51
|
Valenzuela-Salas LM, Girón-Vázquez NG, García-Ramos JC, Torres-Bugarín O, Gómez C, Pestryakov A, Villarreal-Gómez LJ, Toledano-Magaña Y, Bogdanchikova N. Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4528241. [PMID: 31428226 PMCID: PMC6683800 DOI: 10.1155/2019/4528241] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated with polyvinylpyrrolidone (PVP), and have an average size of 35 ± 15 nm and a metallic silver content of 1.2% wt. Main changes on cell viability, induction of apoptosis and necrosis, and ROS generation were found on B16-F10 cells after six hours of exposure to AgNPs (IC50 = 4.2 μg/mL) or Cisplatin (IC50 = 2.0 μg/mL). Despite the similar response for both AgNPs and Cisplatin on antiproliferative potency (cellular viability of 53.95 ± 1.88 and 53.62 ± 1.04) and ROS production (20.27 ± 1.09% and 19.50 ± 0.35%), significantly different cell death pathways were triggered. While AgNPs induce only apoptosis (45.98 ± 1.88%), Cisplatin induces apoptosis and necrosis at the same rate (22.31 ± 1.72% and 24.07 ± 1.10%, respectively). In addition to their antiproliferative activity, in vivo experiments showed that treatments of 3, 6, and 12 mg/kg of AgNPs elicit a survival rate almost 4 times higher (P < 0.05) compared with the survival rate obtained with Cisplatin (2 mg/kg). Furthermore, the survivor mice treated with AgNPs do not show genotoxic damage determined by micronuclei frequency quantification on peripheral blood cells. These results exhibit the remarkable antitumour activity of a nongenotoxic AgNP formulation and constitute the first advance toward the application of these AgNPs for melanoma treatment, which could considerably reduce adverse effects provoked by currently applied chemotherapeutics.
Collapse
Affiliation(s)
- Lucía M. Valenzuela-Salas
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Nayeli G. Girón-Vázquez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Juan C. García-Ramos
- Departamento de Fisicoquímica de Nanomateriales, CONACyT-UNAM-CNyN, Ensenada, Baja California, Mexico
| | - Olivia Torres-Bugarín
- Programa Internacional de Medicina, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| | - Claudia Gómez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, Tomsk, Russia
| | - Luis J. Villarreal-Gómez
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Departamento de Fisicoquímica de Nanomateriales, CONACyT-UNAM-CNyN, Ensenada, Baja California, Mexico
| | - Nina Bogdanchikova
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| |
Collapse
|
52
|
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res 2019; 264:22-31. [PMID: 30794895 PMCID: PMC7114681 DOI: 10.1016/j.virusres.2019.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Emerging viruses are a major threat to human health. Recent outbreaks have emphasized the urgent need for new antiviral treatments. For several pathogenic viruses, considerable efforts have focused on vaccine development. However, during epidemics infected individuals need to be treated urgently. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics. Repurposed drugs can bypass part of the early cost and time needed for validation and authorization. In this review we describe recent efforts to find broad spectrum antivirals through drug repurposing. We have chosen several candidates and propose strategies to understand their mechanism of action and to determine how resistance to antivirals develops in infected cells.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| | - Beatriz Pacheco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
53
|
Castro-Gamboa S, Garcia-Garcia MR, Piñon-Zarate G, Rojas-Lemus M, Jarquin-Yañez K, Angel Herrera-Enriquez M, Fortoul TI, Toledano-Magaña Y, Garcia-Iglesias T, Pestryakov A, Eliu Castell-Rodriguez A, Bogdanchikova N. Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype. J Immunotoxicol 2019; 16:54-62. [PMID: 30938211 DOI: 10.1080/1547691x.2019.1584652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Silver nanoparticles (AgNP) are one of the most studied nanoparticles due to their anti-bacterial, -fungal, -viral, -parasitic, and -inflammatory properties. This raises the need to evaluate the toxicity and biological effects of AgNP in the immune system in order to develop new safer biomedical products. In this study, an AgNP formulation currently approved for veterinary applications was applied to mouse bone marrow-derived dendritic cells (BMDC), considered important antigen-presenting cells of the immune system, to evaluate cytotoxicity, genotoxicity, and any significant influence on expression of cellular markers associated with BMDC phenotype and maturation status. The results showed that after 12 h of AgNP exposure, a significant decrease in BMDC viability occurred at the highest concentration tested (1.0 µg AgNP/ml) and at lower doses, the cells maintained membrane integrity and metabolic activity. DNA damage was not significant with any AgNP level aside from the 1.0 µg AgNP/ml level. Regarding phenotype, no differences in expression of CD40 (co-stimulatory molecule highly present in mature BMDC) or in CD273 (a marker for inhibitory T-cell response) were observed. The current results showed that the toxicity of this AgNP formulation was dose-related. The findings also suggest BMDC could maintain structural conservation of co-stimulatory/co-inhibitory surface molecules after 12 h of exposure to this AgNP. This work represents the first step in identifying the toxic effects of this AgNP formulation on dendritic cells.
