51
|
Gubern C, Camós S, Hurtado O, Rodríguez R, Romera VG, Sobrado M, Cañadas R, Moro MA, Lizasoain I, Serena J, Mallolas J, Castellanos M. Characterization of Gcf2/Lrrfip1 in experimental cerebral ischemia and its role as a modulator of Akt, mTOR and β-catenin signaling pathways. Neuroscience 2014; 268:48-65. [PMID: 24637094 DOI: 10.1016/j.neuroscience.2014.02.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/03/2014] [Accepted: 02/27/2014] [Indexed: 01/27/2023]
Abstract
Leucine-rich repeat in Flightless-1 interaction protein 1 (Lrrfip1) is an up-regulated protein after cerebral ischemia whose precise role in the brain both in healthy and ischemic conditions is unclear. Different Lrrfip1 isoforms with distinct roles have been reported in human and mouse species. The present study aimed to analyze the Lrrfip1 transcriptional variants expressed in rat cortex, to characterize their expression patterns and subcellular location after ischemia, and to define their putative role in the brain. Five transcripts were identified and three of them (Lrrfip1, CRA_g and CRA_a' (Fli-I leucine-rich repeat associated protein 1 - Flap-1)) were analyzed by quantitative real-time polymerase chain reaction (qPCR). All the transcripts were up-regulated and showed differential expression patterns after in vivo and in vitro ischemia models. The main isoform, Lrrfip1, was found to be up-regulated from the acute to the late phases of ischemia in the cytoplasm of neurons and astrocytes of the peri-infarct area. This study demonstrates that Lrrfip1 activates β-catenin, Akt, and mammalian target of rapamycin (mTOR) proteins in astrocytes and positively regulates the expression of the excitatory amino acid transporter subtype 2 (GLT-1). Our findings point to Lrrfip1 as a key brain protein that regulates pro-survival pathways and proteins and encourages further studies to elucidate its role in cerebral ischemia as a potential target to prevent brain damage and promote functional recovery after stroke.
Collapse
Affiliation(s)
- C Gubern
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - S Camós
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - O Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Rodríguez
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - V G Romera
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M Sobrado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Cañadas
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - J Serena
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - J Mallolas
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - M Castellanos
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| |
Collapse
|
52
|
Ma X, Zhang H, Pan Q, Zhao Y, Chen J, Zhao B, Chen Y. Hypoxia/Aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline. PLoS One 2013; 8:e82604. [PMID: 24358213 PMCID: PMC3865100 DOI: 10.1371/journal.pone.0082604] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/02/2013] [Indexed: 11/28/2022] Open
Abstract
This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.
Collapse
Affiliation(s)
- Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Huiting Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yuhui Zhao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Ji Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
- * E-mail: (YC); (BZ)
| | - Yanfang Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- * E-mail: (YC); (BZ)
| |
Collapse
|
53
|
Agulla J, Brea D, Campos F, Sobrino T, Argibay B, Al-Soufi W, Blanco M, Castillo J, Ramos-Cabrer P. In vivo theranostics at the peri-infarct region in cerebral ischemia. Am J Cancer Res 2013; 4:90-105. [PMID: 24396517 PMCID: PMC3881229 DOI: 10.7150/thno.7088] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/12/2013] [Indexed: 11/05/2022] Open
Abstract
The use of theranostics in neurosciences has been rare to date because of the limitations imposed on the free delivery of substances to the brain by the blood-brain barrier. Here we report the development of a theranostic system for the treatment of stroke, a leading cause of death and disability in developed countries. We first performed a series of proteomic, immunoblotting and immunohistological studies to characterize the expression of molecular biomarkers for the so-called peri-infarct tissue, a key region of the brain for stroke treatment. We confirmed that the HSP72 protein is a suitable biomarker for the peri-infarct region, as it is selectively expressed by at-risk tissue for up to 7 days following cerebral ischemia. We also describe the development of anti-HSP72 vectorized stealth immunoliposomes containing imaging probes to make them traceable by conventional imaging techniques (fluorescence and MRI) that were used to encapsulate a therapeutic agent (citicoline) for the treatment of cerebral ischemia. We tested the molecular recognition capabilities of these nano-platforms in vitro together with their diagnostic and therapeutic properties in vivo, in an animal model of cerebral ischemia. Using MRI, we found that 80% of vectorized liposomes were located on the periphery of the ischemic lesion, and animals treated with citicoline encapsulated on these liposomes presented lesion volumes up to 30% smaller than animals treated with free (non-encapsulated) drugs. Our results show the potential of nanotechnology for the development of effective tools for the treatment of neurological diseases.
Collapse
|
54
|
Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro. Neuromolecular Med 2013; 16:332-49. [PMID: 24282026 DOI: 10.1007/s12017-013-8279-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
Abstract
Brain plasticity provides a mechanism to compensate for lesions produced as a result of stroke. The present study aims to identify new transcription factors (TFs) following focal cerebral ischaemia in rat as potential therapeutic targets. A transient focal cerebral ischaemia model was used for TF-binding activity and TF-TF interaction profile analysis. A permanent focal cerebral ischaemia model was used for the transcript gene analysis and for the protein study. The identification of TF variants, mRNA analysis, and protein study was performed using conventional polymerase chain reaction (PCR), qPCR, and Western blot and immunofluorescence, respectively. Rat cortical neurons were transfected with small interfering RNA against the TF in order to study its role. The TF-binding analysis revealed a differential binding activity of the octamer family in ischaemic brain in comparison with the control brain samples both in acute and late phases. In this study, we focused on Oct-2 TF. Five of the six putative Oct-2 transcript variants are expressed in both control and ischaemic rat brain, showing a significant increase in the late phase of ischaemia. Oct-2 protein showed neuronal localisation both in control and ischaemic rat brain cortical slices. Functional studies revealed that Oct-2 interacts with TFs involved in important brain processes (neuronal and vascular development) and basic cellular functions and that Oct-2 knockdown promotes neuronal injury. The present study shows that Oct-2 expression and binding activity increase in the late phase of cerebral ischaemia and finds Oct-2 to be involved in reducing ischaemic-mediated neuronal injury.
Collapse
|
55
|
Alvarez-Sabín J, Román GC. The role of citicoline in neuroprotection and neurorepair in ischemic stroke. Brain Sci 2013; 3:1395-414. [PMID: 24961534 PMCID: PMC4061873 DOI: 10.3390/brainsci3031395] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022] Open
Abstract
Advances in acute stroke therapy resulting from thrombolytic treatment, endovascular procedures, and stroke units have improved significantly stroke survival and prognosis; however, for the large majority of patients lacking access to advanced therapies stroke mortality and residual morbidity remain high and many patients become incapacitated by motor and cognitive deficits, with loss of independence in activities of daily living. Therefore, over the past several years, research has been directed to limit the brain lesions produced by acute ischemia (neuroprotection) and to increase the recovery, plasticity and neuroregenerative processes that complement rehabilitation and enhance the possibility of recovery and return to normal functions (neurorepair). Citicoline has therapeutic effects at several stages of the ischemic cascade in acute ischemic stroke and has demonstrated efficiency in a multiplicity of animal models of acute stroke. Long-term treatment with citicoline is safe and effective, improving post-stroke cognitive decline and enhancing patients' functional recovery. Prolonged citicoline administration at optimal doses has been demonstrated to be remarkably well tolerated and to enhance endogenous mechanisms of neurogenesis and neurorepair contributing to physical therapy and rehabilitation.
Collapse
Affiliation(s)
- José Alvarez-Sabín
- Neurovascular Unit, Department of Neurology, Universitat Autónoma de Barcelona, 119-129 Passeig de la Vall d'Hebron, Barcelona 08035, Spain.
| | - Gustavo C Román
- Department of Neurology, Nantz National Alzheimer Center, Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
56
|
Hurtado O, Hernández-Jiménez M, Zarruk JG, Cuartero MI, Ballesteros I, Camarero G, Moraga A, Pradillo JM, Moro MA, Lizasoain I. Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke. J Neurochem 2013; 126:819-26. [PMID: 23600725 DOI: 10.1111/jnc.12269] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 12/18/2022]
Abstract
CDP-choline has shown neuroprotective effects in cerebral ischemia. In humans, although a recent trial International Citicoline Trial on Acute Stroke (ICTUS) has shown that global recovery is similar in CDP-choline and placebo groups, CDP-choline was shown to be more beneficial in some patients, such as those with moderate stroke severity and not treated with t-PA. Several mechanisms have been proposed to explain the beneficial actions of CDP-choline. We have now studied the participation of Sirtuin1 (SIRT1) in the neuroprotective actions of CDP-choline. Fischer rats and Sirt1⁻/⁻ mice were subjected to permanent focal ischemia. CDP-choline (0.2 or 2 g/kg), sirtinol (a SIRT1 inhibitor; 10 mg/kg), and resveratrol (a SIRT1 activator; 2.5 mg/kg) were administered intraperitoneally. Brains were removed 24 and 48 h after ischemia for western blot analysis and infarct volume determination. Treatment with CDP-choline increased SIRT1 protein levels in brain concomitantly to neuroprotection. Treatment with sirtinol blocked the reduction in infarct volume caused by CDP-choline, whereas resveratrol elicited a strong synergistic neuroprotective effect with CDP-choline. CDP-choline failed to reduce infarct volume in Sirt1⁻/⁻ mice. Our present results demonstrate a robust effect of CDP-choline like SIRT1 activator by up-regulating its expression. Our findings suggest that therapeutic strategies to activate SIRT1 may be useful in the treatment of stroke. Sirtuin 1 (SIRT1) is implicated in a wide range of cellular functions. Regarding stroke, there is no direct evidence. We have demonstrated that citicoline increases SIRT1 protein levels in brain concomitantly to neuroprotection. Citicoline fails to reduce infarct volume in Sirt1⁻/⁻ mice. Our findings suggest that therapeutic strategies acting on SIRT1 may be useful in the treatment of stroke.
