51
|
Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Shokuhfar T, Celis JP, Rocha LA. Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J Mech Behav Biomed Mater 2018; 80:143-154. [DOI: 10.1016/j.jmbbm.2018.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
|
52
|
Wheelis SE, Wilson TG, Valderrama P, Rodrigues DC. Surface characterization of titanium implant healing abutments before and after placement. Clin Implant Dent Relat Res 2017; 20:180-190. [PMID: 29214721 DOI: 10.1111/cid.12566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Implant healing abutments (IHA) have a vital role in soft tissue healing after implant placement. Although there is thorough investigation on the implant surface, little is known about the effects potentially damaging oral conditions impose on healing abutments. PURPOSE To characterize the surface of titanium healing abutments before and after clinical placement to understand the effects of the oral environment and time on the device surface. MATERIALS AND METHODS Ten regular Straumann IHA were subjected to characterization pre and postplacement to elucidate the effects of the oral environment on device surfaces. Changes in surface crystallinity, morphology, and elemental composition were monitored with Raman spectroscopy, scanning electron microscopy, optical microscopy, and x-ray photoelectron spectroscopy, respectively. In addition, corrosion rate and polarization resistance were obtained to assess electrochemical device stability after placement. RESULTS Control analysis indicated the titanium oxide of IHAs was thicker than natural commercially pure titanium and had the structure of crystalline anatase. After removal, the abutments possessed large amounts of biological debris, visible scratches, and discoloration sparsely on the surface. Spectroscopic analysis revealed the titanium oxide on the surface of IHAs was structurally unchanged, with crystalline titanium dioxide still present on the surface. Electrochemical results revealed that implanted healing abutments possessed a significantly higher corrosion rate than controls (change in corrosion rate = 2.34 ± 0.58 nm/year). CONCLUSIONS Healing abutments were stable in the oral environment due to the chemical stability of the oxide, and were likely subjected to abrasions from unintentional loading and oral hygiene techniques.
Collapse
Affiliation(s)
- Sutton E Wheelis
- Deparment of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| | - Thomas G Wilson
- Deparment of Periodontics and Dental Implants, North Dallas Dental Health, Dallas, Texas, USA
| | - Pilar Valderrama
- Deparment of Periodontics and Dental Implants, North Dallas Dental Health, Dallas, Texas, USA
| | - Danieli C Rodrigues
- Deparment of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
53
|
Fukushima A, Mayanagi G, Sasaki K, Takahashi N. Corrosive effects of fluoride on titanium under artificial biofilm. J Prosthodont Res 2017; 62:104-109. [PMID: 28916465 DOI: 10.1016/j.jpor.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. METHODS Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. RESULTS After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. CONCLUSIONS NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn.
Collapse
Affiliation(s)
- Azusa Fukushima
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Gen Mayanagi
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
54
|
Salvador DG, Marcolin P, Beltrami LVR, Brandalise RN, Kunst SR. Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium-aluminum-vanadium alloy. J Appl Polym Sci 2017. [DOI: 10.1002/app.45470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D. G. Salvador
- Laboratory of Corrosion and Surface Protection; University of Caxias do Sul; 1130 Francisco Getúlio Vargas Street Caxias do Sul Rio Grande do Sul 95070-560 Brazil
| | - P. Marcolin
- Graduate Program in Process Engineering and Technologies; University of Caxias do Sul; 1130 Francisco Getúlio Vargas Street Caxias do Sul Rio Grande do Sul 95070-560 Brazil
| | - L. V. R. Beltrami
- Research Laboratory in Corrosion; Federal University of Rio Grande do Sul; 9500 Bento Gonçalves Avenue Porto Alegre Rio Grande do Sul 90040-060 Brazil
| | - R. N. Brandalise
- Graduate Program in Process Engineering and Technologies; University of Caxias do Sul; 1130 Francisco Getúlio Vargas Street Caxias do Sul Rio Grande do Sul 95070-560 Brazil
| | - S. R. Kunst
- Graduate Program in Process Engineering and Technologies; University of Caxias do Sul; 1130 Francisco Getúlio Vargas Street Caxias do Sul Rio Grande do Sul 95070-560 Brazil
| |
Collapse
|
55
|
Noronha Oliveira M, Schunemann WVH, Mathew MT, Henriques B, Magini RS, Teughels W, Souza JCM. Can degradation products released from dental implants affect peri-implant tissues? J Periodontal Res 2017; 53:1-11. [PMID: 28766712 DOI: 10.1111/jre.12479] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
This study aimed to assess the literature available on the effects, on peri-implant tissues, of degradation products released from dental implants as a consequence of therapeutic treatment for peri-implantitis and/or of wear-corrosion of titanium. A literature review of the PubMed medline database was performed up to December 31, 2016. The following search terms were used: "titanium wear and dental implant"; "titanium corrosion and dental implant"; "bio-tribocorrosion"; "peri-implantitis"; "treatment of peri-implantitis"; "titanium particles release and dental implant"; and "titanium ion release and dental implant". The keywords were applied to the database in different combinations without limits of time period or type of work. In addition, the reference lists of relevant articles were searched for further studies. Seventy-nine relevant scientific articles on the topic were retrieved. The results showed that pro-inflammatory cytokines, infiltration of inflammatory response cells and activation of the osteoclasts activity are stimulated in peri-implant tissues in the presence of metal particles and ions. Moreover, degenerative changes were reported in macrophages and neutrophils that phagocytosed titanium microparticles, and mutations occurred in human cells cultured in medium containing titanium-based nanoparticles. Debris released from the degradation of dental implants has cytotoxic and genotoxic potential for peri-implant tissues. Thus, the amount and physicochemical properties of the degradation products determine the magnitude of the detrimental effect on peri-implant tissues.
