51
|
Sawalha S, Assali M, Raddad M, Ghneem T, Sawalhi T, Almasri M, Zarour A, Misia G, Prato M, Silvestri A. Broad-Spectrum Antibacterial Activity of Synthesized Carbon Nanodots from d-Glucose. ACS APPLIED BIO MATERIALS 2022; 5:4860-4872. [PMID: 36100469 DOI: 10.1021/acsabm.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanodots, a class of carbon nano-allotropes, have been synthesized through different routes and methods from a wide range of precursors. The selected precursor, synthetic method, and conditions can strongly alter the physicochemical properties of the resulting material and their intended applications. Herein, carbon nanodots (CNDs) have been synthesized from d-glucose by combining pyrolysis and chemical oxidation methods. The effect of the pyrolysis temperature, equivalents of oxidizing agent, and refluxing time were studied on the product and quantum yield. In the optimum conditions (pyrolysis temperature of 300 °C, 4.41 equiv of H2O2, 90 min of reflux) CNDs were obtained with 40% and 3.6% of product and quantum yields, respectively. The obtained CNDs are negatively charged (ζ-potential = -32 mV), excellently dispersed in water, with average diameter of 2.2 nm. Furthermore, ammonium hydroxide (NH4OH) was introduced as dehydrating and/or passivation agent during CNDs synthesis resulting in significant improvement of both product and quantum yields of about 1.5 and 3.76-fold, respectively. The synthesized CNDs showed a broad spectrum of antibacterial activities toward different Gram-positive and Gram-negative bacteria strains. Both synthesized CNDs caused highly colony forming unit reduction (CFU), ranging from 98% to 99.99% for most of the tested bacterial strains. However, CNDs synthesized in the absence of NH4OH, due to a negatively charged surface enriched in oxygenated groups, performed better in zone inhibition and minimum inhibitory concentration. The elevated antibacterial activity of high-oxygen-containing carbon nanodots is directly correlated to their ROS formation ability.
Collapse
Affiliation(s)
- Shadi Sawalha
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P400, Palestine
| | - Muna Raddad
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Tasneem Ghneem
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Tasneem Sawalhi
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Motasem Almasri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P400, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P400, Palestine
| | - Giuseppe Misia
- Department of Chemical and Pharmaceutical Sciences, Universitá degli Studi di Trieste, Trieste, 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, Universitá degli Studi di Trieste, Trieste, 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20014, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20014, Spain
| |
Collapse
|
52
|
Abraham WL, Demirci S, Wypyski MS, Ayyala RS, Bhethanabotla VR, Lawson LB, Sahiner N. Biofilm inhibition and bacterial eradication by C-dots derived from polyethyleneimine-citric acid. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Chiou YR, Lin CJ, Harroun SG, Chen YR, Chang L, Wu AT, Chang FC, Lin YW, Lin HJ, Anand A, Unnikrishnan B, Nain A, Huang CC. Aminoglycoside-mimicking carbonized polymer dots for bacteremia treatment. NANOSCALE 2022; 14:11719-11730. [PMID: 35913451 DOI: 10.1039/d2nr01959k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteremia and associated bacterial sepsis are potentially fatal and occur when the host response to microbial invasion is impaired or compromised. This motivated us to develop carbonized polymer dots (CPDsMan/AA) from a mixture of mannose (Man) and positively charged amino acids [AAs; lysine, arginine (Arg), or histidine] through a one-step mild pyrolysis procedure, which effectively inhibited drug-resistant bacterial strains isolated from septic patients. The as-prepared CPDsMan/AA showed broad-spectrum antibacterial activity, including multidrug-resistant bacteria, even in human plasma. The minimal inhibitory concentration of CPDsMan/Arg is ca. 1.0 μg mL-1, which is comparable to or lower than those of other tested antibiotics (e.g., ampicillin, gentamicin, and vancomycin). In addition to directly disrupting bacterial membranes, the CPDsMan/Arg feature a structure similar to aminoglycoside antibiotics that could bind to 16S rRNA, thereby blocking bacterial protein synthesis. In vitro cytotoxic and hemolytic assays demonstrated the high biocompatibility of the CPDsMan/AA. In addition, in vivo studies on methicillin-resistant Staphylococcus aureus-infected mice treated with the CPDsMan/Arg showed a significant decrease in mortality-even better than that of antibiotics. Overall, the synthesis of the CPDsMan/AA is cost-efficient, straightforward, and effective for treating bacteremia. The polymeric features of the CPDsMan/Arg, including cationic charges and specific groups, can be recognized as a safe and broad-spectrum biocide to lessen our reliance on antibiotics to treat systemic bacterial infections in the future.