Collapse
Affiliation(s)
- Sandra Castro-Gamboa
- Department of Physiology, University Center of Health Sciences (CUCS), University of Guadalajara, Jalisco, Mexico.,Department of Health Sciences, Los Altos University Center (CUAltos), University of Guadalajara, Tepatitlan de Morelos, Jalisco, Mexico
| | - Maritza Roxana Garcia-Garcia
- Department of Health Sciences, Los Altos University Center (CUAltos), University of Guadalajara, Tepatitlan de Morelos, Jalisco, Mexico.,International Program of Medicine, Autonomous University of Guadalajara (UAG), Guadalajara, Jalisco, Mexico
| | - Gabriela Piñon-Zarate
- Department of Cell and Tissue Biology, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Marcela Rojas-Lemus
- Department of Cell and Tissue Biology, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Katia Jarquin-Yañez
- Department of Cell and Tissue Biology, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Miguel Angel Herrera-Enriquez
- Department of Cell and Tissue Biology, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Teresa I Fortoul
- Department of Cell and Tissue Biology, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Trinidad Garcia-Iglesias
- Department of Physiology, University Center of Health Sciences (CUCS), University of Guadalajara, Jalisco, Mexico
| | | | | | - Nina Bogdanchikova
- Department of Physical Chemistry, Center of Nanoscience and Nanotechnology, Ensenada B.C., Mexico
| |
Collapse
|
54
|
Bilal M, Zhao Y, Rasheed T, Ahmed I, Hassan STS, Nawaz MZ, Iqbal HMN. Biogenic Nanoparticle‒Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:598. [PMID: 30791374 PMCID: PMC6406235 DOI: 10.3390/ijerph16040598] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 02/05/2023]
Abstract
In the 21st century, with ever-increasing consciousness and social awareness, researchers must tackle the microbial infections that pose a major threat to human safety. For many reasons, the emergence/re-emergence of threatening pathogens has increased and poses a serious challenge to health care services. Considering the changing dynamics of 21st-century materials with medical potentialities, the integration of bioactive agents into materials to engineer antibacterial matrices has received limited attention so far. Thus, antimicrobial active conjugates are considered potential candidates to eradicate infections and reduce microbial contaminations in healthcare facilities. In this context, eco-friendly and novel conjugates with antimicrobial, antibiofilm, and anticancer potentialities were developed using biogenic silver nanoparticles (AgNPs) from Convolvulus arvensis (C. arvensis) extract and chitosan (CHI). A range of instrumental and imaging tools, i.e., UV-Vis and FTIR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), and X-ray diffraction (XRD), were employed to characterize the freshly extracted C. arvensis AgNPs. Biogenic AgNPs obtained after a 24-h reaction period were used to engineer CHI-based conjugates and designated as CHI‒AgNPs1 to CHI‒AgNPs5, subject to the C. arvensis AgNPs concentration. After the stipulated loading period, 92% loading efficiency (LE) was recorded for a CHI‒AgNPs3 conjugate. Gram+ and Gram- bacterial isolates, i.e., Staphylococcus aureus, and Escherichia coli, were used to test the antibacterial activities of newly developed CHI‒AgNPs conjugates. In comparison to the control sample with bacterial cell count 1.5 × 10⁸ CFU/mL, a notable reduction in the log values was recorded for the CHI‒AgNPs3 conjugate. The antibiofilm potential of CHI‒AgNPs conjugates was tested against Pseudomonas aeruginosa. Moreover, the CHI‒AgNPs3 conjugate also showed substantial cytotoxicity against the MCF-7 (breast cancer) cell line. In summary, the newly engineered CHI‒AgNPs conjugates with antibacterial, antibiofilm, and anticancer potentialities are potential candidate materials for biomedical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Muhammad Zohaib Nawaz
- Department of Computer Science, Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
55
|
Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses 2019; 11:v11010035. [PMID: 30625992 PMCID: PMC6356211 DOI: 10.3390/v11010035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution and are a constant threat, not only for public health but also for wildlife, domestic animals, and even plants. To study disease pathogenesis and to develop efficient and safe therapies, the use of an appropriate animal model is a critical concern. Adult mice with gene knockouts of the interferon α/β (IFN-α/β) receptor (IFNAR(-/-)) have been described as a model of arbovirus infections. Studies with the natural hosts of these viruses are limited by financial and ethical issues, and in some cases, the need to have facilities with a biosafety level 3 with sufficient space to accommodate large animals. Moreover, the number of animals in the experiments must provide results with statistical significance. Recent advances in animal models in the last decade among other gaps in knowledge have contributed to the better understanding of arbovirus infections. A tremendous advantage of the IFNAR(-/-) mouse model is the availability of a wide variety of reagents that can be used to study many aspects of the immune response to the virus. Although extrapolation of findings in mice to natural hosts must be done with care due to differences in the biology between mouse and humans, experimental infections of IFNAR(-/-) mice with several studied arboviruses closely mimics hallmarks of these viruses in their natural host. Therefore, IFNAR(-/-) mice are a good model to facilitate studies on arbovirus transmission, pathogenesis, virulence, and the protective efficacy of new vaccines. In this review article, the most important arboviruses that have been studied using the IFNAR(-/-) mouse model will be reviewed.
