51
|
|
52
|
Beregovoy NA, Sorokina NS, Starostina MV, Kolosova NG. Age-specific peculiarities of formation of long-term posttetanic potentiation in OXYS rats. Bull Exp Biol Med 2012; 151:71-3. [PMID: 22442806 DOI: 10.1007/s10517-011-1262-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OXYS rats with hereditary hyperproduction of active oxidative radicals and early disorders in the mitochondrial structure and functions are an interesting model for studies of age-specific features of synaptic plasticity. The formation of long-term posttetanic potentiation in the mossy fibers-CA3 pyramidal neuron system were studied in hippocampal slices from Wistar and OXYS rats aged 3 and 4.5 months (young), 11 (middle-aged), and 18 months (old). No appreciable age-related differences were detected in the amplitudes and latencies of stimulatory postsynaptic summary potentials of the mossy synapses evoked by test stimuli in Wistar and OXYS rat groups of different age and between the two strains. The capacity to induction and formation of long-term posttetanic potentiation and its value decreased in 18-month-old Wistar rats, which attested to disorders in synaptic plasticity of old animals. The capacity to induction and formation of long-term posttetanic potentiation and its value in OXYS were lower than Wistar rats of the same age in all the studied groups.
Collapse
Affiliation(s)
- N A Beregovoy
- Institute of Molecular Biology and Biophysics, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
53
|
Enciu AM, Constantinescu SN, Popescu LM, Mureşanu DF, Popescu BO. Neurobiology of vascular dementia. J Aging Res 2011; 2011:401604. [PMID: 21876809 PMCID: PMC3160011 DOI: 10.4061/2011/401604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/22/2023] Open
Abstract
Vascular dementia is, in its current conceptual form, a distinct type of dementia with a spectrum of specific clinical and pathophysiological features. However, in a very large majority of cases, these alterations occur in an already aged brain, characterized by a milieu of cellular and molecular events common for different neurodegenerative diseases. The cell signaling defects and molecular dyshomeostasis might lead to neuronal malfunction prior to the death of neurons and the alteration of neuronal networks. In the present paper, we explore some of the molecular mechanisms underlying brain malfunction triggered by cerebrovascular disease and risk factors. We suggest that, in the age of genetic investigation and molecular diagnosis, the concept of vascular dementia needs a new approach.
Collapse
Affiliation(s)
- Ana-Maria Enciu
- Department of Cellular and Molecular Medicine, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroilor Sanitari, Sector 5, 050474 Bucharest, Romania
| | | | | | | | | |
Collapse
|
54
|
Kumar P, Kale RK, McLean P, Baquer NZ. Protective effects of 17β estradiol on altered age related neuronal parameters in female rat brain. Neurosci Lett 2011; 502:56-60. [PMID: 21802496 DOI: 10.1016/j.neulet.2011.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/02/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
Biological aging is a fundamental process observed in almost all living beings. During aging the brain experiences structural, molecular, and functional alterations. Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to investigate the anti-aging and protective potential of 17β estradiol (E2) treatment on activities of membrane linked ATPases (Na⁺K⁺ ATPase, Ca²⁺ATPase), antioxidant enzymes (superoxide dismutases, glutathione-S-transferases), intrasynaptosomal calcium levels, membrane fluidity and neurolipofuscin in the brain of aging female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of E2 (0.1 μg/g body weight for one month).The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes and an increase in neurolipofuscin, intrasynaptosomal calcium levels in brain of aging female rats. The present study showed that E2 treatment reversed the changes to near normal levels. E2 treatment appears to be beneficial in preventing some of the age related changes in the brain, an important anti-aging effect of the hormone.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | | | | | | |
Collapse
|
55
|
Effect of ageing on CA3 interneuron sAHP and gamma oscillations is activity-dependent. Neurobiol Aging 2011; 32:956-65. [DOI: 10.1016/j.neurobiolaging.2009.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 01/21/2023]
|
56
|
Tohno Y, Tohno S, Ongkana N, Suwannahoy P, Azuma C, Minami T, Sinthubua A, Mahakkanukrauh P. Relationships among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure from a viewpoint of elements. Biol Trace Elem Res 2011; 140:35-52. [PMID: 20387004 DOI: 10.1007/s12011-010-8680-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
