GRB7 expression was associated with poor prognosis in ESCC. Conclusion Our integrative analysis provided important insights into ESCC pathogenesis. We identified GRB7 as a novel ESCC driver gene and potential new therapeutic target.
Collapse
Affiliation(s)
- Genta Sawada
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Atsushi Niida
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hidenari Hirata
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Hisateru Komatsu
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Ryutaro Uchi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Teppei Shimamura
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Takahashi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Junji Kurashige
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Tae Matsumura
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hiroki Ueo
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Yuki Takano
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Masami Ueda
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Shotaro Sakimura
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Yoshiaki Shinden
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Tomoya Sudo
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Fumiaki Tanaka
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Yuji Tachimori
- Department of Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiaki Kajiyama
- Department of Esophageal and Gastroenterological Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shoji Natsugoe
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Hiromasa Fujita
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoichi Tanaka
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - George Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, United States of America
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- * E-mail:
| |
Collapse
|
57
|
Circadian clock: Time for novel anticancer strategies? Pharmacol Res 2015; 100:288-95. [DOI: 10.1016/j.phrs.2015.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022]
|
58
|
Vicario R, Peg V, Morancho B, Zacarias-Fluck M, Zhang J, Martínez-Barriocanal Á, Navarro Jiménez A, Aura C, Burgues O, Lluch A, Cortés J, Nuciforo P, Rubio IT, Marangoni E, Deeds J, Boehm M, Schlegel R, Tabernero J, Mosher R, Arribas J. Patterns of HER2 Gene Amplification and Response to Anti-HER2 Therapies. PLoS One 2015; 10:e0129876. [PMID: 26075403 PMCID: PMC4467984 DOI: 10.1371/journal.pone.0129876] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
A chromosomal region that includes the gene encoding HER2, a receptor tyrosine kinase (RTK), is amplified in 20% of breast cancers. Although these tumors tend to respond to drugs directed against HER2, they frequently become resistant and resume their malignant progression. Gene amplification in double minutes (DMs), which are extrachromosomal entities whose number can be dynamically regulated, has been suggested to facilitate the acquisition of resistance to therapies targeting RTKs. Here we show that ~30% of HER2-positive tumors show amplification in DMs. However, these tumors respond to trastuzumab in a similar fashion than those with amplification of the HER2 gene within chromosomes. Furthermore, in different models of resistance to anti-HER2 therapies, the number of DMs containing HER2 is maintained, even when the acquisition of resistance is concomitant with loss of HER2 protein expression. Thus, both clinical and preclinical data show that, despite expectations, loss of HER2 protein expression due to loss of DMs containing HER2 is not a likely mechanism of resistance to anti-HER2 therapies.
Collapse
Affiliation(s)
- Rocio Vicario
- Preclinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, 08193, Bellaterra, Spain
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, 08035, Barcelona, Spain
| | - Beatriz Morancho
- Preclinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Mariano Zacarias-Fluck
- Preclinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Junjie Zhang
- Preclinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Preclinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | | | - Claudia Aura
- Molecular Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Octavio Burgues
- Pathology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Lluch
- Oncology Department, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Javier Cortés
- Clinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Isabel T. Rubio
- Clinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | | | - James Deeds
- Novartis Oncology Translational Research, Cambridge, MA, 02139, United States of America
| | - Markus Boehm
- Novartis Pharma AG, Postfach, CH-4002, Basel, Switzerland
| | - Robert Schlegel
- Novartis Oncology Translational Research, Cambridge, MA, 02139, United States of America
| | - Josep Tabernero
- Clinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Rebecca Mosher
- Novartis Oncology Translational Research, Cambridge, MA, 02139, United States of America
- * E-mail: (JA); (RM)
| | - Joaquín Arribas
- Preclinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, 08193, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
- * E-mail: (JA); (RM)
| |
Collapse
|
59
|
WANG WEIJIA, TU YI, WANG SHANSHAN, XU SHAN, XU LINLIN, XIONG YIFENG, MEI JINHONG, WANG CHUNLIANG. Role of HER-2 activity in the regulation of malignant meningioma cell proliferation and motility. Mol Med Rep 2015; 12:3575-3582. [DOI: 10.3892/mmr.2015.3805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
60
|