Collapse
Affiliation(s)
- Yi-Ru Chiou
- Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Yi-Ru Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan
| | - An-Tai Wu
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Fu-Chieh Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei 11260, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
54
|
An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater 2022; 146:107-118. [PMID: 35545186 DOI: 10.1016/j.actbio.2022.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.
Collapse
|
55
|
Huang L, Liu M, Feng Z, Xu X, Chen L, Ma Z, Li L. Biocompatible tellurium nanoneedles with long-term stable antibacterial activity for accelerated wound healing. Mater Today Bio 2022; 15:100271. [PMID: 35572856 PMCID: PMC9097717 DOI: 10.1016/j.mtbio.2022.100271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
Tellurium (Te) nanomaterials (NMs) have emerged as a new antibacterial candidate to respond to the complex global health challenge of bacterial resistance. Herein, Te nanoneedles (NNs) that act both chemically and physically on bacteria are synthesized by a facile method using Na2TeO3, urea and glucose. It is found that the prepared Te NNs have a strong affinity to the cell membrane of bacteria and subsequently promote the generation of reactive oxygen species (ROS) in bacteria, resulting in an excellent antibacterial effect toward Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). What's more, this needle-like morphology also can physically damage the bacterial cell membranes. The Te NNs per se are inert in mammalian cells to produce ROS at a proper concentration, indicating considerable biocompatibility of this material. As a proof-of-concept, the antibacterial Te NNs were used as an anti-inflammatory reagent for promoting bacteria-infected wound healing in vivo, during which Te NNs caused no evident side effects to major organs in mice. Additionally, the antibacterial activity is maintained in the presence of surface oxidation of Te NNs after long-term dispersion in phosphate buffered saline solution. The needle-like Te NMs with long-term antibacterial stability and good biocompatibility have great potential for the treatment of associated infectious diseases.
Collapse
|
56
|
Liu T, Pang Q, Mai K, He X, Xu L, Zhou F, Liu Y. Silver nanoparticle@carbon quantum dot composite as an antibacterial agent. RSC Adv 2022; 12:9621-9627. [PMID: 35424924 PMCID: PMC8959443 DOI: 10.1039/d2ra00561a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
A AgNPs@S,N-CQDs composite was synthesized by a one-step approach. It possessed AgNPs naturally surrounded by S,N-CQDs, and the size of the particles was found to be uniform and stable via a series of characterization methods. The antibacterial properties of the composite material were studied, and it had good antibacterial properties against S. aureus, E. coli, MRSA and C. albicans. The minimum inhibitory concentrations were 63 μg mL-1 against S. aureus and MRSA and 32 μg mL-1 against E. coli and C. albicans. In addition, the AgNPs@S,N-CQDs composite had an antibacterial effect via the generation of ROS, which was verified using the DCFH-DA kit. Finally, HepG2 cells were used to study its biocompatibility. The antibacterial properties and biocompatibility results show that the AgNPs@S,N-CQDs composite material can serve as a promising antibacterial agent.
Collapse
Affiliation(s)
- Tianyu Liu
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Qianyue Pang
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Kang Mai
- Zhongshan Carefor Daily Necessities Ltd Zhongshan 528000 China
| | - Xiaoting He
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Li Xu
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 China
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Feiyan Zhou
- Guangzhou Baiyunshan Weiyi Industrial Co., Ltd Guangzhou 510000 China
| | - Yi Liu
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 China
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| |
Collapse
|
57
|
Dhamodharan D, Byun HS, Varsha Shree M, Veeman D, Natrayan L, Stalin B. Carbon Nanodots: Synthesis, Mechanisms for Bio-electrical Applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
58
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
59
|
Sviridova E, Barras A, Addad A, Plotnikov E, Di Martino A, Deresmes D, Nikiforova K, Trusova M, Szunerits S, Guselnikova O, Postnikov P, Boukherroub R. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. BIOMATERIALS ADVANCES 2022; 134:112697. [PMID: 35581073 DOI: 10.1016/j.msec.2022.112697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL-1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL-1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL-1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.
