51
|
Antimicrobial Potential and Cytotoxicity of Silver Nanoparticles Phytosynthesized by Pomegranate Peel Extract. Antibiotics (Basel) 2018; 7:antibiotics7030051. [PMID: 29949885 PMCID: PMC6164934 DOI: 10.3390/antibiotics7030051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
The phytosynthesis of metal nanoparticles is nowadays attracting the increased attention of researchers and is much needed given the worldwide matter related to environmental contamination. The antimicrobial activity of colloidal and spray formulation of silver nanoparticles (AgNPs) synthesized by pomegranate peel extract against Candida albicans and Staphylococcus aureus, and their cytotoxicity in mammalian cells were tested in the present study. Dry matter, pH, total phenolics, and ellagic acid in the extract were determined. Then, AgNPs were phytosynthesized and characterized by X-ray diffraction, electron transmission microscopy, dynamic light scattering, zeta potential, and Ag⁺ dosage. Spray formulations and respective chemical-AgNP controls were prepared and tested. The peel extract reduced more than 99% of Ag⁺, and produced nanoparticles with irregular forms and an 89-nm mean size. All AgNP presented antimicrobial activity, and the spray formulation of green-AgNP increased by 255 and 4 times the effectiveness against S. aureus and C. albicans, respectively. The cytotoxicity of colloidal and spray green-AgNP was expressively lower than the respective chemical controls. Pomegranate peel extract produced stable AgNP with antimicrobial action and low cytotoxicity, stimulating its use in the biomedical field.
Collapse
|
52
|
Shen XT, Zhang YZ, Xiao F, Zhu J, Zheng XD. Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys. J Zhejiang Univ Sci B 2018; 18:615-625. [PMID: 28681586 DOI: 10.1631/jzus.b1600555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO3+NaBH4→ Ag+1/2H2+1/2B2H6+NaNO3. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L) of AgNPs were tested on Staphylococcus aureus (SA) and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorporation of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.
Collapse
Affiliation(s)
- Xiao-Ting Shen
- Stomatology Hospital Affiliated to Zhejiang University of Medicine, Hangzhou 310006, China
| | - Yan-Zhen Zhang
- Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Fang Xiao
- Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jing Zhu
- Department of Stomatology, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
53
|
Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, Lim V. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int J Mol Sci 2018; 19:E1725. [PMID: 29891772 PMCID: PMC6032206 DOI: 10.3390/ijms19061725] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/11/2023] Open
Abstract
In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare the cytotoxicity of different plant-mediated syntheses of metallic nanoparticles based on their potency, therapeutic index, and cancer cell type susceptibility in the hopes of identifying the most promising anti-cancer agents. A literature search of electronic databases including Science Direct, PubMed, Springer Link, Google Scholar, and ResearchGate, was conducted to obtain research articles. Keywords such as biosynthesis, plant synthesis, plant-mediated, metallic nanoparticle, cytotoxicity, and anticancer were used in the literature search. All types of research materials that met the inclusion criteria were included in the study regardless of whether the results were positive, negative, or null. The therapeutic index was used as a safety measure for the studied compound of interest. Data from 76 selected articles were extracted and synthesised. Seventy-two studies reported that the cytotoxicity of plant-mediated synthesis of metallic nanoparticles was time and/or dose-dependent. Biosynthesised silver nanoparticles demonstrated higher cytotoxicity potency compared to gold nanoparticles synthesised by the same plants (Plumbago zeylanica, Commelina nudiflora, and Cassia auriculata) irrespective of the cancer cell type tested. This review also identified a correlation between the nanoparticle size and morphology with the potency of cytotoxicity. Cytotoxicity was found to be inversely proportional to nanoparticle size. The plant-mediated syntheses of metallic nanoparticles were predominantly spherical or quasi-spherical, with the median lethal dose of 1⁻20 µg/mL. Nanoparticles with other shapes (triangular, hexagonal, and rods) were less potent. Metallic nanoparticles synthesised by Abutilon inducum, Butea monosperma, Gossypium hirsutum, Indoneesiella echioides, and Melia azedarach were acceptably safe as anti-cancer agents, as they had a therapeutic index of >2.0 when tested on both cancer cells and normal human cells. Most plant-mediated syntheses of metallic nanoparticles were found to be cytotoxic, although some were non-cytotoxic. The results from this study suggest a focus on a selected list of potential anti-cancer agents for further investigations of their pharmacodynamic/toxicodynamic and pharmacokinetic/toxicokinetic actions with the goal of reducing the Global Burden of Diseases and the second leading cause of mortality.