Vassilev B, Sihto H, Li S, Hölttä-Vuori M, Ilola J, Lundin J, Isola J, Kellokumpu-Lehtinen PL, Joensuu H, Ikonen E. Elevated levels of StAR-related lipid transfer protein 3 alter cholesterol balance and adhesiveness of breast cancer cells: potential mechanisms contributing to progression of HER2-positive breast cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:987-1000. [PMID: 25681734 DOI: 10.1016/j.ajpath.2014.12.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/07/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The STARD3 gene belongs to the minimal amplicon in HER2-positive breast cancers and encodes a cholesterol-binding membrane protein. To study how elevated StAR-related lipid transfer protein 3 (StARD3) expression affects breast cancer cells, we generated MCF-7 cells stably overexpressing StARD3-green fluorescent protein. We found that StARD3-overexpressing cells exhibited nonadherent morphological features, had increased Src levels, and had altered cholesterol balance, as evidenced by elevated mRNA levels of the cholesterol biosynthesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and increased plasma membrane cholesterol content. On removal of serum and insulin from the culture medium, the morphological characteristics of the StARD3-overexpressing cells changed, the cells became adherent, and they developed enlarged focal adhesions. Under these conditions, the StARD3-overexpressing cells maintained elevated Src and plasma membrane cholesterol content and showed increased phosphorylation of focal adhesion kinase. In two Finnish nationwide patient cohorts, approximately 10% (212/2220) breast cancers exhibited high StARD3 protein levels, which was strongly associated with HER2 amplification; several factors related to poor disease outcome and poor breast cancer-specific survival. In addition, high StARD3 levels in breast cancers were associated with elevated 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA levels and anti-Src-Tyr416 immunoreactivity. These results provide evidence that StARD3 overexpression results in increased cholesterol biosynthesis and Src kinase activity in breast cancer cells and suggest that elevated StARD3 expression may contribute to breast cancer aggressiveness by increasing membrane cholesterol and enhancing oncogenic signaling.
Collapse
Affiliation(s)
- Boris Vassilev
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Harri Sihto
- Laboratory of Molecular Oncology, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Shiqian Li
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Jaakko Ilola
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Johan Lundin
- Institute for Molecular Medicine Finland, University of Helsinki, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Jorma Isola
- Institute of Medical Technology, University of Tampere and Tampere University Central Hospital, Tampere, Finland
| | | | - Heikki Joensuu
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Elina Ikonen
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland.
| |
Collapse
|
61
|
Validation of analytical breast cancer microarray analysis in medical laboratory. Med Oncol 2014; 31:201. [PMID: 25182704 DOI: 10.1007/s12032-014-0201-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/22/2014] [Indexed: 01/02/2023]
Abstract
A previously reported microarray data analysis by RISS algorithm on breast cancer showed over-expression of the growth factor receptor (Grb7) and it also highlighted Tweety (TTYH1) gene to be under expressed in breast cancer for the first time. Our aim was to validate the results obtained from the microarray analysis with respect to these genes. Also, the relationship between their expression and the different prognostic indicators was addressed. RNA was extracted from the breast tissue of 30 patients with primary malignant breast cancer. Control samples from the same patients were harvested at a distance of ≥5 cm from the tumour. Semi-quantitative RT-PCR analysis was done on all samples. There was a significant difference between the malignant and control tissues as regards Grb7 expression. It was significantly related to the presence of lymph node metastasis, stage and histological grade of the malignant tumours. There was a significant inverse relation between expression of Grb7 and expression of both oestrogen and progesterone receptors. Grb7 was found to be significantly related to the biological classification of breast cancer. TTYH1 was not expressed in either the malignant or the control samples. The RISS by our group algorithm developed was laboratory validated for Grb7, but not for TTYH1. The newly developed software tool needs to be improved.
Collapse
|
62
|
Kotoula V, Bobos M, Alexopoulou Z, Papadimitriou C, Papadopoulou K, Charalambous E, Tsolaki E, Xepapadakis G, Nicolaou I, Papaspirou I, Aravantinos G, Christodoulou C, Efstratiou I, Gogas H, Fountzilas G. Adjusting breast cancer patient prognosis with non-HER2-gene patterns on chromosome 17. PLoS One 2014; 9:e103707. [PMID: 25098819 PMCID: PMC4123879 DOI: 10.1371/journal.pone.0103707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022] Open
Abstract
Background HER2 and TOP2A gene status are assessed for diagnostic and research purposes in breast cancer with fluorescence in situ hybridization (FISH). However, FISH probes do not target only the annotated gene, while chromosome 17 (chr17) is among the most unstable chromosomes in breast cancer. Here we asked whether the status of specifically targeted genes on chr17 might help in refining prognosis of early high-risk breast cancer patients. Methods Copy numbers (CN) for 14 genes on chr17, 4 of which were within and 10 outside the core HER2 amplicon (HER2- and non-HER2-genes, respectively) were assessed with qPCR in 485 paraffin-embedded tumor tissue samples from breast cancer patients treated with adjuvant chemotherapy in the frame of two randomized phase III trials. Principal Findings HER2-genes CN strongly correlated to each other (Spearman’s rho >0.6) and were concordant with FISH HER2 status (Kappa 0.6697 for ERBB2 CN). TOP2A CN were not concordant with TOP2A FISH status (Kappa 0.1154). CN hierarchical clustering revealed distinct patterns of gains, losses and complex alterations in HER2- and non-HER2-genes associated with IHC4 breast cancer subtypes. Upon multivariate analysis, non-HER2-gene gains independently predicted for shorter disease-free survival (DFS) and overall survival (OS) in patients with triple-negative cancer, as compared to luminal and HER2-positive tumors (interaction p = 0.007 for DFS and p = 0.011 for OS). Similarly, non-HER2-gene gains were associated with worse prognosis in patients who had undergone breast-conserving surgery as compared to modified radical mastectomy (p = 0.004 for both DFS and OS). Non-HER2-gene losses were unfavorable prognosticators in patients with 1–3 metastatic nodes, as compared to those with 4 or more nodes (p = 0.017 for DFS and p = 0.001 for OS). Conclusions TOP2A FISH and qPCR may not identify the same pathology on chr17q. Non-HER2 chr17 CN patterns may further predict outcome in breast cancer patients with known favorable and unfavorable prognosis.