Collapse
Affiliation(s)
- Elizaveta Sviridova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France
| | - Ahmed Addad
- Univ. Lille, CNRS, UMR 8207 - UMET, F-59000 Lille, France
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Antonio Di Martino
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Dominique Deresmes
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France
| | - Ksenia Nikiforova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Marina Trusova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation; Department of Solid-State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France.
| |
Collapse
|
60
|
Kim A, Hak Kim J, Patel R. Modification strategies of membranes with enhanced Anti-biofouling properties for wastewater Treatment: A review. BIORESOURCE TECHNOLOGY 2022; 345:126501. [PMID: 34890816 DOI: 10.1016/j.biortech.2021.126501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 05/26/2023]
Abstract
This review addresses composite membranes used for wastewater treatment, focusing heavily on the anti-biofouling properties of such membranes. Biofouling caused by the development of a thick biofilm on the membrane surface is a major issue that reduces water permeance and reduces its lifetime. Biofilm formation and adhesion are mitigated by modifying membranes with two-dimensional or zero-dimensional carbon-based nanomaterials or their modified substituents. In particular, nanomaterials based on graphene, including graphene oxide and carbon quantum dots, are mainly used as nanofillers in the membrane. Functionalization of the nanofillers with various organic ligands or compositing the nanofiller with other materials, such as silver nanoparticles, enhances the bactericidal ability of composite membranes. Moreover, such membrane modifications reduce biofilm adhesion while increasing water permeance and salt/dye rejection. This review discusses the recent literature on developing graphene oxide-based and carbon quantum dot-based composite membranes for biofouling-resistant wastewater treatment.
Collapse
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York City, NY 10003, USA
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21983, South Korea.
| |
Collapse
|
61
|
Havrdová M, Urbančič I, Tománková KB, Malina L, Poláková K, Štrancar J, Bourlinos AB. Intracellular Trafficking of Cationic Carbon Dots in Cancer Cell Lines MCF-7 and HeLa-Time Lapse Microscopy, Concentration-Dependent Uptake, Viability, DNA Damage, and Cell Cycle Profile. Int J Mol Sci 2022; 23:1077. [PMID: 35162996 PMCID: PMC8835431 DOI: 10.3390/ijms23031077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translational Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translational Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Poláková
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
62
|
Zhao C, Wang X, Yu L, Wu L, Hao X, Liu Q, Lin L, Huang Z, Ruan Z, Weng S, Liu A, Lin X. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria. Acta Biomater 2022; 138:528-544. [PMID: 34775123 DOI: 10.1016/j.actbio.2021.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/10/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Bacterial resistance to antibiotics have become one of the most severe threats in global public health, so the development of new-style antimicrobial agents is urgent. In this work, quaternized carbon quantum dots (qCQDs) with broad-spectrum antibacterial activity were synthesized by a simple green "one-pot" method using dimethyl diallyl ammonium chloride and glucose as reaction precursors. The qCQDs displayed satisfactory antibacterial activity against both Gram-positive and gram-negative bacteria. In rat models of wounds infected with mixed bacteria, qCQDs obviously restored the weight of rats, significantly reduced the death of rats from severe infection, and promoted the recovery and healing of infected wounds. Biosafety tests confirmed that qCQDs had no obvious toxic and side effects during the testing stage. The analysis of quantitative proteomics revealed that qCQDs mainly acted on ribosomal proteins in Staphylococcus aureus (Gram-positive bacteria) and significantly down-regulated proteins associated with citrate cycle in Escherichia coli (Gram-negative bacteria). Meanwhile, real-time quantitative PCR confirmed that the variation trend of genes corresponding to the proteins associated with ribosome and citrate cycle was consistent with the proteomic results after treatment of qCQDs, suggesting that qCQDs has a new antibacterial mechanism which is different from the reported carbon quantum dots with antibacterial action. STATEMENT OF SIGNIFICANCE: With the development of the research on carbon quantum dots, the application of carbon quantum dots in the field of medicine has attracted extensive attention. In this paper, quaternized carbon quantum dots (qCQDs) with antimicrobial activity prepared by specific methods were studied, including antimicrobial spectrum, antimicrobial mechanism and in vivo antimicrobial application. The antimicrobial mechanism of qCQDs was studied by proteomics and RT-qRCR, and the different mechanisms of qCQDs against Gram-positive and Gram-negative bacteria were also found. This study provides a research foundation for the application of carbon quantum dots in antimicrobial field, and also expands the application range of carbon quantum dots in medicine field.