Collapse
Affiliation(s)
- Olivia Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos-IdISSC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lee Y, Jung JC, Jang S, Kim J, Ali Z, Khan IA, Oh S. Anti-Inflammatory and Neuroprotective Effects of Constituents Isolated from Rhodiola rosea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:514049. [PMID: 23690847 PMCID: PMC3652169 DOI: 10.1155/2013/514049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/02/2013] [Accepted: 03/27/2013] [Indexed: 11/21/2022]
Abstract
To determine the biological activity of Rhodiola rosea, the protein expression of iNOS and proinflammatory cytokines was measured after the activation of murine microglial BV2 cells by LPS under the exposure of constituents of Rhodiola rosea: crude extract, rosin, rosarin, and salidroside (each 1-50 μ g/mL). The LPS-induced expression of iNOS and cytokines in BV2 cells was suppressed by the constituents of Rhodiola rosea in a concentration-dependent manner. Also the expression of the proinflammatory factors iNOS, IL-1 β , and TNF- α in the kidney and prefrontal cortex of brain in mice was suppressed by the oral administration of Rhodiola rosea crude extract (500 mg/kg). To determine the neuroprotective effect of constituents of Rhodiola rosea, neuronal cells were activated by L-glutamate, and neurotoxicity was analyzed. The L-glutamate-induced neurotoxicity was suppressed by the treatment with rosin but not by rosarin. The level of phosphorylated MAPK, pJNK, and pp38 was increased by L-glutamate treatment but decreased by the treatment with rosin and salidroside. These results indicate that Rhodiola rosea may have therapeutic potential for the treatment of inflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Yeonju Lee
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Jae-Chul Jung
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Soyong Jang
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Jieun Kim
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, Thad Cochran Research Center, University of Mississippi, MS 38677-1848, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, Thad Cochran Research Center, University of Mississippi, MS 38677-1848, USA
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| |
Collapse
|
58
|
Alvarez-Sabín J, Ortega G, Jacas C, Santamarina E, Maisterra O, Ribo M, Molina C, Quintana M, Román GC. Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis 2013; 35:146-54. [PMID: 23406981 DOI: 10.1159/000346602] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cognitive decline after stroke is more common than stroke recurrence. Stroke doubles the risk of dementia and is a major contributor to vascular cognitive impairment and vascular dementia. Nonetheless, few pharmacological studies have addressed vascular cognitive impairment after stroke. We assessed the safety of long-term administration and its possible efficacy of citicoline in preventing poststroke cognitive decline in patients with first-ever ischemic stroke. METHODS Open-label, randomized, parallel study of citicoline vs. usual treatment. All subjects were selected 6 weeks after suffering a qualifying stroke and randomized by age, gender, education and stroke type into parallel arms of citicoline (1 g/day) for 12 months vs. no citicoline (control group). Medical management was similar otherwise. All patients underwent neuropsychological evaluation at 1 month, 6 months and 1 year after stroke. Tests results were combined to give indexes of 6 neurocognitive domains: attention and executive function, memory, language, spatial perception, motor speed and temporal orientation. Using adjusted logistic regression models we determined the association between citicoline treatment and cognitive decline for each neurocognitive domain at 6 and 12 months. RESULTS We recruited 347 subjects (mean age 67.2 years, 186 male (56.6%), mean education 5.7 years); 172 (49.6%) received citicoline for 12 months (no significant differences from controls n = 175). Demographic data, risk factors, initial stroke severity (NIHSS), clinical and etiological classification were similar in both groups. Only 37 subjects (10.7%) discontinued treatment (10.5% citicoline vs. 10.9% control) at 6 months; 30 (8.6%) due to death (16 (9.3%) citicoline vs. 14 (8.0%) control, p = 0.740), 7 lost to follow-up or incorrect treatment, and 4 (2.3%) had adverse events from citicoline without discontinuation. 199 patients underwent neuropsychological evaluation at 1 year. Cognitive functions improved 6 and 12 months after stroke in the entire group but in comparison with controls, citicoline-treated patients showed better outcome in attention-executive functions (OR 1.721, 95% CI 1.065-2.781, p = 0.027 at 6 months; OR 2.379, 95% CI 1.269-4.462, p = 0.007 at 12 months) and temporal orientation (OR 1.780, 95% CI 1.020-3.104, p = 0.042 at 6 months; OR 2.155, 95% CI 1.017-4.566, p = 0.045 at 12 months) during the follow-up. Moreover, citicoline group showed a better functional outcome (modified Rankin scale ≤2) at 12 months (57.3 vs. 48.7%) without statistically significant differences (p = 0.186). CONCLUSIONS Citicoline treatment for 12 months in patients with first-ever ischemic stroke is safe and probably effective in improving poststroke cognitive decline. Citicoline appears to be a promising agent to improve recovery after stroke. Large clinical trials are needed to confirm the net benefit of this therapeutic approach.
Collapse
Affiliation(s)
- Jose Alvarez-Sabín
- Department of Neurology, Neurovascular Unit, Universitat Autónoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Knippenberg S, Skripuletz T, Rath KJ, Thau N, Gudi V, Pul R, Körner S, Dengler R, Stangel M, Petri S. CDP-choline is not protective in the SOD1-G93A mouse model of ALS. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:284-90. [PMID: 23286744 DOI: 10.3109/21678421.2012.745569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Important pathogenic factors in ALS include excitotoxicity and oxidative stress. Cytidine 5-diphosphocholine (CDP-choline) has recently been reported to have neuroprotective effects in animal models for neurodegenerative diseases, attributable to its anti-glutamatergic, anti-excitotoxic, anti-apoptotic and membrane-preserving properties. In this study we administered either CDP-choline or vehicle to transgenic SOD1-G93A mice daily via intraperitoneal (i.p.) injection starting before disease onset (day 30). By monitoring of survival, motor function, weight and general condition we examined possible therapeutic effects. Additional animals were used for histological studies to determine the effect of CDP-choline on motor neuron survival, astrocytosis and myelination in the spinal cord. Results showed that CDP-choline treatment modified neither the deterioration of general condition nor the loss of body weight. Survival of CDP-choline treated animals was not prolonged compared to vehicle treated controls. None of the behavioural motor function tests revealed differences between groups and no differences in motor neuron survival, astrocytosis or myelination were detected by histological analyses. In conclusion, our data from the transgenic mouse model do not strongly support further clinical validation of CDP-choline for the treatment of ALS.
Collapse
Affiliation(s)
- Sarah Knippenberg
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 2012; 32:E8. [PMID: 22463118 DOI: 10.3171/2012.1.focus11366] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stoke that may cause significant morbidity and mortality. Brain injury due to ICH initially occurs within the first few hours as a result of mass effect due to hematoma formation. However, there is increasing interest in the mechanisms of secondary brain injury as many patients continue to deteriorate clinically despite no signs of rehemorrhage or hematoma expansion. This continued insult after primary hemorrhage is believed to be mediated by the cytotoxic, excitotoxic, oxidative, and inflammatory effects of intraparenchymal blood. The main factors responsible for this injury are thrombin and erythrocyte contents such as hemoglobin. Therapies including thrombin inhibitors, N-methyl-D-aspartate antagonists, chelators to bind free iron, and antiinflammatory drugs are currently under investigation for reducing this secondary brain injury. This review will discuss the molecular mechanisms of brain injury as a result of intraparenchymal blood, potential targets for therapeutic intervention, and treatment strategies currently in development.
Collapse
Affiliation(s)
- Ranjith Babu
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
61
|
Villa RF, Ferrari F, Gorini A. Effect of CDP-choline on age-dependent modifications of energy- and glutamate-linked enzyme activities in synaptic and non-synaptic mitochondria from rat cerebral cortex. Neurochem Int 2012; 61:1424-32. [PMID: 23099360 DOI: 10.1016/j.neuint.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/14/2012] [Accepted: 10/13/2012] [Indexed: 01/08/2023]
Abstract
The effect of aging and CDP-choline treatment (20 mg kg⁻¹ body weight i.p. for 28 days) on the maximal rates (V(max)) of representative mitochondrial enzyme activities related to Krebs' cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate-oxaloacetate- and glutamate-pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic "light" and "heavy" mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months. During aging, enzyme activities vary in a complex way respect to the type of mitochondria, i.e. non-synaptic and intra-synaptic. This micro-heterogeneity is an important factor, because energy-related mitochondrial enzyme catalytic properties cause metabolic modifications of physiopathological significance in cerebral tissue in vivo, also discriminating pre- and post-synaptic sites of action for drugs and affecting tissue responsiveness to noxious stimuli. Results show that CDP-choline in vivo treatment enhances cerebral energy metabolism selectively at 18 months, specifically modifying enzyme catalytic activities in non-synaptic and intra-synaptic "light" mitochondrial sub-populations. This confirms that the observed changes in enzyme catalytic activities during aging reflect the bioenergetic state at each single age and the corresponding energy requirements, further proving that in vivo drug treatment is able to interfere with the neuronal energy metabolism.
