51
|
Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020; 5:biomimetics5040049. [PMID: 33050136 PMCID: PMC7709492 DOI: 10.3390/biomimetics5040049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches appear nowadays highly promising for the regeneration of injured/diseased tissues. Biomimetic scaffolds are continuously been developed to act as structural support for cell growth and proliferation as well as for the delivery of cells able to be differentiated, and also of bioactive molecules like growth factors and even signaling cues. The current research concerns materials employed to develop biological scaffolds with improved features as well as complex preparation techniques. In this work, hybrid systems based on natural polymers are discussed and the efforts focused to provide new polymers able to mimic proteins and DNA are extensively explained. Progress on the scaffold fabrication technique is mentioned, those processes based on solution and melt electrospinning or even on their combination being mainly discussed. Selection of the appropriate hybrid technology becomes vital to get optimal architecture to reasonably accomplish the final applications. Representative examples of the recent possibilities on tissue regeneration are finally given.
Collapse
Affiliation(s)
- Omid Yousefzade
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bedukidze Univesity Campus, Tbilisi 0131, Georgia;
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-401-5649
| |
Collapse
|
52
|
Chen S, McCarthy A, John JV, Su Y, Xie J. Converting 2D Nanofiber Membranes to 3D Hierarchical Assemblies with Structural and Compositional Gradients Regulates Cell Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003754. [PMID: 32944991 PMCID: PMC7606784 DOI: 10.1002/adma.202003754] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Indexed: 05/24/2023]
Abstract
New methods are described for converting 2D electrospun nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients. Pore-size gradients are generated by tuning the expansion of 2D membranes in different layers with incorporation of various amounts of a surfactant during the gas-foaming process. The gradient in fiber organizations is formed by expanding 2D nanofiber membranes composed of multiple regions collected by varying rotating speeds of mandrel. A compositional gradient on 3D assemblies consisting of radially aligned nanofibers is prepared by dripping, diffusion, and crosslinking. Bone mesenchymal stem cells (BMSCs) on the 3D nanofiber assemblies with smaller pore size show significantly higher expression of hypoxia-related markers and enhanced chondrogenic differentiation compared to BMSCs cultured on the assemblies with larger pore size. The basic fibroblast growth factor gradient can accelerate fibroblast migration from the surrounding area to the center in an in vitro wound healing model. Taken together, 3D nanofiber assemblies with gradients in pore sizes, fiber organizations, and contents of signaling molecules can be used to engineer tissue constructs for tissue repair and build biomimetic disease models for studying disease biology and screening drugs, in particular, for interface tissue engineering and modeling.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
53
|
Nadine S, Patrício SG, Barrias CC, Choi IS, Matsusaki M, Correia CR, Mano JF. Geometrically Controlled Liquefied Capsules for Modular Tissue Engineering Strategies. ACTA ACUST UNITED AC 2020; 4:e2000127. [DOI: 10.1002/adbi.202000127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Nadine
- Department of Chemistry CICECO – Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Sónia G. Patrício
- Department of Chemistry CICECO – Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Cristina C. Barrias
- i3S, Instituto De Investigação e Inovação Em Saúde Universidade Do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- INEB, Instituto De Engenharia Biomédica Universidade Do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- ICBAS, Instituto De Ciências Biomédicas Abel Salazar Universidade Do Porto Rua De Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry, KAIST Daejeon 34141 South Korea
| | - Michiya Matsusaki
- Division of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Clara R. Correia
- Department of Chemistry CICECO – Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of Chemistry CICECO – Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
54
|
Câmara DAD, Shibli JA, Müller EA, De-Sá-Junior PL, Porcacchia AS, Blay A, Lizier NF. Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3210. [PMID: 32708508 PMCID: PMC7420246 DOI: 10.3390/ma13143210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be "immune privileged" since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful.