To elucidate the relationships among the brain regions belonging to the limbic system, the authors investigated the relationships among the hippocampus, dentate gyrus, mammillary body, and fornix, using the anterior commissure as a control, from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the hippocampi, dentate gyri, mammillary bodies, fornices, and anterior commissures were resected from identical cerebra of the subjects. The subjects consisted of 23 men and 23 women, ranging in age from 70 to 101 years (average age = 83.5 ± 7.5 years). After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure. It was found that there were extremely or very significant direct correlations among all of the five brain regions of the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure in the P content. Likewise, with regard to the Fe content, there were significant direct correlations among the four brain regions belonging to the limbic system, except for the anterior commissure. In both the Ca and Zn contents, there were extremely or very significant direct correlations among the hippocampus, dentate gyrus, and mammillary body of the gray matter.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Hattiangady B, Kuruba R, Shetty AK. Acute Seizures in Old Age Leads to a Greater Loss of CA1 Pyramidal Neurons, an Increased Propensity for Developing Chronic TLE and a Severe Cognitive Dysfunction. Aging Dis 2011; 2:1-17. [PMID: 21339903 PMCID: PMC3041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 05/30/2023] Open
Abstract
The aged population displays an enhanced risk for developing acute seizure (AS) activity. However, it is unclear whether AS activity in old age would result in a greater magnitude of hippocampal neurodegeneration and inflammation, and an increased predilection for developing chronic temporal lobe epilepsy (TLE) and cognitive dysfunction. Therefore, we addressed these issues in young-adult (5-months old) and aged (22-months old) F344 rats after three-hours of AS activity, induced through graded intraperitoneal injections of kainic acid (KA), and terminated through a diazepam injection. During the three-hours of AS activity, both young adult and aged groups exhibited similar numbers of stage-V motor seizures but the numbers of stage-IV motor seizures were greater in the aged group. In both age groups, three-hour AS activity induced degeneration of 50-55% of neurons in the dentate hilus, 22-32% of neurons in the granule cell layer and 49-52% neurons in the CA3 pyramidal cell layer without showing any interaction between the age and AS activity. However, degeneration of neurons in the CA1 pyramidal cell layer showed a clear interaction between the age and AS activity (12% in the young adult group and 56% in the aged group), suggesting that an advanced age makes the CA1 pyramidal neurons more susceptible to die with AS activity. The extent of inflammation measured through the numbers of activated microglial cells was similar between the two age groups. Interestingly, the predisposition for developing chronic TLE at 2-3 months after AS activity was 60% for young adult rats but 100% for aged rats. Moreover, both frequency & intensity of spontaneous recurrent seizures in the chronic phase after AS activity were 6-12 folds greater in aged rats than in young adult rats. Furthermore, aged rats lost their ability for spatial learning even in a scrupulous eleven-session water maze learning paradigm after AS activity, in divergence from young adult rats which retained the ability for spatial learning but had memory retrieval dysfunction after AS activity. Thus, AS activity in old age results in a greater loss of hippocampal CA1 pyramidal neurons, an increased propensity for developing robust chronic TLE, and a severe cognitive dysfunction.
Collapse
Affiliation(s)
| | | | - Ashok K. Shetty
- Correspondence should be addressed to: Ashok K. Shetty, M.Sc., Ph.D., Division of Neurosurgery, DUMC Box 3807, Duke University Medical Center, Durham NC 27710. E-mail:
| |
Collapse
|
58
|
Kingsley M, Cunningham D, Mason L, Kilduff LP, McEneny J. Role of creatine supplementation on exercise-induced cardiovascular function and oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:247-54. [PMID: 20716911 PMCID: PMC2763263 DOI: 10.4161/oxim.2.4.9415] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 ± 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene, α-tocopherol, γ-tocopherol, lycopene and vitamin C). Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.
Collapse
|
59
|
Tessier CR, Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 2011; 41:147-59. [PMID: 20843478 PMCID: PMC2982942 DOI: 10.1016/j.nbd.2010.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 09/03/2010] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.