Collapse
Affiliation(s)
- Roberto Federico Villa
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | | | | |
Collapse
|
62
|
Bustamante A, Giralt D, Garcia-Bonilla L, Campos M, Rosell A, Montaner J. Citicoline in pre-clinical animal models of stroke: a meta-analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. J Neurochem 2012; 123:217-25. [PMID: 22845688 DOI: 10.1111/j.1471-4159.2012.07891.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
Abstract
The neuroprotective actions of citicoline have been documented for experimental stroke therapy. We used a systematic review and meta-analysis to assess this evidence. From 64 identified studies using citicoline in stroke animal models, only those describing ischemic occlusive stroke and reporting data on infarct volume and/or neurological outcome were included (14 studies, 522 animals). Overall, the quality of the studies was modest (5, 4-6), while the absence of studies involving animals with co-morbidities, females, old animals or strain differences indicated that studies did not fulfill the STAIR recommendations. Weighted mean difference meta-analysis showed citicoline to reduce infarct volume by 27.8% [(19.9%, 35.6%); p < 0.001]. In the stratified analysis, citicoline effect on reducing infarct volume was higher in proximal occlusive models of middle cerebral artery (MCA) compared with distal occlusion. Moreover, the efficacy was superior using multiple doses than single dose and when a co-treatment was administered compared with citicoline monotherapy, the only independent factor identified in the meta-regression. Citicoline improved neurological deficit by 20.2% [(6.8%, 33.7%); p = 0.015], but only four studies including 176 animals reported these data. In conclusion, this meta-analysis provides evidence of citicoline efficacy in stroke animal models and shows the optimal neuroprotective profile and the missing experimental requirements before jumping into clinical trials.
Collapse
Affiliation(s)
- Alejandro Bustamante
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
63
|
Hurtado O, Ballesteros I, Cuartero M, Moraga A, Pradillo J, Ramírez-Franco J, Bartolomé-Martín D, Pascual D, Torres M, Sánchez-Prieto J, Salom J, Lizasoain I, Moro M. Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation. Neurochem Int 2012; 61:119-27. [DOI: 10.1016/j.neuint.2012.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/27/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022]
|
64
|
Diederich K, Frauenknecht K, Minnerup J, Schneider BK, Schmidt A, Altach E, Eggert V, Sommer CJ, Schäbitz WR. Citicoline enhances neuroregenerative processes after experimental stroke in rats. Stroke 2012; 43:1931-40. [PMID: 22581817 DOI: 10.1161/strokeaha.112.654806] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE The neuroprotective potential of citicoline in acute ischemic stroke has been shown in many experimental studies and, although the exact mechanisms are still unknown, a clinical Phase III trial is currently underway. Our present study was designed to check whether citicoline also enhances neuroregeneration after experimental stroke. METHODS Forty Wistar rats were subjected to photothrombotic stroke and treated either with daily injections of citicoline (100 mg/kg) or vehicle for 10 consecutive days starting 24 hours after ischemia induction. Sensorimotor tests were performed after an adequate training period at Days 1, 10, 21, and 28 after stroke. Then brains were removed and analyzed for infarct size, glial scar formation, neurogenesis, and ligand binding densities of excitatory and inhibitory neurotransmitter receptors. RESULTS Animals treated with citicoline showed a significantly better neurological outcome at Days 10, 21, and 28 after ischemia, which could not be attributed to differences in infarct volumes or glial scar formation. However, neurogenesis in the dentate gyrus, subventricular zone, and peri-infarct area was significantly increased by citicoline. Furthermore, enhanced neurological outcome after citicoline treatment was associated with a shift toward excitation in the perilesional cortex. CONCLUSIONS Our present data demonstrate that, apart from the well-known neuroprotective effects in acute ischemic stroke, citicoline also possesses a substantial neuroregenerative potential. Thanks to its multimodal effects, easy applicability, and history as a well-tolerated drug, promising possibilities of neurological treatment including chronic stroke open up.
Collapse
Affiliation(s)
- Kai Diederich
- Department of Neurology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Xu F, Hongbin Han, Yan J, Chen H, He Q, Xu W, Zhu N, Zhang H, Zhou F, Lee K. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury. Drug Deliv 2012; 18:461-7. [PMID: 21923252 DOI: 10.3109/10717544.2011.589084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Limited penetration of neuroprotective drug citicoline into the central nervous system (CNS) by systemic administration led to poor efficiency. A novel method of stereotactic drug delivery was explored to make citicoline bypass the blood brain barrier (BBB) and take effect by direct contact with ischemic neurons. A permanent middle cerebral artery occlusion (pMCAO) model of rats was prepared. To get the optimal conditions for citicoline administration by the novel stereotactic delivery pathway, magnetic resonance imaging (MRI) tracer method was used, and a dose-dependent effect was given. Examinations of MRI, behavior evaluation, infarct volume assessment and histological staining were performed to evaluate the outcome. This MRI-guided stereotactic delivery of citicoline resulted in a notable reduction (>80%) in infarct size and a delayed ischemic injury in cortex 12 hours after onset of acute ischemia when compared with the systematic delivery. The improved neuroprotective efficiency was realized by a full distribution of citicoline in most of middle cerebral artery (MCA) territory and an adequate drug reaction in the involved areas of the brain. Brain lesions of treated rats by stereotactic delivery of citicoline were well predicted in the lateral ventricle and thalamus due to a limited drug deposition by MRI tracer method. Our study realized an improved neuroprotective efficiency of citicoline by stereotactic delivery, and an optimal therapeutic effect of this administration pathway can be achieved under MRI guidance.
Collapse
Affiliation(s)
- Fangjingwei Xu
- Department of Radiology, Peking University Third Hospital, North Huayuan Road No. 49, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Gutiérrez-Fernández M, Rodríguez-Frutos B, Fuentes B, Vallejo-Cremades MT, Alvarez-Grech J, Expósito-Alcaide M, Díez-Tejedor E. CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke. Neurochem Int 2011; 60:310-7. [PMID: 22226841 DOI: 10.1016/j.neuint.2011.12.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022]
Abstract
We investigated the effect of CDP-choline on brain plasticity markers expression in the acute phase of cerebral infarct in an experimental animal model. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (pMCAO) and treated or not with CDP-choline (500 mg/kg) daily for 14 days starting 30 min after pMCAO. Functional status was evaluated with Roger's test; lesion volume with magnetic resonance imaging (MRI) and hematoxylin and eosin staining (H&E); cell death with TUNEL; cellular proliferation with BrdU immunohistochemistry; vascular endothelial growth factor (VEGF), synaptophysin, glial fibrillary acidic protein (GFAP) and low-density lipoprotein receptor-related protein (LRP) by immunofluorescence and Western-blot techniques. CDP-choline significantly improved functional recovery and decreased lesion volume on MRI, TUNEL-positive cell number and LRP levels at 14 days. In addition, CDP-choline significantly increased BrdU, VEGF and synaptophysin values and decreased GFAP levels in the peri-infarct zone compared with the infarct group. In conclusion, our data indicate that CDP-choline improved functional recovery after permanent middle cerebral artery occlusion in association with reductions in lesion volume, cell death and LRP expression. In fact, CDP-choline increased cell proliferation, vasculogenesis and synaptophysin levels and reduced GFAP levels in the peri-infarct area of the ischemic stroke.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neurosciences Area of IdiPAZ, Health Research Institute, Autónoma University of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
67
|
Chioua M, Sucunza D, Soriano E, Hadjipavlou-Litina D, Alcázar A, Ayuso I, Oset-Gasque MJ, González MP, Monjas L, Rodríguez-Franco MI, Marco-Contelles J, Samadi A. Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J Med Chem 2011; 55:153-68. [PMID: 22126405 DOI: 10.1021/jm201105a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratorio de Radicales Libres y Química Computacional, Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, 28006-Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Carbone M, Duty S, Rattray M. Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int 2011; 60:31-8. [PMID: 22080156 DOI: 10.1016/j.neuint.2011.10.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022]
Abstract
Drugs which upregulate astrocyte glutamate transport may be useful neuroprotective compounds by preventing excitotoxicity. We set up a new system to identify potential neuroprotective drugs which act through GLT-1. Primary mouse striatal astrocytes grown in the presence of the growth-factor supplement G5 express high levels of the functional glutamate transporter, GLT-1 (also known as EAAT2) as assessed by Western blotting and ³H-glutamate uptake assay, and levels decline following growth factor withdrawal. The GLT-1 transcriptional enhancer dexamethasone (0.1 or 1 μM) was able to prevent loss of GLT-1 levels and activity following growth factor withdrawal. In contrast, ceftriaxone, a compound previously reported to enhance GLT-1 expression, failed to regulate GLT-1 in this system. The neuroprotective compound riluzole (100 μM) upregulated GLT-1 levels and activity, through a mechanism that was not dependent on blockade of voltage-sensitive ion channels, since zonasimide (1 mM) did not regulate GLT-1. Finally, CDP-choline (10 μM-1 mM), a compound which promotes association of GLT-1/EAAT2 with lipid rafts was unable to prevent GLT-1 loss under these conditions. This observation extends the known pharmacological actions of riluzole, and suggests that this compound may exert its neuroprotective effects through an astrocyte-dependent mechanism.