Collapse
Affiliation(s)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., Jundiaí 13212-213, Brazil;
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07040-170, Brazil;
| | - Eduardo Alexandre Müller
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07040-170, Brazil;
| | | | - Allan Saj Porcacchia
- Department of Psychobiology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., Jundiaí 13212-213, Brazil;
| | - Nelson Foresto Lizier
- Nicell-Pesquisa e Desenvolvimento Científico LTDA, São Paulo 04006-000, Brazil;
- Department of Psychobiology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| |
Collapse
|
55
|
Neacsu IA, Serban AP, Nicoara AI, Trusca R, Ene VL, Iordache F. Biomimetic Composite Scaffold Based on Naturally Derived Biomaterials. Polymers (Basel) 2020; 12:E1161. [PMID: 32438578 PMCID: PMC7284724 DOI: 10.3390/polym12051161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
This paper proposes the development of a biomimetic composite based on naturally derived biomaterials. This freeze-dried scaffold contains a microwave-synthesized form of biomimetic hydroxyapatite (HAp), using the interwoven hierarchical structure of eggshell membrane (ESM) as bio-template. The bone regeneration capacity of the scaffold is enhanced with the help of added tricalcium phosphate from bovine Bone ash (BA). With the addition of Gelatin (Gel) and Chitosan (CS) as organic matrix, the obtained composite is characterized by the ability to stimulate the cellular response and might accelerate the bone healing process. Structural characterization of the synthesized HAp (ESM) confirms the presence of both hydroxyapatite and monetite phases, in accordance with the spectroscopy results on the ESM before and after the microwave thermal treatment (the presence of phosphate group). Morphology studies on all individual components and final scaffold, highlight their morphology and porous structure, characteristics that influence the biocompatibility of the scaffold. Porosity, swelling rate and the in vitro cytotoxicity assays performed on amniotic fluid stem cells (AFSC), demonstrate the effective biocompatibility of the obtained materials. The experimental results presented in this paper highlight an original biocomposite scaffold obtained from naturally derived materials, in a nontoxic manner.
Collapse
Affiliation(s)
- Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (A.I.N.); (V.L.E.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Adriana Petruta Serban
- Department of Chemical Thermodynamics, “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania
| | - Adrian Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (A.I.N.); (V.L.E.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Roxana Trusca
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Vladimir Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (A.I.N.); (V.L.E.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Florin Iordache
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania;
| |
Collapse
|
56
|
Freeman FE, Brennan MÁ, Browe DC, Renaud A, De Lima J, Kelly DJ, McNamara LM, Layrolle P. A Developmental Engineering-Based Approach to Bone Repair: Endochondral Priming Enhances Vascularization and New Bone Formation in a Critical Size Defect. Front Bioeng Biotechnol 2020; 8:230. [PMID: 32296687 PMCID: PMC7137087 DOI: 10.3389/fbioe.2020.00230] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
There is a distinct clinical need for new therapies that provide an effective treatment for large bone defect repair. Herein we describe a developmental approach, whereby constructs are primed to mimic certain aspects of bone formation that occur during embryogenesis. Specifically, we directly compared the bone healing potential of unprimed, intramembranous, and endochondral primed MSC-laden polycaprolactone (PCL) scaffolds. To generate intramembranous constructs, MSC-seeded PCL scaffolds were exposed to osteogenic growth factors, while endochondral constructs were exposed to chondrogenic growth factors to generate a cartilage template. Eight weeks after implantation into a cranial critical sized defect in mice, there were significantly more vessels present throughout defects treated with endochondral constructs compared to intramembranous constructs. Furthermore, 33 and 50% of the animals treated with the intramembranous and endochondral constructs respectively, had full bone union along the sagittal suture line, with significantly higher levels of bone healing than the unprimed group. Having demonstrated the potential of endochondral priming but recognizing that only 50% of animals completely healed after 8 weeks, we next sought to examine if we could further accelerate the bone healing capacity of the constructs by pre-vascularizing them in vitro prior to implantation. The addition of endothelial cells alone significantly reduced the healing capacity of the constructs. The addition of a co-culture of endothelial cells and MSCs had no benefit to either the vascularization or mineralization potential of the scaffolds. Together, these results demonstrate that endochondral priming alone is enough to induce vascularization and subsequent mineralization in a critical-size defect.
Collapse
Affiliation(s)
- Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Meadhbh Á Brennan
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David C Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Audrey Renaud
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Julien De Lima
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| |
Collapse
|