Collapse
Affiliation(s)
- Charles R Tessier
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
60
|
Wu M, Fannin J, Rice KM, Wang B, Blough ER. Effect of aging on cellular mechanotransduction. Ageing Res Rev 2011; 10:1-15. [PMID: 19932197 DOI: 10.1016/j.arr.2009.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022]
Abstract
Aging is becoming a critical heath care issue and a burgeoning economic burden on society. Mechanotransduction is the ability of the cell to sense, process, and respond to mechanical stimuli and is an important regulator of physiologic function that has been found to play a role in regulating gene expression, protein synthesis, cell differentiation, tissue growth, and most recently, the pathophysiology of disease. Here we will review some of the recent findings of this field and attempt, where possible, to present changes in mechanotransduction that are associated with the aging process in several selected physiological systems, including musculoskeletal, cardiovascular, neuronal, respiratory systems and skin.
Collapse
|
61
|
Tohno Y, Tohno S, Ongkana N, Suwannahoy P, Azuma C, Minami T, Mahakkanukrauh P. Age-related changes of elements and relationships among elements in human hippocampus, dentate gyrus, and fornix. Biol Trace Elem Res 2010; 138:42-52. [PMID: 20107921 DOI: 10.1007/s12011-009-8605-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
Abstract
To elucidate compositional changes of the limbic system with aging, the authors investigated age-related changes of elements in the hippocampus, dentate gyrus, and fornix and the relationships among elements by direct chemical analysis. After ordinary dissections at Nara Medical University were finished, the hippocampi, dentate gyri, and fornices were resected from identical cerebra of the subjects which consisted of 23 men and 23 women, ranging in age from 70 to 101 years. After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. The average contents of P, Zn, and Na were significantly less in both the hippocampi and dentate gyri compared with the fornices. It was found that the Ca and Mg contents increased significantly in the hippocampus with aging; the P content increased significantly in the dentate gyrus with aging, whereas the Na content decreased in the dentate gyrus with aging; and the Mg content increased significantly in the fornix with aging. Regarding the relationships among elements, a significant direct correlation between Ca and Fe contents and an extremely significant inverse correlation between P and Zn contents were found in both the hippocampi and dentate gyri. In addition, a significant direct correlation between P and Mg contents was found in both the hippocampi and fornices. Pearson's correlation was used to examine whether there were elements with significant correlation among the hippocampus, dentate gyrus, fornix, and mammillary body. Significant correlations were found in five elements of Ca, P, Mg, Zn, and Fe except for S and Na among the hippocampus, dentate gyrus, and mammillary body with one exception. Regarding the fornix, significant correlations were found in two elements of P and Fe between the fornix and hippocampus, dentate gyrus, or mammillary body.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | | | | | | | | | |
Collapse
|
62
|
Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase IIβ as an additional biomarker in DNA repair and aging. Toxicol In Vitro 2010; 24:1935-45. [PMID: 20708677 DOI: 10.1016/j.tiv.2010.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/27/2010] [Accepted: 08/09/2010] [Indexed: 01/11/2023]
Abstract
Aging in the brain is a multicellular process manifesting as neurodegeneration and associated functional impairment. In the present study, we report that cerebellar granule neurons (CGNs) in culture show senescence-mediated molecular changes indicating establishment of aging processes in vitro. CGNs were viable for 5 weeks followed by cellular degeneration. Molecular changes correlated with cellular senescence and aging include the elevation of senescence-mediated beta galactosidase (SA-β-gal) activity and intracellular Ca(2+) levels. Decreased base excision repair (BER) as well as non-homologous end joining (NHEJ) activities in CGNs were also observed upon aging in vitro. The decrease in NHEJ activity was shown correlated with corresponding decrease in the levels of topoisomerase IIβ (topo IIβ), Ku 70 and Ku 80 suggesting a crucial role for topo IIβ in repair capacity of CGNs. These studies, besides establishing that CGNs would serve as a good in vitro model for analysis of aging phenomena, also brought out that topo IIβ, by virtue of its significant role in controlling NHEJ activity, would serve as an additional biomarker for studying aging process.