Collapse
Affiliation(s)
- Marica Carbone
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
69
|
Hurtado O, Lizasoain I, Moro MÁ. Neuroprotection and recovery: recent data at the bench on citicoline. Stroke 2010; 42:S33-5. [PMID: 21164125 DOI: 10.1161/strokeaha.110.597435] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In this work, we review recent data on the actions of citicoline, citicoline is a drug with demonstrated neuroprotective properties in both animals and humans. Summary of Review- For neuroprotection, mechanisms involved are the improvement of cellular functions aimed to control excitotoxicity and to maintain cellular adenosine 5'-triphosphate levels by preserving membrane function and integrity at different levels. Importantly, these actions are theoretically achieved without interfering with possible underlying mechanisms for neurorepair. Furthermore, citicoline stimulates neuronal plasticity and improves sensorimotor recovery in the chronic phase of experimental stroke. CONCLUSIONS Although the mechanisms of some of these actions remain to be elucidated, so far citicoline appears as a drug with the ability to promote "safe" neuroprotection capable of enhancing endogenous protective pathways at the same time as preparing the scenario for plasticity.
Collapse
Affiliation(s)
- Olivia Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avda Complutense s/n, 28040 Madrid, Spain.
| | | | | |
Collapse
|
70
|
Turkkan A, Alkan T, Goren B, Kocaeli H, Akar E, Korfali E. Citicoline and postconditioning provides neuroprotection in a rat model of ischemic spinal cord injury. Acta Neurochir (Wien) 2010; 152:1033-42. [PMID: 20112033 DOI: 10.1007/s00701-010-0598-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 01/05/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a chain of events caused by the reduction and/or cessation of spinal cord blood flow, which results in neuronal degeneration and loss. Ischemic postconditioning is defined as a series of intermittent interruptions of blood flow in the early phase of reperfusion and has been shown to reduce the infarct size in cerebral ischemia. Our study aimed to characterize the relationship between the neuronal injury-decreasing effects of citicoline and ischemic postconditioning, which were proven to be effective against the apoptotic process. METHOD Spinal cord ischemia was produced in rats using an intrathoracic approach to implement the synchronous arcus aorta and subclavian artery clipping method. In our study, 42 male Sprague-Dawley rats (309 +/- 27 g) were used. Animals were divided into sham operated, spinal ischemia, citicoline, postconditioning, and postconditioning citicoline groups. Postconditioning was generated by six cycles of 1 min occlusion/5 min reperfusion. A 600 mmol/kg dose of citicoline was given intraperitoneally before ischemia in the citicoline and postconditioning citicoline groups. All rats were sacrificed 96 h after reperfusion. For immunohistochemical analysis, bcl-2, caspase 3, caspase 9, and bax immune staining were performed. Caspase 3, caspase 9, bax, and bcl-2 were used as apoptotic and antiapoptotic markers, respectively. FINDINGS The blood pressure values obtained at the onset of reperfusion were significantly lower than the preischemic values. A difference in immunohistochemical scoring was detected between the caspase 3, caspase 9, bax, and bcl-2 groups. When comparisons between the ischemia (groups 2, 3, 4, and 5) and sham groups (group 1) were performed, a significant increase in caspase 3, caspase 9, bax, and bcl-2 was detected. When comparing the subgroups, the average score of caspase 9 was found to be significantly higher in ischemia group 2. The average score of bcl-2 was also found to be significantly higher in postconditioning and citicoline group 5. CONCLUSIONS It is thus thought that combining citicoline with postconditioning provides protection by inhibiting the caspase pathway and by increasing the antiapoptotic proteins.
Collapse
|
71
|
Chen WF, Sung CS, Jean YH, Su TM, Wang HC, Ho JT, Huang SY, Lin CS, Wen ZH. Suppressive effects of intrathecal granulocyte colony-stimulating factor on excessive release of excitatory amino acids in the spinal cerebrospinal fluid of rats with cord ischemia: role of glutamate transporters. Neuroscience 2009; 165:1217-32. [PMID: 19932886 DOI: 10.1016/j.neuroscience.2009.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 01/26/2023]
Abstract
Recently, the hematopoietic factor, granulocyte colony-stimulating factor (G-CSF), has been shown to exhibit neuroprotective effects in CNS injuries. Our previous study demonstrated that intrathecal (i.t.) G-CSF significantly improved neurological defects in spinal cord ischemic rats. Considerable evidence indicates that the release of excessive amounts of excitatory amino acids (EAAs) plays a critical role in neuron injury induced by ischemic insult. In the present study, we used a spinal cord ischemia-microdialysis model to examine whether i.t. G-CSF exerted antiexcitotoxicity effects in a rat model of spinal cord ischemia. I.t. catheters and a microdialysis probe were implanted in male Wistar rats. The results revealed that spinal cord ischemia-induced neurological defects were accompanied by a significant increase in the concentration of EAAs (aspartate and glutamate) in the spinal dialysates from 30 min to 2 days after reperfusion. I.t administration of G-CSF immediately after the performance of surgery designed to induce ischemia led to a significant reduction in ischemia-induced increases in the levels of spinal EAAs. Moreover, i.t. G-CSF also brought about a significant reduction in the elevation of spinal EAA concentrations induced by exogenous i.t. administration of glutamate (10 microl of 500 mM). I.t. G-CSF attenuated spinal cord ischemia-induced downregulation of expression of three glutamate transporters (GTs), glial transporter Glu-Asp transporter (GLAST), Glu transporter-1 (GLT-1), and excitatory amino acid carrier 1 (EAAC1) protein 48 h after spinal cord ischemic surgery. Immunohistofluorescent staining showed that i.t. G-CSF significantly upregulated expression of the three GTs in the gray matter of the lumbar spinal cord from 3 to 24 h after injection. We propose that i.t. G-CSF possesses an ability to reduce the extent of spinal cord ischemia-induced excitotoxicity by inducing the expression of glutamate transporters.
Collapse
Affiliation(s)
- W-F Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Gubern C, Hurtado O, Rodríguez R, Morales JR, Romera VG, Moro MA, Lizasoain I, Serena J, Mallolas J. Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia. BMC Mol Biol 2009; 10:57. [PMID: 19531214 PMCID: PMC2706836 DOI: 10.1186/1471-2199-10-57] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 06/16/2009] [Indexed: 01/22/2023] Open
Abstract
Background Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used. The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, β2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha) to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models. Results The expression stability of the candidate reference genes was evaluated using the 2-ΔC'T method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes. Conclusion We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup.
Collapse
Affiliation(s)
- Carme Gubern
- Servei de Neurologia, Fundació Privada Institut d'Investigació Biomèdica de Girona Dr, Josep Trueta (IdIBGi), Hospital Universitari de Girona Dr, Josep Trueta, Girona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Beschorner R, Pantazis G, Jeibmann A, Boy J, Meyermann R, Mittelbronn M, Schittenhelm J. Expression of EAAT-1 distinguishes choroid plexus tumors from normal and reactive choroid plexus epithelium. Acta Neuropathol 2009; 117:667-75. [PMID: 19283393 DOI: 10.1007/s00401-009-0519-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 12/26/2022]
Abstract
Microscopic distinction of normal choroid plexus (CP) from choroid plexus tumors (CPT) may be difficult, especially in small samples of well-differentiated CP papillomas. So far, there are no established markers that reliably distinguish normal and neoplastic CP epithelium. Recently, a correlation between expression/function of glial glutamate transporters EAAT-1 (GLAST) and EAAT-2 (Glt-1) and tumor proliferation has been reported. Furthermore, we previously found that CPTs frequently express EAAT-1, but not EAAT-2. We now compared expression of EAAT-1, EAAT-2 and GFAP in non-neoplastic CP (n = 68) and CPT (n = 79) by immunohistochemistry. Tissue of normal CP was obtained from 50 autopsy cases (20 normal and 30 pathologic brains) and 18 neurosurgical specimens that included 17 fetal, 21 pediatric and 30 adult cases. In non-neoplastic postnatal CP (n = 51), focal expression of EAAT-1 was found in only two pediatric cases (4%). In CPT, expression of EAAT-1 was found in 64 of 79 (81%) tumor samples and was significantly age-dependent (P < 0.0001). Hence, EAAT-1 expression distinguishes neoplastic from normal CP, both in children (P = 0.0032) and in adults (P < 0.0001). Immunostaining for EAAT-2 in selected samples from cases of different ages showed that normal CP (n = 15) or CPT (n = 16) lacked EAAT-2 expression. GFAP expression was found in 3 of 32 (10%) normal CP and in 28 of 73 (38%) tumor samples. In conclusion, in contrast to neoplastic CP samples, expression of EAAT-1 is exceptionally rare in non-neoplastic CP. Thus, EAAT-1 is superior to GFAP as a helpful diagnostic tool in CP samples.