Collapse
|
56
|
Ochoa-Meza AR, Álvarez-Sánchez AR, Romo-Quiñonez CR, Barraza A, Magallón-Barajas FJ, Chávez-Sánchez A, García-Ramos JC, Toledano-Magaña Y, Bogdanchikova N, Pestryakov A, Mejía-Ruiz CH. Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1083-1089. [PMID: 30389645 DOI: 10.1016/j.fsi.2018.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 05/19/2023]
Abstract
The global aquaculture has shown an impressive growth in the last decades contributing with a major part of total food fish supply. However, it also helps in the spread of diseases that in turn, causes great economic losses. The White Spot Syndrome Virus (WSSV) is one of the major viral pathogen for the shrimp aquaculture industry. Several attempts to eliminate the virus in the shrimp have been addressed without achieving a long-term effectiveness. In this work, we determine the capacity of the commercial non-toxic PVP-coated silver nanoparticles to promote the response of the immune system of WSSV-infected shrimps with or without an excess of iron ions. Our results showed that a single dose of metallic silver in the nanomolar range (111 nmol/shrimp), which is equivalent to 12 ng/mL of silver nanoparticles, produces 20% survival of treated infected shrimps. The same concentration administered in healthy shrimps do not show histological evidence of damage. The observed survival rate could be associated with the increase of almost 2-fold of LGBP expression levels compared with non-treated infected shrimps. LGBP is a key gene of shrimp immunological response and its up-regulation is most probably induced by the recognition of silver nanoparticles coating by specific pathogen-associated molecular pattern recognition proteins (PAMPs) of shrimp. Increased LGBP expression levels was observed even with a 10-fold lower dose of silver nanoparticles (1.2 ng/shrimp, 0.011 nmol of metallic silver/shrimp). The increase in LGBP expression levels was also observed even in the presence of iron ion excess, a condition that favors virus proliferation. Those results showed that a single dose of a slight amount of silver nanoparticles were capable to enhance the response of shrimp immune system without toxic effects in healthy shrimps. This response could be enhanced by administration of other doses and might represent an important alternative for the treatment of a disease that has still no cure, white spot syndrome virus.