Collapse
|
63
|
Montori S, Dos Anjos S, Ríos-Granja MA, Pérez-García CC, Fernández-López A, Martínez-Villayandre B. AMPA receptor downregulation induced by ischaemia/reperfusion is attenuated by age and blocked by meloxicam. Neuropathol Appl Neurobiol 2010; 36:436-47. [PMID: 20408958 DOI: 10.1111/j.1365-2990.2010.01086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM Stroke prevalence increases with age, while alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and inflammation have been related to ischaemia-induced damage. This study shows how age and treatment with an anti-inflammatory agent (meloxicam) modify the levels of AMPAR subunits GluR1 and GluR2, as well as the mRNA levels of the GluR2-editing enzyme, ADAR2, in a global brain ischaemia/reperfusion (I/R) model. METHODS Two days after global ischaemia CA1, CA3, dentate gyrus and cerebral cortex were obtained from sham-operated and I/R-injured 3- and 18-month-old Sprague-Dawley rats. Real time polymerase chain reaction, Western blotting and immunohistochemical assays were performed. Meloxicam treatment was assayed on young animals. RESULTS Data showed that age attenuates the downregulation induced by I/R in the AMPAR subunits GluR1 and GluR2 and modifies the GluR1/GluR2 mRNA level ratio in a structure-dependent way. The study of the ADAR2 mRNA levels showed more downregulation in older animals than young ones. Meloxicam treatment prevented the transcriptional arrest induced by I/R. CONCLUSION Our data suggest that changes in the AMPAR isoforms could be associated with ageing in the different structures studied. Although GluR2 editing seems to be involved in age-dependent vulnerability to ischaemia supporting the 'GluR2 hypothesis', this alone does not explain the differential vulnerability in the different brain regions. Finally, inflammation could play a role in protection from I/R-induced injury.
Collapse
Affiliation(s)
- S Montori
- Area de Biología Celular, Instituto de Biomedicina. Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
64
|
Schauwecker PE. Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Exp Neurol 2010; 224:207-18. [PMID: 20353782 DOI: 10.1016/j.expneurol.2010.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/17/2010] [Accepted: 03/21/2010] [Indexed: 10/19/2022]
Abstract
We previously have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death among two inbred strains of mice. We have also reported that the age-related increased susceptibility to the neurotoxic effects of seizure-induced injury is regulated in a strain-dependent manner. In the present study, we wanted to begin to determine the pharmacological mechanism that contributes to variability in the response to the neurotoxic effects of kainate. Thus, we compared the effects of the NMDA receptor antagonist, MK-801 and of the AMPA receptor antagonist NBQX on hippocampal damage in the kainate model of seizure-induced excitotoxic cell death in young, middle-aged, and aged C57BL/6 and FVB/N mice, when given 90 min following kainate-induced status epilepticus. Following kainate injections, mice were scored for seizure activity and brains from mice in each age and antagonist group were processed for light microscopic histopathologic evaluation 7 days following kainate administration to evaluate the severity of seizure-induced injury. Administration of MK-801 significantly reduced the extent of hippocampal damage in young, mature and aged FVB/N mice, while application of NBQX was only effective at attenuating cell death in young and aged mice throughout all hippocampal subfields. Our results suggest that both NMDA and non-NMDA receptors are involved in kainate-induced cell death in the mouse and suggest that aging may differentially affect the ability of neuroprotectants to protect against hippocampal damage. Differences in the effectiveness of these two antagonists could result from differential regulation of glutamatergic neurotransmitter systems or ion channel specificity.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
65
|
Abramov AY, Duchen MR. Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons. Biochim Biophys Acta Gen Subj 2009; 1800:297-304. [PMID: 19695307 DOI: 10.1016/j.bbagen.2009.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND Accumulation of glutamate in ischaemic CNS is thought to amplify neuronal death during a stroke. Exposure of neurons to toxic glutamate concentrations causes an initial transient increase in [Ca(2+)](c) followed by a delayed increase commonly termed delayed [Ca(2+)](c) deregulation (DCD). METHODS We have used fluorescence imaging techniques to explore differences in glutamate-induced DCD in rat hippocampal neurons after different periods of time in culture (days in vitro; DIV). RESULTS The amplitude of both the initial [Ca(2+)](c) signal and the number of cells showing DCD in response to glutamate increased with the duration of culture. The capacity of mitochondria to accumulate calcium in permeabilised neurons decreased with time in culture, although mitochondrial membrane potential at rest did not change. The rate of ATP consumption, measured as an increase in [Mg(2+)](c) following inhibition of ATP synthesis, was lower in 'young' neurons. The sensitivity of 'young' neurons to glutamate-induced DCD approximated to that of 'old' neurons when mitochondrial function was impaired using either FCCP or oligomycin. Further, following such treatment, cells showed a DCD-like response to increased [Ca(2+)](c) induced by KCl induced depolarisation which was never otherwise seen. GENERAL SIGNIFICANCE Thus, changes in cellular bioenergetics dictate the onset of DCD in response to glutamate.