Collapse
|
74
|
Yoon SJ, Lyoo IK, Haws C, Kim TS, Cohen BM, Renshaw PF. Decreased glutamate/glutamine levels may mediate cytidine's efficacy in treating bipolar depression: a longitudinal proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2009; 34:1810-8. [PMID: 19194376 DOI: 10.1038/npp.2009.2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Targeting the glutamatergic system has been suggested as a promising new option for developing treatment strategies for bipolar depression. Cytidine, a pyrimidine, may exert therapeutic effects through a pathway that leads to altered neuronal-glial glutamate cycling. Pyrimidines are also known to exert beneficial effects on cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function, which have each been linked to the pathophysiology of bipolar depression. This study was aimed at determining cytidine's efficacy in bipolar depression and at assessing the longitudinal effects of cytidine on cerebral glutamate/glutamine levels. Thirty-five patients with bipolar depression were randomly assigned to receive the mood-stabilizing drug valproate plus either cytidine or placebo for 12 weeks. Midfrontal cerebral glutamate/glutamine levels were measured using proton magnetic resonance spectroscopy before and after 2, 4, and 12 weeks of oral cytidine administration. Cytidine supplementation was associated with an earlier improvement in depressive symptoms (weeks 1-4; p=0.02, 0.001, 0.002, and 0.004, respectively) and also produced a greater reduction in cerebral glutamate/glutamine levels in patients with bipolar depression (weeks 2, 4, and 12; p=0.004, 0.004, and 0.02, respectively). Cytidine-related glutamate/glutamine decrements correlated with a reduction in depressive symptoms (p=0.001). In contrast, these relationships were not observed in the placebo add-on group. The study results suggest that cytidine supplementation of valproate is associated with an earlier treatment response in bipolar depression. Furthermore, cytidine's efficacy in bipolar depression may be mediated by decreased levels of cerebral glutamate and/or glutamine, consistent with alterations in excitatory neurotransmission.
Collapse
Affiliation(s)
- Sujung J Yoon
- Department of Psychiatry, Catholic University College of Medicine, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
75
|
Jang S, Jung JC, Kim DH, Ryu JH, Lee Y, Jung M, Oh S. The neuroprotective effects of benzylideneacetophenone derivatives on excitotoxicity and inflammation via phosphorylated Janus tyrosine kinase 2/phosphorylated signal transducer and activator of transcription 3 and mitogen-activated protein K pathways. J Pharmacol Exp Ther 2009; 328:435-47. [PMID: 18984655 DOI: 10.1124/jpet.108.144014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To search for new neuroprotective compounds, novel benzylideneacetophenone compounds (JCI, (3E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one; JC2, (1E)-1-(4-hydroxy-3-methoxyphenyl)hept-1-en-3-one; JC3, (2E)-3-(4-hydroxy-3-methoxyphenyl)phenylpro-2-en-l-one; JC4, (1E)-1-(4-hydroxy-3-methoxyphenyl)-5-phenylpent-1-en-3-one; JC5, (1E)-3-(4-hydroxy-3-methoxyphenyl)-6-phenylhex-1-en-3-one; JC6, (1E)-1-(4-hydroxy-3-methoxyphenyl]-7-phenylhept-1-en-3-one) were synthesized, and their potential to prevent neurotoxicities were evaluated. All compounds (JC1-JC6) showed considerable effect on free radical scavenging, the inhibition of glutamate-induced neurotoxicity in cortical cells, and the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) generation in microglia. (2E)-3-(4-Hydroxy-3-methoxyphenyl)-phenylpro-2-en-1-one (JC3) exhibited the most potent neuroprotective effect in ischemia model using organotypic hippocampal culture and middle cerebral artery occlusion (MCAO). Based on the above-mentioned results, the mechanisms underlying the biological activity of JC3, which exhibited potent antiexcitotoxic and anti-inflammatory effects, were determined using cortical neuronal cells and microglia. Compound JC3 exerted a neuroprotective effect on oxygen-glucose deprivation- and hydrogen peroxide-induced cytotoxicity in cultured cortical cells. In addition, it suppressed the generation of NO, proinflammatory cytokines, and reactive oxygen species in LPS-treated microglial cells. It also suppressed the activation of phosphorylated Janus tyrosine kinase 2/phosphorylated signal transducer and activator of transcription 3 and mitogen-activated protein kinase (MAPK) in activated microglia and in cortex and striatum after 3 days of the MCAO in mice. These results demonstrated that JC3 might affect a set of intracellular signaling cascades, including the Janus tyrosine kinase/signal transducers and activators of transcription and MAPK pathways. This study suggests that benzylideneacetophenone derivative could be useful antineurotoxic agents.
Collapse
Affiliation(s)
- Soyong Jang
- Department of Neuroscience, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
76
|
Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60:575-90. [PMID: 18478527 DOI: 10.1002/iub.91] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal Ca(2+) homeostasis and Ca(2+) signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca(2+) homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca(2+) homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca(2+) homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca(2+) dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca(2+) dyshomeostasis escalates with time eventually leading to neuronal loss. Ca(2+) dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca(2+) buffering impairment, glutamate excitotoxicity and alterations in Ca(2+) entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca(2+) homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca(2+) dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca(2+) homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca(2+) homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here.
Collapse
Affiliation(s)
- Urszula Wojda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | | | | |
Collapse
|
77
|
Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008; 55:363-89. [PMID: 18308347 PMCID: PMC2631228 DOI: 10.1016/j.neuropharm.2007.12.007] [Citation(s) in RCA: 554] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/03/2007] [Accepted: 12/06/2007] [Indexed: 12/30/2022]
Abstract
Neuroprotection for ischemic stroke refers to strategies, applied singly or in combination, that antagonize the injurious biochemical and molecular events that eventuate in irreversible ischemic injury. There has been a recent explosion of interest in this field, with over 1000 experimental papers and over 400 clinical articles appearing within the past 6 years. These studies, in turn, are the outgrowth of three decades of investigative work to define the multiple mechanisms and mediators of ischemic brain injury, which constitute potential targets of neuroprotection. Rigorously conducted experimental studies in animal models of brain ischemia provide incontrovertible proof-of-principle that high-grade protection of the ischemic brain is an achievable goal. Nonetheless, many agents have been brought to clinical trial without a sufficiently compelling evidence-based pre-clinical foundation. At this writing, around 160 clinical trials of neuroprotection for ischemic stroke have been initiated. Of the approximately 120 completed trials, two-thirds were smaller early-phase safety-feasibility studies. The remaining one-third were typically larger (>200 subjects) phase II or III trials, but, disappointingly, only fewer than one-half of these administered neuroprotective therapy within the 4-6h therapeutic window within which efficacious neuroprotection is considered to be achievable. This fact alone helps to account for the abundance of "failed" trials. This review presents a close survey of the most extensively evaluated neuroprotective agents and classes and considers both the strengths and weakness of the pre-clinical evidence as well as the results and shortcomings of the clinical trials themselves. Among the agent-classes considered are calcium channel blockers; glutamate antagonists; GABA agonists; antioxidants/radical scavengers; phospholipid precursor; nitric oxide signal-transduction down-regulator; leukocyte inhibitors; hemodilution; and a miscellany of other agents. Among promising ongoing efforts, therapeutic hypothermia, high-dose human albumin therapy, and hyperacute magnesium therapy are considered in detail. The potential of combination therapies is highlighted. Issues of clinical-trial funding, the need for improved translational strategies and clinical-trial design, and "thinking outside the box" are emphasized.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology (D4-5), University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| |
Collapse
|
78
|
Rema V, Bali KK, Ramachandra R, Chugh M, Darokhan Z, Chaudhary R. Cytidine-5-diphosphocholine supplement in early life induces stable increase in dendritic complexity of neurons in the somatosensory cortex of adult rats. Neuroscience 2008; 155:556-64. [PMID: 18619738 PMCID: PMC2860221 DOI: 10.1016/j.neuroscience.2008.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/09/2008] [Accepted: 04/09/2008] [Indexed: 11/25/2022]
Abstract
Cytidine-5-diphosphocholine (CDP-choline or citicholine) is an essential molecule that is required for biosynthesis of cell membranes. In adult humans it is used as a memory-enhancing drug for treatment of age-related dementia and cerebrovascular conditions. However the effect of CDP-choline on perinatal brain is not known. We administered CDP-choline to Long Evans rats each day from conception (maternal ingestion) to postnatal day 60 (P60). Pyramidal neurons from supragranular layers 2/3, granular layer 4 and infragranular layer 5 of somatosensory cortex were examined with Golgi-Cox staining at P240. CDP-choline treatment significantly increased length and branch points of apical and basal dendrites. Sholl analysis shows that the complexity of apical and basal dendrites of neurons is maximal in layers 2/3 and layer 5. In layer 4 significant increases were seen in basilar dendritic arborization. CDP-choline did not increase the number of primary basal dendrites on neurons in the somatosensory cortex. Primary cultures from somatosensory cortex were treated with CDP-choline to test its effect on neuronal survival. CDP-choline treatment neither enhanced the survival of neurons in culture nor increased the number of neurites. However significant increases in neurite length, branch points and total area occupied by the neurons were observed. We conclude that exogenous supplementation of CDP-choline during development causes stable changes in neuronal morphology. Significant increase in dendritic growth and branching of pyramidal neurons from the somatosensory cortex resulted in enlarging the surface area occupied by the neurons which we speculate will augment processing of sensory information.