Collapse
Affiliation(s)
- M Noronha Oliveira
- Post-graduate Program in Dentistry (PPGO), Center for Research and Education on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - W V H Schunemann
- Post-graduate Program in Dentistry (PPGO), Center for Research and Education on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - M T Mathew
- Department of Biomedical Science, UIC School of Medicine, Rockford, IL, USA.,Department of Restorative Dentistry, UIC College of Dentistry, Chicago, IL, USA
| | - B Henriques
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - R S Magini
- Post-graduate Program in Dentistry (PPGO), Center for Research and Education on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - W Teughels
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - J C M Souza
- Post-graduate Program in Dentistry (PPGO), Center for Research and Education on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,Department of Biomedical Science, UIC School of Medicine, Rockford, IL, USA.,Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
56
|
Tan N, Liu X, Cai Y, Zhang S, Jian B, Zhou Y, Xu X, Ren S, Wei H, Song Y. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs. Int J Nanomedicine 2017; 12:5433-5442. [PMID: 28814861 PMCID: PMC5546787 DOI: 10.2147/ijn.s138615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS) could improve osseointegration in diabetic animal models. Methods Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO). A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg), and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT) and histologic evaluations were performed 3 and 6 months after implantation. Results The Ra (the average of the absolute height of all points) of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months, although this difference disappeared by 6 months. DLMS implants showed a higher bone–implant contact percentage (33.2%±11.2%) at 3 months compared with MAO group (18.9%±7.3%) while similar results were showed at 6 months between DLMS group (42.8%±10.1%) and MAO group (38.3%±10.8%). Conclusion The three-dimensional environment of implant surfaces with highly porous and fully interconnected channel and pore architectures can improve cell spreading and accelerate the progress of osseointegration in diabetic mini-pigs.
Collapse
Affiliation(s)
- Naiwen Tan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Stomatology, Hospital 463 of PLA, Xi'an, Shaanxi, China
| | - Xiangwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanhui Cai
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Jian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuchao Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoru Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuai Ren
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an, Shaanxi, China.,Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
57
|
Huang GY, Jiang HB, Cha JY, Kim KM, Hwang CJ. The effect of fluoride-containing oral rinses on the corrosion resistance of titanium alloy (Ti-6Al-4V). Korean J Orthod 2017; 47:306-312. [PMID: 28861392 PMCID: PMC5548711 DOI: 10.4041/kjod.2017.47.5.306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The purpose of this study was to examine the effect of commercially available fluoride-containing oral rinses on the corrosion behavior of titanium alloys, which are the main components of orthodontic miniscrews. METHODS Four commercially available oral rinses (solution A, pH 4.46/260 ppm fluoride; solution B, pH 4.41/178 ppm fluoride; solution C, pH 6.30/117 ppm fluoride; and solution D, pH 4.17/3.92 ppm fluoride) were tested on titanium alloy (Ti-6Al-4V) circular plates, and saline was used as the control. The open-circuit potential and potentiodynamic polarization of these materials were measured. Thereafter, all samples were evaluated under a field-emission scanning electron microscope. RESULTS Among the tested oral rinses, except solution D, the more the fluoride content was, the greater was the corrosion potential downtrend; the corrosion resistance of the titanium alloy sample was also lowered significantly (p < 0.05). Field-emission scanning electron microscopic analysis of the surface morphology of the titanium alloy samples revealed that all samples had some defects, crevices, or pitting after exposure to the oral rinses than before treatment. In particular, the samples in solution A showed the most changes. CONCLUSIONS Commercially available oral rinses having a high fluoride concentration and a low pH may reduce the corrosion resistance of titanium alloys used in dental appliances such as orthodontic titanium miniscrews and brackets.