Collapse
Affiliation(s)
- Chengfei Zhao
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian, 351100, China
| | - Xuewen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Luying Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lina Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoli Hao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Qicai Liu
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Zhipeng Ruan
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian, 351100, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
63
|
Wu L, Gao Y, Zhao C, Huang D, Chen W, Lin X, Liu A, Lin L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112608. [DOI: 10.1016/j.msec.2021.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
64
|
Deng L, Lu H, Tu C, Zhou T, Cao W, Gao C. A tough synthetic hydrogel with excellent post-loading of drugs for promoting the healing of infected wounds in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112577. [PMID: 35525747 DOI: 10.1016/j.msec.2021.112577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infection is a major obstacle to the wound healing process. The hydrogel dressings with a simpler structure and good antibacterial and wound healing performance are appealing for clinical application. Herein, a robust hydrogel was synthesized from acrylamide (AM), acrylic acid (AA) and N,N'-methylene diacrylamide (MBA) via a redox initiating polymerization. The polymerization conditions were optimized to obtain the hydrogel with minimum unreacted monomers, which were 0.25% and 0.12% for AM and AA, respectively. The hydrogel had good mechanical strength, and could effectively resist damage by external forces and maintain a good macroscopic shape. It showed large water uptake capacity, and could post load a wide range of molecules via hydrogen bonding and electrostatic interaction. Loading of antibiotic doxycycline (DOX) enabled the hydrogel with good antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria in vitro and in vivo. In a rat model of methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect wound, the DOX-loaded hydrogel showed good therapeutic effect. It could significantly promote the wound closure, increased the collagen coverage area, down-regulate the expressions of pro-inflammatory TNF-α and IL-1β factors, and up-regulate the expressions of anti-inflammatory IL-4 factor and CD31 neovascularization factor.
Collapse
Affiliation(s)
- Liwen Deng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huidan Lu
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China
| | - Chenxi Tu
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
65
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
66
|
Wu Y, Li C, van der Mei HC, Busscher HJ, Ren Y. Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics (Basel) 2021; 10:623. [PMID: 34073750 PMCID: PMC8225221 DOI: 10.3390/antibiotics10060623] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles possess unique features due to their small size and can be composed of different surface chemistries. Carbon quantum dots possess several unique physico-chemical and antibacterial activities. This review provides an overview of different methods to prepare carbon quantum dots from different carbon sources in order to provide guidelines for choosing methods and carbon sources that yield carbon quantum dots with optimal antibacterial efficacy. Antibacterial activities of carbon quantum dots predominantly involve cell wall damage and disruption of the matrix of infectious biofilms through reactive oxygen species (ROS) generation to cause dispersal of infecting pathogens that enhance their susceptibility to antibiotics. Quaternized carbon quantum dots from organic carbon sources have been found to be equally efficacious for controlling wound infection and pneumonia in rodents as antibiotics. Carbon quantum dots derived through heating of natural carbon sources can inherit properties that resemble those of the carbon sources they are derived from. This makes antibiotics, medicinal herbs and plants or probiotic bacteria ideal sources for the synthesis of antibacterial carbon quantum dots. Importantly, carbon quantum dots have been suggested to yield a lower chance of inducing bacterial resistance than antibiotics, making carbon quantum dots attractive for large scale clinical use.
Collapse
Affiliation(s)
- Yanyan Wu
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou 215123, China
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|