Collapse
Affiliation(s)
- Nurul Akma Hanan
- Active Pharmaceutical Ingredient (API) Section, Centre of Product Registration, National Pharmaceutical Regulatory Agency (NPRA), Lot 36, Jalan Universiti, 46200 Petaling Jaya, Malaysia.
| | - Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| | | | - Wai Hau Tung
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Malaysia.
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia.
| |
Collapse
|
54
|
Hussain M, Raja NI, Mashwani ZUR, Naz F, Iqbal M, Aslam S. Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata. IET Nanobiotechnol 2018; 12:514-519. [PMID: 29768240 PMCID: PMC8676029 DOI: 10.1049/iet-nbt.2017.0153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 12/24/2017] [Indexed: 11/19/2022] Open
Abstract
The synthesis of nanoparticles by utilising plant extract has revolutionised the field of nanotechnology. In the present study, AgNPs were synthesised by utilising the leaves of Moringa oleifera as reducing and stabilising agent. UV-visible spectroscopy showed characteristic surface plasmon band in the range of 413-420 nm. Scanning electron microscopy (SEM) elucidated rectangular segments fused together. X-ray diffraction (XRD) analysis confirmed the crystalline nature of AgNPs and presence of metallic silver ions was confirmed by energy dispersive X-ray (EDX). The different concentrations (10, 20, 30 and 40 ppm) of AgNPs were exogenously applied on Citrus reticulata to record the disease incidence at different day intervals. The disease intensity was progressively increased in all the applied treatments with the passage of time. The 30 ppm concentration of AgNPs was found to be most suitable concentration for creating the resistance against brown spot disease. Moreover, the effects of AgNPs were also assessed for biochemical profiling in C. reticulata. The enhanced production of endogenous enzymes and non-enzymatic components was observed in response to 30 ppm concentration of AgNPs. The present work highlighted that green synthesised AgNPs can be as used as biological control of citrus diseases and the enhanced production of secondary metabolites antioxidants.
Collapse
Affiliation(s)
- Mubashir Hussain
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | | | - Farah Naz
- Department of Plant Pathology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Muhammad Iqbal
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sumaira Aslam
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| |
Collapse
|
55
|
Ullah Khan S, Saleh TA, Wahab A, Khan MHU, Khan D, Ullah Khan W, Rahim A, Kamal S, Ullah Khan F, Fahad S. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 2018; 13:733-762. [PMID: 29440898 PMCID: PMC5799856 DOI: 10.2147/ijn.s153167] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- College of Plant Sciences and Technology
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Muhammad Hafeez Ullah Khan
- College of Plant Sciences and Technology
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Wasim Ullah Khan
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Sajid Kamal
- School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
| | - Farman Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu
| | - Shah Fahad
- College of Plant Sciences and Technology
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| |
Collapse
|
56
|
Parlinska-Wojtan M, Depciuch J, Fryc B, Kus-Liskiewicz M. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using clove eugenol. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences; PL -31342 Krakow Poland
| | - Bartosz Fryc
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology; University of Rzeszow; Sokołowska Street 26 36-100 Kolbuszowa Poland
| | - Małgorzata Kus-Liskiewicz
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology; University of Rzeszow; Sokołowska Street 26 36-100 Kolbuszowa Poland
| |
Collapse
|
57
|
Qian H, Li M, Li Z, Lou Y, Huang L, Zhang D, Xu D, Du C, Lu L, Gao J. Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:566-577. [DOI: 10.1016/j.msec.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
58
|
Rahimi M, Hosseini MR, Bakhshi M. Biosynthesis of Ag
3
PO
4
nanoparticles in the absence of phosphate source using a phosphorus mineralising bacterium. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2017.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mohammadhosein Rahimi
- Department of Mining EngineeringIsfahan University of TechnologyIsfahan 84156‐83111Iran
| | | | - Mehran Bakhshi
- Department of Mining EngineeringIsfahan University of TechnologyIsfahan 84156‐83111Iran
| |
Collapse
|
59
|
Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant glioma stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:44-50. [PMID: 29208287 DOI: 10.1016/j.msec.2017.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023]
Abstract
Recently most of the researchers have turned their interest towards plant mediated synthesis of metal nanoparticles to avoid several environmental toxicants. In this manuscript, we have discussed the ecofriendly syntheses of zinc oxide nanoparticles (ZnO NPs) were achieved using Glycyrrhiza glabra (G. glabra) seed aqueous extract. The green synthesized ZnO NPs were characterized using analytical techniques like XRD, TEM, particle size histogram and Zeta potential. From the results, it was found that the green synthesized ZnO NPs were around 35nm in size with irregular spherical shape. The Zeta potential study of ZnO NPs was resulted to be high stabile with electronegative charge around -56.3mV. Further the G. glabra seed aqueous extract mediated synthesis of ZnO NPs were subjected to treat human glioblastoma cells with the help of temozolomide (TMZ) a commercially available drug by the method of MTT cell viability assay. The results stated that the ZnO NPs shows IC50 value around 30μg/mL results significantly. The plausible mechanism behind the mortality rate was also discussed in this manuscript.