Collapse
Affiliation(s)
- Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- * E-mail:
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Zoi Alexopoulou
- Department of Biostatistics, Health Data Specialists Ltd, Athens, Greece
| | - Christos Papadimitriou
- Department of Clinical Therapeutics, “Alexandra” Hospital, University of Athens School of Medicine, Athens, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Elpida Charalambous
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Eleftheria Tsolaki
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | | - Irene Nicolaou
- Department of Histopathology, “Agii Anagriri” Cancer Hospital, Athens, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, “Agii Anargiri” Cancer Hospital, Athens, Greece
| | | | | | - Helen Gogas
- First Department of Medicine, “Laiko” General Hospital, University of Athens, Medical School, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| |
Collapse
|
63
|
Hongisto V, Aure MR, Mäkelä R, Sahlberg KK. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells - A data description. GENOMICS DATA 2014; 2:249-53. [PMID: 26484103 PMCID: PMC4536024 DOI: 10.1016/j.gdata.2014.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022]
Abstract
A large number of breast cancers are characterized by amplification and overexpression of the chromosome segment surrounding the HER2 (ERBB2) oncogene. As the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated array comparative genomic hybridization (aCGH) data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. In this Data in Brief we give a detailed description of the experimental procedures and the data analysis methods used in the study (1).
Collapse
Affiliation(s)
- Vesa Hongisto
- VTT Technical Research Centre of Finland, Turku, Finland
| | - Miriam Ragle Aure
- K.G. Jebsen Centre of Breast Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Rami Mäkelä
- VTT Technical Research Centre of Finland, Turku, Finland
| | - Kristine Kleivi Sahlberg
- K.G. Jebsen Centre of Breast Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway ; Department of Research, VestreViken, Drammen, Norway
| |
Collapse
|
64
|
Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Traffic 2014; 15:895-914. [PMID: 24890942 DOI: 10.1111/tra.12177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
65
|
Herceptin resistance database for understanding mechanism of resistance in breast cancer patients. Sci Rep 2014; 4:4483. [PMID: 24670875 PMCID: PMC3967150 DOI: 10.1038/srep04483] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/07/2014] [Indexed: 01/15/2023] Open
Abstract
Monoclonal antibody Trastuzumab/Herceptin is considered as frontline therapy for Her2-positive breast cancer patients. However, it is not effective against several patients due to acquired or de novo resistance. In last one decade, several assays have been performed to understand the mechanism of Herceptin resistance with/without supplementary drugs. This manuscript describes a database HerceptinR, developed for understanding the mechanism of resistance at genetic level. HerceptinR maintains information about 2500 assays performed against various breast cancer cell lines (BCCs), for improving sensitivity of Herceptin with or without supplementary drugs. In order to understand Herceptin resistance at genetic level, we integrated genomic data of BCCs that include expression, mutations and copy number variations in different cell lines. HerceptinR will play a vital role in i) designing biomarkers to identify patients eligible for Herceptin treatment and ii) identification of appropriate supplementary drug for a particular patient. HerceptinR is available at http://crdd.osdd.net/raghava/herceptinr/.