Collapse
Affiliation(s)
- Gui-Yue Huang
- Department of Orthodontics, College of Dentistry, Yonsei University, Seoul, Korea
| | - Heng Bo Jiang
- Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, Seoul, Korea
| | - Jung-Yul Cha
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, Seoul, Korea.,BK21 PLUS Project, Yonsei University College of Dentistry
| | - Chung-Ju Hwang
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
58
|
Jannasch M, Gaetzner S, Weigel T, Walles H, Schmitz T, Hansmann J. A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial. Sci Rep 2017; 7:1689. [PMID: 28490729 PMCID: PMC5431855 DOI: 10.1038/s41598-017-01584-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/31/2017] [Indexed: 01/19/2023] Open
Abstract
Despite growing effort to advance materials towards a low fibrotic progression, all implants elicit adverse tissue responses. Pre-clinical biomaterial assessment relies on animals testing, which can be complemented by in vitro tests to address the Russell and Burch’s 3R aspect of reducing animal burden. However, a poor correlation between in vitro and in vivo biomaterial assessments confirms a need for suitable in vitro biomaterial tests. The aim of the study was to identify a test setting, which is predictive and might be time- and cost-efficient. We demonstrated how sensitive in vitro biomaterial assessment based on human primary macrophages depends on test conditions. Moreover, possible clinical scenarios such as lipopolysaccharide contamination, contact to autologous blood plasma, and presence of IL-4 in an immune niche influence the outcome of a biomaterial ranking. Nevertheless, by using glass, titanium, polytetrafluorethylene, silicone, and polyethylene representing a specific material-induced fibrotic response and by comparison to literature data, we were able to identify a test condition that provides a high correlation to state-of-the-art in vivo studies. Most important, biomaterial ranking obtained under native plasma test conditions showed a high predictive accuracy compared to in vivo assessments, strengthening a biomimetic three-dimensional in vitro test platform.
Collapse
Affiliation(s)
- Maren Jannasch
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Sabine Gaetzner
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Tobias Weigel
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Heike Walles
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Translational Center Wuerzburg Regenerative Therapies in Oncology and Musculoskeletal Disease, 97070, Wuerzburg, Germany
| | - Tobias Schmitz
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany
| | - Jan Hansmann
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine (TERM), Roentgenring 11, 97070, Wuerzburg, Germany. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Translational Center Wuerzburg Regenerative Therapies in Oncology and Musculoskeletal Disease, 97070, Wuerzburg, Germany.
| |
Collapse
|
59
|
Díaz I, Pacha-Olivenza MÁ, Tejero R, Anitua E, González-Martín ML, Escudero ML, García-Alonso MC. Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. J Biomed Mater Res B Appl Biomater 2017; 106:997-1009. [PMID: 28480611 DOI: 10.1002/jbm.b.33906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022]
Abstract
The effects of surface modifications and bacteria on the corrosion behavior of titanium have been studied. Five surface modifications were analyzed: two acid etchings (op V, op N), acid etching + anodic oxidation (op NT), sandblasting + acid etching (SLA), and machined surfaces (mach). The corrosion behavior of the surface modifications was evaluated by following the standard ANSI/AAMI/ISO 10993-15:2000. Cyclic potentiodynamic and potentiostatic anodic polarization tests and ion release by ICP-OES after immersion for 7 days in 0.9% NaCl were carried out. Microbiologically induced corrosion (MIC) of low and high roughness (mach, op V) was assessed in situ by electrochemical techniques. Streptococcus mutans bacteria were resuspended in PBS at a concentration of 3 × 108 bacteria mL-1 and maintained at 37°C. MIC was measured through the open circuit potential, Eoc , and electrochemical impedance spectroscopy from 2 to 28 days. Potentiodynamic curves showed the typical passive behavior for all the surface modifications. The titanium ion release after immersion was below 3 ppb. In situ bacteria monitoring showed the decrease in Eoc from -0.065 (SD 0.067) Vvs. Ag/AgCl in mach and -0.115 (SD 0.084) Vvs. Ag/AgCl in op V, to -0.333 (SD 0.147) Vvs. Ag/AgCl in mach and -0.263 (SD 0.005) Vvs. Ag/AgCl in op V, after 2 and 28 days, respectively. A reduction of the oxide film resistance, especially in op V (54 MΩ cm2 and 6 MΩ cm2 , after 2 and 28 days, respectively) could be seen. Streptococcus mutans negatively affected the corrosion resistance of titanium. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 997-1009, 2018.