Collapse
Affiliation(s)
- V Rema
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, Haryana-122050, India.
| | | | | | | | | | | |
Collapse
|
79
|
Lee HJ, Kang JS, Kim YI. Citicoline protects against cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Clin Neurol 2008; 5:33-8. [PMID: 19513332 PMCID: PMC2686890 DOI: 10.3988/jcn.2009.5.1.33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background and purpose Cerebral white matter (WM) lesions are frequently observed in human cerebrovascular diseases, and are believed to be responsible for cognitive impairment. Various neuroprotective agents can suppress this type of WM or neuronal damage. In this study, we investigated whether citicoline, a drug used to treat acute ischemic stroke, can attenuate WM lesions and cognitive decline caused by chronic hypoperfusion in the rat. Methods Animals were divided into immediate- and delayed-treatment groups. Those in the immediate-treatment group received a sham operation, citicoline (500 mg/kg/day), or phosphate buffered saline (PBS) treatment. Citicoline or PBS was administered intraperitoneally for 21 days after occluding the bilateral common carotid arteries. Rats in the delayed-treatment group were intraperitoneally administered with either 500 mg/kg/day citicoline or PBS for 21 days beginning on the 8th day after the operation. From the 17th day of administration, the rats were placed in an eight-arm radial maze to examine their cognitive abilities. After completing the administration, tissues were isolated for Klüver-Barrera and the terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) staining. Results In the immediate-treatment group, cognitive functions were preserved in the citicoline-treated group, and WM damage and TUNEL-positive cells differed significantly between the citicoline- and PBS-treated animals. In the delayed-treatment group, there was no decrease in WM damage and TUNEL-positive cells, but cognitive improvement was evident for citicoline treatment relative to PBS treatment. Conclusions These results show that citicoline can prevent WM damage and aid cognitive improvement, even after a certain extent of disease progression. Citicoline might be useful in patients with acute ischemic stroke as well as in chronic stroke accompanied with cognitive impairment.
Collapse
Affiliation(s)
- Hyun Joon Lee
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
80
|
Kang YS, Lee HA, Lee NY. Regulation of Choline Transport by Oxidative Stress at the Blood-Brain Barrier In Vitro Model. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.1.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
81
|
Moon EY. Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.1.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
82
|
Park CH, Kim YS, Lee HK, Kim YH, Choi MY, Jung DE, Yoo JM, Kang SS, Choi WS, Cho GJ. Citicoline reduces upregulated clusterin following kainic acid injection in the rat retina. Curr Eye Res 2008; 32:1055-63. [PMID: 18085470 DOI: 10.1080/02713680701758719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the effects of citicoline on upregulated clusterin and retinal damage induced by kainic acid (KA). METHODS KA was injected into the vitreous of rats. Effects of systemic citicoline treatments were estimated by measuring the thickness of the various retinal layers, immunoblotting, and immunohistochemical techniques. RESULTS One day after KA injection, the immunoreactivity of clusterin increased significantly. In rats treated with KA plus citicoline, clusterin immunoreactivity was markedly reduced compared to KA-treated rats. Western blot analysis showed that clusterin protein levels were increased in KA-treated rats, but decreased in KA plus citicoline-treated rats. Apoptotic cell death was determined by TUNEL method. Citicoline reduced the expression of clusterin, as well as the expression of TUNEL after KA injection in the rat retina. CONCLUSION The increased expression of clusterin following KA injection in the rat retina suggests the presence of neurodegenerative events; citicoline may provide neuroprotection against neuronal cell damage.
Collapse
Affiliation(s)
- Chang Hwan Park
- Department of Anatomy and Neurobiology, College of Medicine, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University, Gyungnam, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Özay R, Bekar A, Kocaeli H, Karlı N, Filiz G, Ulus IH. Citicoline improves functional recovery, promotes nerve regeneration, and reduces postoperative scarring after peripheral nerve surgery in rats. ACTA ACUST UNITED AC 2008; 68:615-622. [PMID: 18053855 DOI: 10.1016/j.surneu.2006.12.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 12/21/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND Citicoline has been shown to have beneficial effects in a variety of CNS injury models. The aim of this study was to test the effects of citicoline on nerve regeneration and scarring in a rat model of peripheral nerve surgery. METHODS Seventy adult Sprague-Dawley rats underwent a surgical procedure involving right sciatic nerve section and epineural suturing. Rats were assigned to the control or experiment groups to receive a topical application of 0.4 mL of saline or 0.4 mL (100 micromol/L) of citicoline, respectively. Macroscopic, histological, functional, and electromyographic assessments of nerves were performed 4 to 12 weeks after surgery. RESULTS In the control versus citicoline-treated rats, SFI was -90 +/- 1 versus -84 +/- 1 (P < .001), -76 +/- 4 versus -61 +/- 3 (P < .001), and -66 +/- 2 versus -46 +/- 3 (P < .001) at 4, 8, and 12 weeks after surgery, respectively. At 12 weeks after surgery, axon count and diameter were 16400 +/- 600 number/mm(2) and 5.47 +/- 0.25 microm versus 22250 +/- 660 number/mm(2) (P < .001) and 6.65 +/- 0.28 microm (P < .01) in the control and citicoline-treated groups, respectively. In citicoline-treated rats, histomorphological axonal organization score at the repair site was (3.4 +/- 0.1) significantly better than that in controls (2.6 +/- 0.3) (P < .001). Peripheral nerve regeneration evaluated by EMG at 12 weeks after surgery showed significantly better results in the citicoline group (P < .05). Nerves treated with citicoline demonstrated reduced scarring at the repair site (P < .001). CONCLUSION Our results demonstrate that citicoline promotes regeneration of peripheral nerves subjected to immediate section suturing type surgery and reduces postoperative scarring.
Collapse
Affiliation(s)
- Rafet Özay
- Department of Neurosurgery, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey.
| | - Hasan Kocaeli
- Department of Neurosurgery, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - Necdet Karlı
- Neurology, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - Gülaydan Filiz
- Neuropathology, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - I Hakkı Ulus
- Pharmacology, Uludağ University, 16059, Görükle, Bursa, Turkey
| |
Collapse
|
84
|
Pérez de la Ossa N, Dávalos A. Neuroprotection in cerebral infarction: the opportunity of new studies. Cerebrovasc Dis 2007; 24 Suppl 1:153-6. [PMID: 17971651 DOI: 10.1159/000107391] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapeutic options in the acute phase of a stroke are limited despite a great number of neuroprotectant drugs that have been developed in the last few decades. Although neuroprotection has been proved in animal models, translation of experimental efficacy into clinical benefit in humans is a difficult task. With the aim of bringing closer laboratory and clinical results, a change and unification of the methodology used is needed. Evaluating neuroprotectant capacity to salvage the penumbra using MRI both in animals and humans as a surrogate outcome can help to select drugs more likely to demonstrate clinical benefit. In addition, neuroprotection should enlarge the window of opportunity for reperfusion therapies and protect vascular structures to reduce reperfusion injury and the clinical complications related to thrombolytic treatment. A better understanding of ischemic and restorative brain mechanisms beyond the acute phase of stroke may open new therapeutic options to improve stroke recovery.