Collapse
Affiliation(s)
- Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3 BG, UK.
| | | |
Collapse
|
66
|
Yu JT, Chang RCC, Tan L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog Neurobiol 2009; 89:240-55. [PMID: 19664678 DOI: 10.1016/j.pneurobio.2009.07.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/28/2022]
Abstract
Calcium is involved in many facets of neuronal physiology, including activity, growth and differentiation, synaptic plasticity, and learning and memory, as well as pathophysiology, including necrosis, apoptosis, and degeneration. Though disturbances in calcium homeostasis in cells from Alzheimer's disease (AD) patients have been observed for many years, much more attention was focused on amyloid-beta (Abeta) and tau as key causative factors for the disease. Nevertheless, increasing lines of evidence have recently reported that calcium dysregulation plays a central role in AD pathogenesis. Systemic calcium changes accompany almost the whole brain pathology process that is observed in AD, including synaptic dysfunction, mitochondrial dysfunction, presenilins mutation, Abeta production and Tau phosphorylation. Given the early and ubiquitous involvement of calcium dysregulation in AD pathogenesis, it logically presents a variety of potential therapeutic targets for AD prevention and treatment, such as calcium channels in the plasma membrane, calcium channels in the endoplasmic reticulum membrane, Abeta-formed calcium channels, calcium-related proteins. The review aims to provide an overview of the current understanding of the molecular mechanisms involved in calcium dysregulation in AD, and an insight on how to exploit calcium regulation as therapeutic opportunities in AD.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province 266071, China
| | | | | |
Collapse
|
67
|
Ikeda R, Mizoguchi K. Hachimijiogan (Ba-Wei-Di-Huang-Wan), a herbal medicine, improves unbalance of calcium metabolism in aged rats. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:176-181. [PMID: 19409475 DOI: 10.1016/j.jep.2009.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY Aged animals as well as elderly humans commonly exhibit calcium (Ca) shortage because of increased Ca excretion into urine and decreased intestinal Ca absorption, which induce elevation of serum PTH levels to maintain serum Ca levels between a normal physiological range. The most important organ that regulates this Ca homeostasis is the kidney. Hachimijiogan (HJG), a traditional herbal medicine in Japan and China, has been used for treating clinical diseases associated with kidney dysfunctions in elderly humans. However, the mechanisms of its pharmacological actions remain to be understood poorly. The present study was designed to examine whether HJG improves age-related unbalance of Ca metabolism at the systemic level using aged rats. MATERIALS AND METHODS HJG was administered to 21-month-old aged rats for 3 months, and several parameters associated with Ca metabolism in serum and urine were measured. RESULTS Although HJG as well as aging itself did not affect serum Ca levels compared to young (11-week-old) rats, HJG improved increase in urinary Ca excretion and elevation of serum parathyroid hormone (PTH) levels in aged rats. However, HJG did not improve marked reduction of intestinal Ca absorption in aged rats. CONCLUSION HJG showed regulating action for age-related unbalance of Ca metabolism at the systemic level. This finding would provide useful information for treating age-related several disorders associated with Ca unbalance.