Collapse
Affiliation(s)
| | - Ana R Álvarez-Sánchez
- Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo, Los Ríos, Ecuador
| | - Carlos R Romo-Quiñonez
- Centro de Investigaciones Biológicas del Noroeste, S. C. Calle IPN#195, 23060, La Paz, B.C.S, Mexico
| | - Aarón Barraza
- CONACyT-CIBNOR, Calle IPN#195, 23060, La Paz, B.C.S, Mexico
| | | | | | - Juan Carlos García-Ramos
- CONACyT-UNAM- Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, 22860, Ensenada, Mexico
| | - Yanis Toledano-Magaña
- CONACyT-UNAM- Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, 22860, Ensenada, Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, 22860, Ensenada, Mexico
| | - Alexey Pestryakov
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russia
| | | |
Collapse
|
57
|
Adeeyo AO, Odiyo JO. Biogenic Synthesis of Silver Nanoparticle from Mushroom Exopolysaccharides and its Potentials in Water Purification. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874842201805010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:This study reports a novel eco-friendly biosynthesis of Silver Nanoparticles (AgNPs) from Exopolysaccharides (EPS) ofLentinus edodesafter an attempt to optimise the production of EPS through mutagenesis. It further describes some potential application of silver nanoparticles in water treatment.Methods:A wild strain ofL. edodeswas subjected to UV irradiation, a physical mutagen, at 254 nm. The wild and resultant irradiated strains were then assessed for the production of EPS and subsequent application of the crude EPSs for biosynthesis of AgNPs. The particles were characterised by colour pattern and UV-visible spectroscopy. Based on superior EPS production and nanoparticle attributes, nanoparticles obtained from UV irradiated process were further subjected to Scanning Electron Microscopy (SEM). EPS produced was quantified by the phenol-sulphuric acid method and studied by GC-MS.Results:Results obtained for EPS productivity indicated the presence of monomer sugars such as arabinose (50.65%), mannose (19.20%), mannitol (15.58%), fructose (7.96%), trehalose (6.49%), and glucuronic acid, xylose, galactose and glucose with low percentages of ≤ 0.11. EPS productivity of wild and mutant strains was obtained as 1.044 and 2.783 mg/ml, respectively, after 7 days of fermentation. The result of EPS production for UV irradiated strain corresponds to a yield improvement of 2.7 fold of the wild-type. UV Spectroscopy and SEM analysis studies on EPS nanoparticle product of the improved (UV irradiated) strain indicated the formation of AgNPs at the absorption band of 421 nm with a size range of 50-100 nm.Conclusion:This study, which aimed at eco-friendly synthesis of myco-nanoparticle has established the novel ability ofL. edodes’polysaccharide in silver nanoparticles biosynthesis. It expounded potential frontiers of silver nanoparticles application in the water industry. To the best of the authors’ knowledge, this result represents the first report on the biosynthesis of AgNPs usingL. edode’sEPS.
Collapse
|
58
|
El-Mohamady RS, Ghattas TA, Zawrah MF, Abd El-Hafeiz YGM. Inhibitory effect of silver nanoparticles on bovine herpesvirus-1. Int J Vet Sci Med 2018; 6:296-300. [PMID: 30564612 PMCID: PMC6286414 DOI: 10.1016/j.ijvsm.2018.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Rania S El-Mohamady
- Animal Reproduction Research Institute, Agriculture Research Center, 12556 Haram, Giza, Egypt
| | - T A Ghattas
- Animal Reproduction Research Institute, Agriculture Research Center, 12556 Haram, Giza, Egypt
| | - M F Zawrah
- National Research Center, Ceramics, Refractories and Building Materials Department, 12622-Dokki, Giza, Egypt
| | - Y G M Abd El-Hafeiz
- Animal Reproduction Research Institute, Agriculture Research Center, 12556 Haram, Giza, Egypt
| |
Collapse
|
59
|
Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:115-126. [DOI: 10.1080/21691401.2017.1414825] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prateek Mathur
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - Swati Jha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - Suman Ramteke
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - N. K. Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| |
Collapse
|
60
|
Bello-Bello JJ, Chavez-Santoscoy RA, Lecona-Guzmán CA, Bogdanchikova N, Salinas-Ruíz J, Gómez-Merino FC, Pestryakov A. Hormetic Response by Silver Nanoparticles on In Vitro Multiplication of Sugarcane ( Saccharum spp. Cv. Mex 69-290) Using a Temporary Immersion System. Dose Response 2017; 15:1559325817744945. [PMID: 29238274 PMCID: PMC5721974 DOI: 10.1177/1559325817744945] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Hormesis is considered a dose–response phenomenon characterized by growth stimulation at low doses and inhibition at high doses. The hormetic response by silver nanoparticles (AgNPs) on in vitro multiplication of sugarcane was evaluated using a temporary immersion system. Methods: Sugarcane shoots were used as explants cultured in Murashige and Skoog medium with AgNPs at concentrations of 0, 25, 50, 100, and 200 mg/L. Shoot multiplication rate and length were used to determine hormetic response. Total content of phenolic compounds of sugarcane, mineral nutrition, and reactive oxygen species (ROS) was determined. Results: Results were presented as a dose–response curve. Stimulation phase growth was observed at 50 mg/L AgNPs, whereas inhibition phase was detected at 200 mg/L AgNPs. Mineral nutrient analysis showed changes in macronutrient and micronutrient contents due to the effect of AgNPs. Moreover, AgNPs induced ROS production and increased total phenolic content, with a dose-dependent effect. Conclusion: Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNP-induced hormesis and that phenolic accumulation was obtained as a response of the plant to stress produced by high doses of AgNPs. Therefore, small doses of AgNPs in the culture medium could be an efficient strategy for commercial micropropagation.