Collapse
Affiliation(s)
- Natalia Pérez de la Ossa
- Stroke Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
85
|
Hurtado O, Pradillo JM, Fernández-López D, Morales JR, Sobrino T, Castillo J, Alborch E, Moro MA, Lizasoain I. Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke. Neurobiol Dis 2007; 29:123-31. [PMID: 17884513 DOI: 10.1016/j.nbd.2007.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/21/2007] [Accepted: 08/12/2007] [Indexed: 01/30/2023] Open
Abstract
Glutamate transport is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. Among glutamate transporters, EAAT2 is responsible for up to 90% of all glutamate transport and has been reported to be associated to lipid rafts. In this context, we have recently shown that CDP-choline induces EAAT2 translocation to the membrane. Since CDP-choline preserves membrane stability by recovering levels of sphingomyelin, a glycosphingolipid present in lipid rafts, we have decided to investigate whether CDP-choline increases association of EAAT2 transporter to lipid rafts. Flotillin-1 was used as a marker of lipid rafts due to its known association to these microdomains. After gradient centrifugation, we have found that flotillin-1 appears mainly in fractions 2 and 3 and that EAAT2 protein is predominantly found colocalised with flotillin-1 in fraction 2. We have also demonstrated that CDP-choline increased EAAT2 levels in fraction 2 at both times examined (3 and 6 h after 1 g/kg CDP-choline administration). In agreement with this, [(3)H] glutamate uptake was also increased in flotillin-associated vesicles obtained from brain homogenates of animals treated with CDP-choline. Exposure to middle cerebral artery occlusion also increased EAAT2 levels in lipid rafts, an effect which was further enhanced in those animals receiving 2 g/kg CDP-choline 4 h after the occlusion. Infarct volume measured at 48 h after ischemia showed a reduction in the group treated with CDP-choline 4 h after occlusion. In summary, we have demonstrated that CDP-choline redistributes EAAT2 to lipid raft microdomains and improves glutamate uptake. This effect is also found after experimental stroke, when CDP-choline is administered 4 h after the ischemic occlusion. Since we have also shown that this delayed post-ischemic administration of CDP-choline induces a potent neuroprotection, our data provides a novel target for neuroprotection in stroke.
Collapse
Affiliation(s)
- O Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Radad K, Gille G, Xiaojing J, Durany N, Rausch WD. CDP-choline reduces dopaminergic cell loss induced by MPP(+) and glutamate in primary mesencephalic cell culture. Int J Neurosci 2007; 117:985-98. [PMID: 17613109 DOI: 10.1080/10623320600934341] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cytidine-5'-diphosphocholine (citicoline or CDP-choline) is an essential endogenous intermediate in the biosynthesis of phosphatidylcholine. In the present study, primary dopaminergic cultures from mouse mesencephala were treated with citicoline to investigate its neuroprotective potential on the survival of dopaminergic neurons exposed to MPP(+) and glutamate. Treatment with citicoline alone significantly increased the survival of dopaminergic neurons compared to controls. MPP(+) or glutamate decreased the total number of dopaminergic neurons whereas citicoline afforded significant protection against either toxicity. Moreover, citicoline significantly decreased propidium iodide uptake by cultured cells. The study concludes that citicoline exerts stimulant and neuroprotective actions on cultured dopaminergic neurons.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | | | | | | |
Collapse
|
87
|
Hurtado O, Cárdenas A, Pradillo JM, Morales JR, Ortego F, Sobrino T, Castillo J, Moro MA, Lizasoain I. A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke. Neurobiol Dis 2007; 26:105-11. [PMID: 17234423 DOI: 10.1016/j.nbd.2006.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/20/2006] [Accepted: 12/05/2006] [Indexed: 11/21/2022] Open
Abstract
Chronic impairment of forelimb and digit movement is a common problem after stroke that is resistant to therapy. Although in the last years some studies have been performed to increase the efficacy of rehabilitative experience and training, the pharmacological approaches in this context remain poorly developed. We decided to study the effect of a chronic treatment with CDP-choline, a safe and well-tolerated drug that is known to stabilize membranes, on functional outcome and neuromorphological changes after stroke. To assess the functional recovery we have performed the staircase reaching test and the elevated body swing test (EBST), for studying sensorimotor integration and asymmetrical motor function respectively. The treatment with CDP-choline, initiated 24 h after the middle cerebral artery occlusion (MCAO) and maintained during 28 days, improved the functional outcome in both the staircase test (MCAO+CDP=87.0+/-6.6% pellets eaten vs. MCAO+SAL=40.0+/-4.5%; p<0.05) and the EBST (MCAO+CDP=70.0+/-6.8% vs. MCAO+SAL=88.0+/-5.4%; contralateral swing p<0.05). In addition, to study potential neuronal substrates of the improved function, we examined the dendritic morphology of layer V pyramidal cells in the undamaged motor cortex using a Golgi-Cox procedure. The animals treated with CDP-choline showed enhanced dendritic complexity and spine density compared with saline group. Our results suggest that a chronic treatment with CDP-choline initiated 24 h after the insult is able to increase the neuronal plasticity within noninjured and functionally connected brain regions as well as to promote functional recovery.
Collapse
Affiliation(s)
- O Hurtado
- Servicio de Neurología, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Mievis S, Levivier M, Vassart G, Brotchi J, Ledent C, Blum D. Citicoline is not protective in experimental models of Huntington's disease. Neurobiol Aging 2006; 28:1944-6. [PMID: 17064815 DOI: 10.1016/j.neurobiolaging.2006.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/24/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
We have evaluated the neuroprotective effects of citicoline in relevant phenotypic models of Huntington's disease induced by either the mitochondrial inhibitor 3-nitropropionic acid or the N-methyl-D-aspartate agonist quinolinic acid, which, respectively, reproduce the metabolic defect or the excitotoxicity seen in the disease. We found that citicoline failed to reverse behavioural and histological alterations induced by both neurotoxins. In addition, citicoline did not reduce PC12 cell death induced by the expression of an N-terminal fragment of mutated Huntingtin. Altogether, our results suggest that citicoline is not a potential therapeutic agent for the treatment of Huntington's disease.
Collapse
Affiliation(s)
- Stéphane Mievis
- IRIBHM, University of Brussels, ULB-Erasme, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
89
|
Alonso de Leciñana M, Gutiérrez M, Roda JM, Carceller F, Díez-Tejedor E. Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke. J Neurol Sci 2006; 247:121-9. [PMID: 16797595 DOI: 10.1016/j.jns.2006.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 01/03/2006] [Accepted: 03/03/2006] [Indexed: 11/27/2022]
Abstract
An approach combining reperfusion mediated by thrombolytics with pharmacological neuroprotection aimed at inhibiting the physiopathological disorders responsible for ischemia-reperfusion damage, could provide an optimal treatment of ischemic stroke. We investigate, in a rat embolic stroke model, the combination of rtPA with citicoline as compared to either alone as monotherapy, and whether the neuroprotector should be provided before or after thrombolysis to achieve a greater reduction of ischemic brain damage. One hundred and nine rats have been studied: four were sham-operated and the rest embolized in the right internal carotid artery with an autologous clot and divided among 5 groups: 1) control; 2) iv rtPA 5 mg/kg 30 min post-embolization 3) citicoline 250 mg/kg ip x3 doses, 10 min, 24 h and 48 h post-embolization; 4) citicoline combined with rtPA following the same pattern; 5) rtPA combined with citicoline, with a first dose 10 min after thrombolysis. Mortality, neurological score, volume of ischemic lesion and neuronal death (TUNEL) after 72 h and plasma levels of IL-6 and TNF-alpha, were considered to assess ischemic brain damage. Compared with controls, the use of citicoline after thrombolysis produced the greatest reduction of mortality caused by the ischemic lesion (p<0.01), infarct volume (p=0.027), number of TUNEL positive cells in striatum (p=0.014) and plasma levels of TNF-alpha at 3 h (p=0.027) and 72 h (p=0.011). rtPA induced reperfusion provided a slight non-significant reduction of infarct volume and neuronal death, but it reduced mortality due to brain damage (p<0.01) although an increase in the risk of fatal bleeding was noted. CiT as monotherapy only produced a significant reduction of neuronal death in striatum (p=0.014). The combination of CiT before rtPA did not add any benefit to rtPA alone. The superiority of the combined treatment with rtPA followed by citicoline suggests that early reperfusion should be followed by effective neuroprotection to inhibit ischemia-reperfusion injury and better protect the tissue at risk.
Collapse
Affiliation(s)
- María Alonso de Leciñana
- Cerebrovascular Research Unit, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
90
|
Rodríguez-Yáñez M, Castellanos M, Blanco M, Mosquera E, Castillo J. Vascular protection in brain ischemia. Cerebrovasc Dis 2006; 21 Suppl 2:21-9. [PMID: 16651811 DOI: 10.1159/000091700] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular damage occurring after cerebral ischemia may lead to a worse outcome in patients with ischemic stroke, as it facilitates edema formation and hemorrhagic transformation. There are several phases in the development of vascular injury (acute, subacute and chronic) and different mediators act in each one. Therapeutic options to avoid vascular injury must be focused on acting in each phase. However, even though experimental studies have demonstrated the benefit of therapeutic interventions both in the acute and chronic phases of cerebral ischemia, only the chronic phase offers a therapeutic window sufficiently wide enough to provide vascular protection in clinical practice. Several drugs including erythropoietin and HMG-CoA reductase inhibitors (statins), antihypertensive (angiotensin modulators), antibiotics (minocycline) and antihyperglycemic drugs (thiazolidinediones) have been proved to provide vascular protection in patients with ischemic stroke. Anti-inflammatory, antioxidant, and antiapoptotic actions are responsible for the vascular protective effect related to these drugs.