Collapse
Affiliation(s)
- Ryuji Ikeda
- Section of Oriental Medicine, Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology (NCGG), 36-3 Gengo, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | |
Collapse
|
68
|
Kashiyae Y, Kontani M, Kawashima H, Kiso Y, Kudo Y, Sakakibara M. Arachidonic acid enhances intracellular calcium levels in dentate gyrus, but not CA1, in aged rat. Neurosci Res 2009; 64:143-51. [DOI: 10.1016/j.neures.2009.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 01/29/2023]
|
69
|
Abstract
An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17beta-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Ca(v)1.2 LTCC subunit, but not the Ca(v)1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.
Collapse
|
70
|
Hajieva P, Kuhlmann C, Luhmann HJ, Behl C. Impaired calcium homeostasis in aged hippocampal neurons. Neurosci Lett 2009; 451:119-23. [DOI: 10.1016/j.neulet.2008.11.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/13/2008] [Accepted: 11/28/2008] [Indexed: 01/15/2023]
|
71
|
Tonkikh AA, Carlen PL. Impaired presynaptic cytosolic and mitochondrial calcium dynamics in aged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation. Neuroscience 2009; 159:1300-8. [PMID: 19215725 DOI: 10.1016/j.neuroscience.2008.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/25/2022]
Abstract
Impaired regulation of presynaptic intracellular calcium is thought to adversely affect synaptic plasticity and cognition in the aged brain. We studied presynaptic cytosolic and mitochondrial calcium (Ca) dynamics using axonally loaded Calcium Green-AM and Rhod-2 AM fluorescence respectively in young (2-3 months) and aged (23-26 months) CA3 to CA1 Schaffer collateral excitatory synapses in hippocampal brain slices from Fisher 344 rats. After a tetanus (100 Hz, 200 ms), the presynaptic cytosolic Ca peaked at approximately 10 s in the young and approximately 12 s in the aged synapses. Administration of the membrane permeant Ca chelator, bis (O-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid (BAPTA-AM), significantly attenuated the Ca response in the aged slices, but not in the young slices. The presynaptic mitochondrial Ca signal was much slower, peaking at approximately 90 s in both young and aged synapses, returning to baseline by 300 s. BAPTA-AM significantly attenuated the mitochondrial calcium signal only in the young synapses. Uncoupling mitochondrial respiration by carbonyl cyanide m-chlorophenylhydrazone (CCCP) application evoked a massive intracellular cytosolic Ca increase and a significant drop of mitochondrial Ca, especially in aged slices wherein the cytosolic Ca signal disappeared after approximately 150 s of washout and the mitochondrial Ca signal disappeared after 25 s of washout. These signals were preserved in aged slices by BAPTA-AM. Five minutes of oxygen glucose deprivation (OGD) was associated with a significant increase in cytosolic Ca in both young and aged synapses, which was irreversible in the aged synapses. These responses were significantly attenuated by BAPTA-AM in both the young and aged synapses. These results support the hypothesis that increasing intracellular calcium neuronal buffering in aged rats ameliorates age-related impaired presynaptic Ca regulation.
Collapse
Affiliation(s)
- A A Tonkikh
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
72
|
Klejman ME, Gruszczynska-Biegala J, Skibinska-Kijek A, Wisniewska MB, Misztal K, Blazejczyk M, Bojarski L, Kuznicki J. Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca(2+) store in neurons. Neurochem Int 2008; 54:49-55. [PMID: 19013491 DOI: 10.1016/j.neuint.2008.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 12/17/2022]
Abstract
Recent findings indicate that Store Operated Ca(2+) Entry (SOCE) in non-excitable cells is based on the interaction of ER calcium sensor STIM1 with the plasma membrane Ca(2+) channel protein ORAI1. However, despite physiological evidence for functional SOCE in neurons, its mechanism is not known. Using PCR, immunoblotting and immunohistochemical methods we show that STIM1 protein is present in the mouse brain. The protein and mRNA levels of STIM1 are similar in the thalamus, the hippocampus, the cortex and the amygdala and the higher level is observed in the cerebellum. Immunohistochemistry of the cortex and the hippocampus of brain sections shows that STIM1 is present in cell bodies and dendrites of pyramidal neurons. In the cerebellum STIM1 is present in Purkinje and granule cells. The same immunostaining pattern is observed in cultured hippocampal and cortical neurons. Localization of YFP-STIM1 and ORAI1 changes from a dispersed pattern in untreated cortical neurons to puncta-like pattern in cells with a Ca(2+) store depleted by thapsigargin treatment. The YFP-STIM1(D76A) dominant positive mutant, which is active regardless of the Ca(2+) level in ER, concentrates as puncta even without depletion of the neuronal Ca(2+) store. Also, this mutant forces ORAI1 redistribution to form puncta-like staining. We suggest that in neurons, just as in non-excitable cells, the STIM1 and ORAI1 proteins are involved in SOCE.