Collapse
Affiliation(s)
- Ivan Díaz
- National Centre for Metallurgical Research, CENIM (CSIC), Madrid, 28040, Spain
| | - Miguel Ángel Pacha-Olivenza
- Networking Research Center on Bioengineering, Biomaterial and Biomedicine (CIBER-BBN), Spain.,Department of Applied Physics, Faculty of Science-UEx, Badajoz, Spain
| | | | - Eduardo Anitua
- Biotechnology Institute (BTI), Vitoria, Spain.,Private Practice in Implantology and Oral Rehabilitation in Vitoria, Spain
| | - Maria Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterial and Biomedicine (CIBER-BBN), Spain.,Department of Applied Physics, Faculty of Science-UEx, Badajoz, Spain
| | | | | |
Collapse
|
60
|
Li Y, Xu J. Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
|
62
|
Stanec Z, Halambek J, Maldini K, Balog M, Križik P, Schauperl Z, Ćatić A. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study. Acta Stomatol Croat 2016; 50:40-8. [PMID: 27688425 DOI: 10.15644/asc50/1/6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. MATERIAL AND METHODS Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. RESULTS The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. CONCLUSION In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested.
Collapse
Affiliation(s)
- Zlatko Stanec
- Private Dental Office Zlatko Stanec, DMD, Samobor, Croatia
| | - Jasna Halambek
- Karlovac University of Applied Sciences, Department for general and organic chemistry, Karlovac, Croatia
| | | | - Martin Balog
- Slovak Academy of Sciences, Institute of materials and machine mechanics, Bratislava, Slovakia
| | - Peter Križik
- Slovak Academy of Sciences, Institute of materials and machine mechanics, Bratislava, Slovakia
| | - Zdravko Schauperl
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia
| | - Amir Ćatić
- University of Zagreb, School of Dental Medicine, Department of Prosthodontics, Zagreb, Croatia
| |
Collapse
|
63
|
Beline T, Garcia CS, Ogawa ES, Marques ISV, Matos AO, Sukotjo C, Mathew MT, Mesquita MF, Consani RX, Barão VAR. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1079-1088. [PMID: 26652467 DOI: 10.1016/j.msec.2015.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
Abstract
The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.
Collapse
Affiliation(s)
- Thamara Beline
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Camila S Garcia
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Erika S Ogawa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Isabella S V Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Adaias O Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL 60612, USA; IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA
| | - Mathew T Mathew
- IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA; Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, IL 60612, USA
| | - Marcelo F Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Rafael X Consani
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil.
| |
Collapse
|
64
|
Rodrigues DS, Buciumeanu M, Martinelli AE, Nascimento RM, Henriques B, Silva FS, Souza JCM. Mechanical Strength and Wear of Dental Glass-Ionomer and Resin Composites Affected by Porosity and Chemical Composition. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0025-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Alves SA, Bayón R, de Viteri VS, Garcia MP, Igartua A, Fernandes MH, Rocha LA. Tribocorrosion Behavior of Calcium- and Phosphorous-Enriched Titanium Oxide Films and Study of Osteoblast Interactions for Dental Implants. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0023-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
Souza JCM, Henriques M, Teughels W, Ponthiaux P, Celis JP, Rocha LA. Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0013-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Oliveira DP, Palmieri A, Carinci F, Bolfarini C. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:248-55. [PMID: 25842132 DOI: 10.1016/j.msec.2015.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 11/17/2022]
Abstract
Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti-6Al-4V-ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15days.
Collapse
Affiliation(s)
- D P Oliveira
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil.
| | - A Palmieri
- Department of D.M.C.C.C., Section of Maxillofacial and Plastic Surgery, University of Ferrara, Ferrara, Italy
| | - F Carinci
- Department of D.M.C.C.C., Section of Maxillofacial and Plastic Surgery, University of Ferrara, Ferrara, Italy
| | - C Bolfarini
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|