Collapse
Affiliation(s)
- Manuel Rodríguez-Yáñez
- Department of Neurology, Division of Vascular Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
91
|
Lizasoain I, Cárdenas A, Hurtado O, Romera C, Mallolas J, Lorenzo P, Castillo J, Moro MA. Targets of cytoprotection in acute ischemic stroke: present and future. Cerebrovasc Dis 2006; 21 Suppl 2:1-8. [PMID: 16651809 DOI: 10.1159/000091698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the management of stroke has improved remarkably over the last decade due mainly to the advent of thrombolysis, most neuroprotective agents, although successful in animal studies, have failed in humans. Our increasing knowledge concerning the ischemic cascade is leading to a considerable development of pharmacological tools suggesting that each step of this cascade might be a target for cytoprotection. Glutamate has long been recognized to play key roles in the pathophysiology of ischemia. However, although some trials are still ongoing, the results from several completed trials with drugs interfering with the glutamatergic pathway have been disappointing. Regarding the inhibition of glutamate release as a possible target for cytoprotection, it might be afforded either by decreasing glutamate efflux or by increasing glutamate uptake. In this context, it has been shown that glutamate transport is the primary and only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. This transport is executed by the five high-affinity, sodium-dependent plasma membrane glutamate transporters. Among them, the transporter EAAT2 is responsible for up to 90% of all glutamate transport. We will discuss the effect of different neuroprotective tools (membrane stabilizers or endogenous neuroprotection) affecting glutamate efflux and/or expression of EAAT2. We will also describe the finding of a novel polymorphism in the EAAT2 promoter region which could be responsible for differences in both gene function and regulation under pathological conditions such as cerebral ischemia, and which might well account for the failure of glutamate antagonists in the clinical practice. These results may possess important therapeutic implications in the management of patients at risk of ischemic events, since it has been demonstrated that those patients with progressing stroke have higher plasma concentrations of glutamate which remain elevated up to 24 h when compared to the levels in patients without neurological deterioration.
Collapse
Affiliation(s)
- I Lizasoain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Mallolas J, Hurtado O, Castellanos M, Blanco M, Sobrino T, Serena J, Vivancos J, Castillo J, Lizasoain I, Moro MA, Dávalos A. A polymorphism in the EAAT2 promoter is associated with higher glutamate concentrations and higher frequency of progressing stroke. ACTA ACUST UNITED AC 2006; 203:711-7. [PMID: 16520390 PMCID: PMC2118230 DOI: 10.1084/jem.20051979] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
It remains unclear why some individuals are susceptible to excitotoxicity after stroke. A possible explanation is impaired glutamate uptake. We have found a highly prevalent polymorphism in the promoter of the glutamate transporter EAAT2 gene that abolishes a putative regulatory site for activator protein–2 (AP-2) and creates a new consensus binding site for the repressor transcription factor GC-binding factor 2 (GCF2). The mutant genotype is associated with increased plasma glutamate concentrations and with a higher frequency of early neurological worsening in human stroke. After transfection into astrocytes, the mutant promoter was not activated by AP-2 and was effectively repressed by GCF2, and its activity in the presence of GCF2 was reduced when compared with the AP-2–cotransfected wild-type promoter. We also show that GCF2 is expressed in ischemic rat brain, suggesting that decreased glutamate uptake occurs in individuals carrying the mutation after stroke. These findings may explain individual susceptibility to excitotoxic damage after stroke as well as the failure of glutamate antagonists in those patients without this polymorphism.
Collapse
Affiliation(s)
- Judith Mallolas
- Department of Neurology, Hospital Universitario Doctor Josep Trueta, 17007 Girona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Pradillo JM, Hurtado O, Romera C, Cárdenas A, Fernández-Tomé P, Alonso-Escolano D, Lorenzo P, Moro MA, Lizasoain I. TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning. Neuroscience 2006; 138:1171-8. [PMID: 16442237 DOI: 10.1016/j.neuroscience.2005.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 12/20/2022]
Abstract
A short ischemic event (ischemic preconditioning) can result in subsequent resistance to severe ischemic injury (ischemic tolerance). Glutamate is released after ischemia and produces cell death. It has been described that after ischemic preconditioning, the release of glutamate is reduced. We have shown that an in vitro model of ischemic preconditioning produces upregulation of glutamate transporters which mediates brain tolerance. We have now decided to investigate whether ischemic preconditioning-induced glutamate transporter upregulation takes also place in vivo, its cellular localization and the mechanisms by which this upregulation is controlled. A period of 10 min of temporary middle cerebral artery occlusion was used as a model of ischemic preconditioning in rat. EAAT1, EAAT2 and EAAT3 glutamate transporters were found in brain from control animals. Ischemic preconditioning produced an up-regulation of EAAT2 and EAAT3 but not of EAAT1 expression. Ischemic preconditioning-induced increase in EAAT3 expression was reduced by the TNF-alpha converting enzyme inhibitor BB1101. Intracerebral administration of either anti-TNF-alpha antibody or of a TNFR1 antisense oligodeoxynucleotide also inhibited ischemic preconditioning-induced EAAT3 up-regulation. Immunohistochemical studies suggest that, whereas the expression of EAAT3 is located in both neuronal cytoplasm and plasma membrane, ischemic preconditioning-induced up-regulation of EAAT3 is mainly localized at the plasma membrane level. In summary, these results demonstrate that in vivo ischemic preconditioning increases the expression of EAAT2 and EAAT3 glutamate transporters the upregulation of the latter being at least partly mediated by TNF-alpha converting enzyme/TNF-alpha/TNFR1 pathway.
Collapse
MESH Headings
- ADAM Proteins/antagonists & inhibitors
- ADAM Proteins/metabolism
- ADAM17 Protein
- Animals
- Antibodies/pharmacology
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Cell Membrane/metabolism
- Cerebral Cortex/blood supply
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Transporter 2/metabolism
- Excitatory Amino Acid Transporter 3/metabolism
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/physiopathology
- Ischemic Preconditioning
- Male
- Neurons/metabolism
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Rats
- Rats, Inbred F344
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Tumor Necrosis Factor Decoy Receptors
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/physiology
Collapse
Affiliation(s)
- J M Pradillo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Krupinski J, Slevin M, Badimon L. Citicoline inhibits MAP kinase signalling pathways after focal cerebral ischaemia. Neurochem Res 2006; 30:1067-73. [PMID: 16258856 DOI: 10.1007/s11064-005-7201-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The link between membrane phospholipids and different intracellular signal transduction pathways affected by cerebral ischaemia is unclear. CDP-choline, a major neuronal membrane lipid precursor and its intracellular target proteins and transcription factors were studied to further understand its role in ischaemic stroke. Cerebral ischaemia was produced by distal, permanent occlusion of the middle cerebral artery (MCAO) in the rat. Animals receiving 500 mg/kg of CDP-choline in 0.5 ml of 0.9% saline, intraperitoneally, 24 h and 1 h before MCAO and 23 h after MCAO demonstrated a notable reduction in the phosphorylation of MAP-kinase family members, ERK1/2 and MEK1/2, as well as Elk-1 transcription factor, compared with control animals treated with 0.5 ml of 0.9% saline. Immunohistochemistry showed a particular reduction in immunoreactivity in glia. The effects of CDP-choline on intracellular mechanisms of signal transduction, suggests that this molecule may play a key role in recovery after ischaemic stroke.
Collapse
Affiliation(s)
- J Krupinski
- Cardiovascular Research Center, IIBB/CSIC-HSCSP-UAB, St.pau hospital, Barcelona, Spain
| | | | | |
Collapse
|
95
|
Adibhatla RM, Hatcher JF, Tureyen K. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke. Brain Res 2005; 1058:193-7. [PMID: 16153613 PMCID: PMC1939829 DOI: 10.1016/j.brainres.2005.07.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytidine-5'-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM(1) ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM(1) ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, H4-330, Clinical Science Center, University of Wisconsin-Madison, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
96
|
Abstract
Brain phosphatidylcholine (PC) levels are regulated by a balance between synthesis and hydrolysis. Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1alpha/beta) activate phospholipase A(2) (PLA(2)) and PC-phospholipase C (PC-PLC) to hydrolyze PC. PC hydrolysis by PLA(2) releases free fatty acids including arachidonic acid, and lyso-PC, an inhibitor of CTP-phosphocholine cytidylyltransferase (CCT). Arachidonic acid metabolism by cyclooxygenases/lipoxygenases is a significant source of reactive oxygen species. CDP-choline might increase the PC levels by attenuating PLA(2) stimulation and loss of CCT activity. TNF-alpha also stimulates proteolysis of CCT. TNF-alpha and IL-1beta are induced in brain ischemia and may disrupt PC homeostasis by increasing its hydrolysis (increase PLA(2) and PC-PLC activities) and inhibiting its synthesis (decrease CCT activity). The beneficial effects of CDP-choline may result by counteracting TNF-alpha and/or IL-1 mediated events, integrating cytokine biology and lipid metabolism. Re-evaluation of CDP-choline phase III stroke clinical trial data is encouraging and future trails are warranted. CDP-choline is non-xenobiotic, safe, well tolerated, and can be considered as one of the agents in multi-drug treatment of stroke.
Collapse
|