Collapse
|
60
|
He H, Tao G, Wang Y, Cai R, Guo P, Chen L, Zuo H, Zhao P, Xia Q. In situ green synthesis and characterization of sericin-silver nanoparticle composite with effective antibacterial activity and good biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:509-516. [PMID: 28866194 DOI: 10.1016/j.msec.2017.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/24/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
Silver nanoparticle has been widely applied to a variety of fields for its outstanding antimicrobial activity. However, the stability of silver nanoparticle limits its application under certain conditions. Thus, improving the stability of silver nanoparticle via biosynthesis is a promising shortcut to expand its application. Sericin from silkworm cocoon has good hydrophilicity, reaction activity, biocompatibility and biodegradability. In this study, we developed a novel, simple, one-step biosynthesis method to prepare sericin-silver nanoparticle composite in situ in solution. Sericin served as the reductant of silver ion, the dispersant and stabilizer of the prepared sericin-silver nanoparticle composite. Natural light was the only power source used to catalyze the synthesis of silver nanoparticle in situ in solution. The novel sericin-silver nanoparticle composite was characterized by ultraviolet-visible and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy. The results showed silver nanoparticle could be synthesized through the reduction of AgNO3 by the phenolic hydroxyl group of tyrosine residues of sericin under the catalysis of natural light. The synthesized silver nanoparticle had good crystalline, size distribution and long-term stability at room temperature. Light irradiation was essential for the preparation of sericin-silver nanoparticle composite. The antibacterial activity assay showed 25mg/L and 100mg/L were the minimum concentrations of sericin-silver nanoparticle composite required to inhibit the growth of Staphylococcus aureus and kill this bacterium, respectively. The cytotoxicity assay showed cell viability and cell growth were almost not affected by sericin-silver nanoparticle composite under the concentration of 25mg/L. Our study suggested the preparation of sericin-silver nanoparticle composite was environmentally friendly and energy conservation, and the prepared sericin-silver nanoparticle composite had long-term stability, effective antibacterial activity and good biocompatibility. This novel sericin-silver nanoparticle composite has shown great potentials for biomedical application such as antibacterial agent and wound care.
Collapse
Affiliation(s)
- Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Rui Cai
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Liqun Chen
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
61
|
Naraginti S, Li Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:225-234. [DOI: 10.1016/j.jphotobiol.2017.03.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
62
|
Sumaira S, Khan T, Abbasi BH, Afridi MS, Tanveer F, Ullah I, Bashir S, Hano C. Melatonin-enhanced biosynthesis of antimicrobial AgNPs by improving the phytochemical reducing potential of a callus culture of Ocimum basilicum L. var. thyrsiflora. RSC Adv 2017. [DOI: 10.1039/c7ra05044e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe the synthesis of AgNPs using Ocimum basilicum L. var. thyrsiflora leaf derived callus extracts formed in response to thidiazuron alone and a combination of TDZ melatonin which act both as reducing and stabilizing agents.
Collapse
Affiliation(s)
- Sumaira Sumaira
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Tariq Khan
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
- Department of Biotechnology
| | | | | | - Faouzia Tanveer
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Ikram Ullah
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Samina Bashir
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC)
- Université d’Orléans
- Chartres
- France
| |
Collapse
|
63
|
Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. NANOSCALE RESEARCH LETTERS 2016; 11:40. [PMID: 26821160 PMCID: PMC4731379 DOI: 10.1186/s11671-016-1257-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan, 609735, South Korea
| | - Kim Seung-Hyun
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea
| | - Govindasamy Rajakumar
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
64
|
Arjunan N, Kumari HLJ, Singaravelu CM, Kandasamy R, Kandasamy J. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int J Biol Macromol 2016; 92:77-87. [DOI: 10.1016/j.ijbiomac.2016.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023]
|
65
|
Mashwani ZUR, Khan MA, Khan T, Nadhman A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci 2016; 234:132-141. [PMID: 27181393 DOI: 10.1016/j.cis.2016.04.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs.
Collapse
Affiliation(s)
| | - Mubarak Ali Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology (CIIT), Abbottabad, Pakistan.
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan; Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Akhtar Nadhman
- Centre for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
66
|
Parlinska-Wojtan M, Kus-Liskiewicz M, Depciuch J, Sadik O. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent. Bioprocess Biosyst Eng 2016; 39:1213-23. [PMID: 27083587 PMCID: PMC4945692 DOI: 10.1007/s00449-016-1599-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
Abstract
Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.