Collapse
Affiliation(s)
- Jericó J Bello-Bello
- CONACYT-Campus Córdoba-Colegio de Postgraduados, Amatlán de los Reyes, Veracruz, Mexico
| | - Rocío A Chavez-Santoscoy
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana, Baja California, Mexico
| | - Carlos A Lecona-Guzmán
- Laboratorio de Biotecnología Vegetal, Instituto Tecnológico de Tuxtla Gutiérrez, Terán, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | | | | | | |
Collapse
|
61
|
Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Mota Morales JD, Bogdanchikova N, Huerta-Saquero A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol Lett 2017; 276:11-20. [PMID: 28483428 DOI: 10.1016/j.toxlet.2017.05.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike.
Collapse
Affiliation(s)
- Roberto Vazquez-Muñoz
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico; Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada 3918, CP 22860, Ensenada, Baja California, Mexico
| | - Belen Borrego
- Centro de Investigación en Sanidad Animal, INIA (National Research Institute for Agricultural and Food Technology), Carretera Algete el Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - Karla Juárez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico
| | - Maritza García-García
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico
| | - Josué D Mota Morales
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico; Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Querétaro 76230, Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico
| | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
62
|
Li P, Li S, Wang Y, Zhang Y, Han GZ. Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
63
|
Juarez-Moreno K, Mejía-Ruiz CH, Díaz F, Reyna-Verdugo H, Re AD, Vazquez-Felix EF, Sánchez-Castrejón E, Mota-Morales JD, Pestryakov A, Bogdanchikova N. Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei. CHEMOSPHERE 2017; 169:716-724. [PMID: 27918999 DOI: 10.1016/j.chemosphere.2016.11.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 05/22/2023]
Abstract
White spot syndrome virus (WSSV) is highly lethal and contagious in shrimps; its outbreaks causes an economic crisis for aquaculture. Several attempts have been made to treat this disease; however, to date, there is no effective cure. Because of their antimicrobial activities, silver nanoparticles (AgNPs) are the most studied nanomaterial. Although the antiviral properties of AgNPs have been studied, their antiviral effect against viral infection in aquaculture has not been reported. The AgNPs tested herein are coated with polyvinylpyrrolidone (PVP) and possess multiple international certifications for their use in veterinary and human applications. The aim of this work was to evaluate the survival rate of juvenile white shrimps (Litopenaeus vannamei) after the intramuscular administration of AgNPs. For this, different concentrations of metallic AgNPs and PVP alone were injected into the organisms. After 96 h of administration, shrimp survival was more than 90% for all treatments. The oxygen consumption routine rate and total hemocyte count remained unaltered after AgNP injection, reflecting no stress caused. We evaluated whether AgNPs had an antiviral effect in shrimps infected with WSSV. The results revealed that the survival rate of WSSV-infected shrimps after AgNP administration was 80%, whereas the survival rate of untreated organisms was only 10% 96 h after infection. These results open up the possibility to explore the potential use of AgNPs as antiviral agents for the treatment of diseases in aquaculture organisms, particularly the WSSV in shrimp culture.
Collapse
Affiliation(s)
- Karla Juarez-Moreno
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, C.P. 22860, Mexico; CONACYT Research Fellow at Center Nanosciences and Nanotechnology, National Autonomous University of Mexico, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, C.P. 22860, Mexico.