Collapse
|
66
|
Alpy F, Tomasetto C. START ships lipids across interorganelle space. Biochimie 2014; 96:85-95. [DOI: 10.1016/j.biochi.2013.09.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/17/2013] [Indexed: 11/30/2022]
|
67
|
Sarajlić A, Filipović A, Janjić V, Coombes RC, Pržulj N. The role of genes co-amplified with nicastrin in breast invasive carcinoma. Breast Cancer Res Treat 2013; 143:393-401. [DOI: 10.1007/s10549-013-2805-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022]
|
68
|
Leivonen SK, Sahlberg KK, Mäkelä R, Due EU, Kallioniemi O, Børresen-Dale AL, Perälä M. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol 2013; 8:93-104. [PMID: 24148764 DOI: 10.1016/j.molonc.2013.10.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs regulating gene expression post-transcriptionally. We have characterized the role of miRNAs in regulating the human epidermal growth factor receptor 2 (HER2)-pathway in breast cancer. We performed miRNA gain-of-function assays by screening two HER2 amplified cell lines (KPL-4 and JIMT-1) with a miRNA mimic library consisting of 810 human miRNAs. The levels of HER2, phospho-AKT, phospho-ERK1/2, cell proliferation (Ki67) and apoptosis (cPARP) were analyzed with reverse-phase protein arrays. Rank product analyses identified 38 miRNAs (q < 0.05) as inhibitors of HER2 signaling and cell growth, the most effective being miR-491-5p, miR-634, miR-637 and miR-342-5p. We also characterized miRNAs directly targeting HER2 and identified seven novel miRNAs (miR-552, miR-541, miR-193a-5p, miR-453, miR-134, miR-498, and miR-331-3p) as direct regulators of the HER2 3'UTR. We demonstrated the clinical relevance of the miRNAs and identified miR-342-5p and miR-744* as significantly down-regulated in HER2-positive breast tumors as compared to HER2-negative tumors from two cohorts of breast cancer patients (101 and 1302 cases). miR-342-5p specifically inhibited HER2-positive cell growth, as it had no effect on the growth of HER2-negative control cells in vitro. Furthermore, higher expression of miR-342-5p was associated with better survival in both breast cancer patient cohorts. In conclusion, we have identified miRNAs which are efficient negative regulators of the HER2 pathway that may play a role in vivo during breast cancer progression. These results give mechanistic insights in HER2 regulation which may open potential new strategies towards prevention and therapeutic inhibition of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Suvi-Katri Leivonen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, N-0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway; Medical Biotechnology, VTT Technical Research Centre of Finland, FI-20520 Turku, Finland.
| | - Kristine Kleivi Sahlberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, N-0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway; Department of Research, Vestre Viken Hospital Trust, N-3004 Drammen, Norway
| | - Rami Mäkelä
- Medical Biotechnology, VTT Technical Research Centre of Finland, FI-20520 Turku, Finland
| | - Eldri Undlien Due
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, N-0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, N-0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway
| | - Merja Perälä
- Medical Biotechnology, VTT Technical Research Centre of Finland, FI-20520 Turku, Finland
| |
Collapse
|
69
|
Sahlberg KK, Hongisto V, Edgren H, Mäkelä R, Hellström K, Due EU, Moen Vollan HK, Sahlberg N, Wolf M, Børresen-Dale AL, Perälä M, Kallioniemi O. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells. Mol Oncol 2013; 7:392-401. [PMID: 23253899 PMCID: PMC5528495 DOI: 10.1016/j.molonc.2012.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022] Open
Abstract
About 20% of breast cancers are characterized by amplification and overexpression of the HER2 oncogene. Although significant progress has been achieved for treating such patients with HER2 inhibitor trastuzumab, more than half of the patients respond poorly or become resistant to the treatment. Since the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated aCGH data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. Silencing of HER2 caused a greater growth arrest and apoptosis in the responding compared to the non-responding cell lines, indicating that the resistant cells are inherently less dependent on the HER2 pathway. Several other genes in the amplicon also showed a more pronounced effect when silenced; indicating that expression of HER2 co-amplified genes may be needed to sustain the growth of breast cancer cells. Importantly, co-silencing of STARD3, GRB7, PSMD3 and PERLD1 together with HER2 led to an additive inhibition of cell viability as well as induced apoptosis. These studies indicate that breast cancer cells may become addicted to the amplification of several genes that reside in the HER2 amplicon. The simultaneous targeting of these genes may increase the efficacy of the anti-HER2 therapies and possibly also counteract trastuzumab resistance. The observed additive effects seem to culminate to both apoptosis and cell proliferation pathways indicating that these pathways may be interesting targets for combinatorial treatment of HER2+ breast cancers.
Collapse
Affiliation(s)
- Kristine Kleivi Sahlberg
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Vesa Hongisto
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Henrik Edgren
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Rami Mäkelä
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Kirsi Hellström
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Eldri U. Due
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Hans Kristian Moen Vollan
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Breast and Endocrine Surgery, Division of Surgery and Cancer, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Niko Sahlberg
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Merja Perälä
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Olli Kallioniemi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|