Collapse
Affiliation(s)
| | - Małgorzata Kus-Liskiewicz
- Biotechnology Centre for Applied and Fundamental Sciences, Department of Biotechnology, University of Rzeszow, Sokołowska Street 26, 36-100, Kolbuszowa, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342, Kraków, Poland
| | - Omowunmi Sadik
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
67
|
Biomedical Applications of Cocoa Bean Extract-Mediated Silver Nanoparticles as Antimicrobial, Larvicidal and Anticoagulant Agents. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1055-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
68
|
Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol 2016; 34:588-599. [DOI: 10.1016/j.tibtech.2016.02.006] [Citation(s) in RCA: 654] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/28/2022]
|
69
|
Pugazhendhi S, Sathya P, Palanisamy P, Gopalakrishnan R. Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:155-60. [DOI: 10.1016/j.jphotobiol.2016.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/25/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
|
70
|
Anjum S, Abbasi BH. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa. Int J Nanomedicine 2016; 11:1663-75. [PMID: 27217745 PMCID: PMC4853015 DOI: 10.2147/ijn.s105532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In vitro-derived cultures of plants offer a great potential for rapid biosynthesis of chemical-free antimicrobial silver nanoparticles (AgNPs) by enhancing their phytochemical reducing potential. Here, we developed an efficient protocol for in vitro micropropagation of a high-value endangered medicinal plant species, Phlomis bracteosa, in order to explore its biogenic potential in biomimetic synthesis of antimicrobial AgNPs. Murashige and Skoog medium supplemented with 2.0 mg/L thidiazuron was found to be more efficient in inducing optimum in vitro shoot regeneration (78%±4.09%), and 2.0 mg/L indole-3-butyric acid was used for maximum root induction (86%±4.457%). Antimicrobial AgNPs were successfully synthesized by using aqueous extract (rich in total phenolics and flavonoids content) of in vitro derived plantlets of P. bracteosa. Ultraviolet–visible spectroscopy of synthesized AgNPs showed characteristic surface plasmon band in the range of 420–429 nm. The crystallinity, size, and shape of the AgNPs were characterized by X-ray diffraction and scanning electron microscopy. Face-centered cubic AgNPs of almost uniform spherical size (22.41 nm) were synthesized within a short time (1 hour) at room temperature. Fourier-transform infrared spectroscopy revealed that the polyphenols were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further endorsed the presence of elemental silver in synthesized AgNPs. These biosynthesized AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens. The present work highlighted the potent role of in vitro-derived plantlets of P. bracteosa for feasible biosynthesis of antimicrobial AgNPs, which can be used as nanomedicines in many biomedical applications.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
71
|
Anjum S, Abbasi BH. Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L. Int J Nanomedicine 2016; 11:715-28. [PMID: 26955271 PMCID: PMC4768898 DOI: 10.2147/ijn.s102359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) by using plants is an emerging class of nanobiotechnology. It revolutionizes all domains of medical sciences by synthesizing chemical-free AgNPs for various biomedical applications. In this report, AgNPs were successfully synthesized by using whole plant extract (WPE) and thidiazuron-induced callus extract (CE) of Linum usitatissimum. The phytochemical analysis revealed that the total phenolic and flavonoid contents were higher in CE than that in WPE. Ultraviolet-visible spectroscopy of synthesized AgNPs showed a characteristic surface plasmon band in the range of 410–426 nm. Bioreduction of CE-mediated AgNPs was completed in a shorter time than that of WPE-mediated AgNPs. Scanning electron microscopy showed that both types of synthesized AgNPs were spherical in shape, but CE-mediated AgNPs were smaller in size (19–24 nm) and more scattered in distribution than that of WPE-mediated AgNPs (49–54 nm). X-ray diffraction analysis confirmed crystalline nature (face-centered cubic) of both types of AgNPs. Fourier-transform infrared spectroscopy revealed that the polyphenols and flavonoids were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further confirmed the successful synthesis of AgNPs. Moreover, the synthesized AgNPs were found to be stable over months with no change in the surface plasmon bands. More importantly, CE-mediated AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens than WPE-mediated AgNPs. The present work highlighted the potent role of thidiazuron in in vitro-derived cultures for enhanced biosynthesis of chemical-free AgNPs, which can be used as nanomedicines in many biomedical applications.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
72
|
Kumar V, Singh DK, Mohan S, Hasan SH. Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 155:39-50. [DOI: 10.1016/j.jphotobiol.2015.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023]
|
73
|
Premanand G, Shanmugam N, Kannadasan N, Sathishkumar K, Viruthagiri G. Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0442-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|