| | - Claudio Humberto Mejía-Ruiz
- The Northwestern Center of Biological Research (CIBNOR; Centro de Investigaciones Biológicas del Noroeste, S.C.), Mar Bermejo No. 195 Colonia Playa Palo de Santa Rita, C.P. 23090, La Paz, Baja California Sur, Mexico
| | - Fernando Díaz
- Marine Biotechnology Department, Ensenada Center for Scientific Research and Higher Education, Carretera Ensenada-Tijuana #3918, Ensenada, Baja California, Mexico
| | - Horacio Reyna-Verdugo
- Instituto Tecnológico del Valle del Yaqui, Block 611, Municipio Bacum, Sonora, Mexico
| | - Ana Denisse Re
- Marine Biotechnology Department, Ensenada Center for Scientific Research and Higher Education, Carretera Ensenada-Tijuana #3918, Ensenada, Baja California, Mexico
| | - Edgar F Vazquez-Felix
- The Northwestern Center of Biological Research (CIBNOR; Centro de Investigaciones Biológicas del Noroeste, S.C.), Mar Bermejo No. 195 Colonia Playa Palo de Santa Rita, C.P. 23090, La Paz, Baja California Sur, Mexico
| | - Edna Sánchez-Castrejón
- Marine Biotechnology Department, Ensenada Center for Scientific Research and Higher Education, Carretera Ensenada-Tijuana #3918, Ensenada, Baja California, Mexico
| | - Josué D Mota-Morales
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, C.P. 22860, Mexico; CONACYT Research Fellow at Center Nanosciences and Nanotechnology, National Autonomous University of Mexico, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, C.P. 22860, Mexico
| | | | - Nina Bogdanchikova
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, C.P. 22860, Mexico
| |
Collapse
|
64
|
Lin Z, Li Y, Guo M, Xu T, Wang C, Zhao M, Wang H, Chen T, Zhu B. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv 2017. [DOI: 10.1039/c6ra25010f] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the most effective drugs for influenza virus infection, clinical application of zanamivir is restricted with the emergence of resistant influenza virus.
Collapse
Affiliation(s)
- Zhengfang Lin
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Yinghua Li
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Min Guo
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Changbing Wang
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Hanzhong Wang
- State Key Laboratory of Virology
- Wuhan Institute of Virology
- Chinese Academy of Sciences
- Wuhan
- P. R. China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| | - Bing Zhu
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
65
|
Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats. Toxicol Appl Pharmacol 2016; 313:35-46. [DOI: 10.1016/j.taap.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
|
66
|
Juarez-Moreno K, Gonzalez EB, Girón-Vazquez N, Chávez-Santoscoy RA, Mota-Morales JD, Perez-Mozqueda LL, Garcia-Garcia MR, Pestryakov A, Bogdanchikova N. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum Exp Toxicol 2016; 36:931-948. [DOI: 10.1177/0960327116675206] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The wide application of silver nanoparticles (AgNPs) has pointed out the need to evaluate their potential risk and toxic effects on human health. Herein, the cytotoxic effects of Argovit™ AgNPs were evaluated on eight cancer cell lines. Further cytotoxic studies were performed in gynecological cancer cell lines from cervical (HeLa) and breast (MDA-MB-231 and MCF7) cancer. In both cases, the half maximal inhibitory concentration (IC50) of AgNPs produced the formation of reactive oxygen species (ROS) after 24 h of incubation, but it was not statistically significant compared with untreated cells. However, HeLa, MDA-MB-231, and MCF7 cells treated with the maximal IC of AgNPs induced the formation of ROS either at 12 or 24 h of incubation. Genotoxicity achieved by comet assay in HeLa, MDA-MB-231, and MCF7 cells revealed that exposure to IC50 of AgNPs does not induced noticeable DNA damage in the cells. However, the IC of AgNPs provoked severe DNA damage after 12 and 24 h of exposure. We conclude that, Argovit (polyvinylpyrrolidone-coated AgNPs) induce a cytotoxic effect in a time and dose-dependent manner in all the eight cancer cell lines tested. Nevertheless, the genotoxic effect is mainly restricted by the concentration effect. The results contribute to explore new therapeutic applications of AgNPs for malignances in murine models and to study in deep the cytotoxic and genotoxic effects of AgNPs in healthy cells at the surrounding tissue of the neoplasia.
Collapse
Affiliation(s)
- K Juarez-Moreno
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico. Ensenada, Baja California, Mexico
- Catedras CONACYT Fellow at Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico
| | - EB Gonzalez
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico. Ensenada, Baja California, Mexico
| | - N Girón-Vazquez
- Master and Doctoral Program in Science and Engineering at FIAD, Autonomous University of Baja California, Mexico
| | | | - JD Mota-Morales
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico. Ensenada, Baja California, Mexico
- Catedras CONACYT Fellow at Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico
| | - LL Perez-Mozqueda
- Ensenada Center for Science and Research and Higher Education, Ensenada, Baja California, Mexico
| | - MR Garcia-Garcia
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico. Ensenada, Baja California, Mexico
- Catedras CONACYT Fellow at Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico
| | - A Pestryakov
- Tomsk Polytechnic University, Tomsk Oblast, Russia
| | - N Bogdanchikova
- Center of Nanosciences and Nanotechnology, National Autonomous University of Mexico. Ensenada, Baja California, Mexico
| |
Collapse
|