Collapse
Affiliation(s)
- Monika E Klejman
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008; 55:1081-94. [PMID: 18755202 DOI: 10.1016/j.neuropharm.2008.07.046] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 01/26/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) mediate many forms of synaptic plasticity. These tetrameric receptors consist of two obligatory NR1 subunits and two regulatory subunits, usually a combination of NR2A and NR2B. In the neonatal neocortex NR2B-containing NMDARs predominate, and sensory experience facilitates a developmental switch in which NR2A levels increase relative to NR2B. In this review, we clarify the roles of NR2 subunits in synaptic plasticity, and argue that a primary role of this shift is to control the threshold, rather than determining the direction, for modifying synaptic strength. We also discuss recent studies that illuminate the mechanisms regulating NR2 subunits, and suggest that the NR2A/NR2B ratio is regulated by multiple means, which may control the ratio both locally at individual synapses and globally in a cell-wide manner. Finally, we use the visual cortex as a model system to illustrate how activity-dependent modifications in the NR2A/NR2B ratio may contribute to the development of cortical functions.
Collapse
Affiliation(s)
- Koji Yashiro
- Department of Cell and Molecular Physiology, Neuroscience Center, and Neurobiology Curriculum, University of North Carolina, Neuroscience Research Building, Campus Box 7545, 115 Mason Farm Road, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
74
|
Deshpande LS, Sun DA, Sombati S, Baranova A, Wilson MS, Attkisson E, Hamm RJ, DeLorenzo RJ. Alterations in neuronal calcium levels are associated with cognitive deficits after traumatic brain injury. Neurosci Lett 2008; 441:115-9. [PMID: 18583041 DOI: 10.1016/j.neulet.2008.05.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/30/2008] [Accepted: 05/31/2008] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) survivors often suffer from a post-traumatic syndrome with deficits in learning and memory. Calcium (Ca(2+)) has been implicated in the pathophysiology of TBI-induced neuronal death. However, the role of long-term changes in neuronal Ca(2+) function in surviving neurons and the potential impact on TBI-induced cognitive impairments are less understood. Here we evaluated neuronal death and basal free intracellular Ca(2+) ([Ca(2+)](i)) in acutely isolated rat CA3 hippocampal neurons using the Ca(2+) indicator, Fura-2, at seven and thirty days after moderate central fluid percussion injury. In moderate TBI, cognitive deficits as evaluated by the Morris Water Maze (MWM), occur after injury but resolve after several weeks. Using MWM paradigm we compared alterations in [Ca(2+)](i) and cognitive deficits. Moderate TBI did not cause significant hippocampal neuronal death. However, basal [Ca(2+)](i) was significantly elevated when measured seven days post-TBI. At the same time, these animals exhibited significant cognitive impairment (F(2,25)=3.43, p<0.05). When measured 30 days post-TBI, both basal [Ca(2+)](i) and cognitive functions had returned to normal. Pretreatment with MK-801 blocked this elevation in [Ca(2+)](i) and also prevented MWM deficits. These studies provide evidence for a link between elevated [Ca(2+)](i) and altered cognition. Since no significant neuronal death was observed, the alterations in Ca(2+) homeostasis in the traumatized, but surviving neurons may play a role in the pathophysiology of cognitive deficits that manifest in the acute setting after TBI and represent a novel target for therapeutic intervention following TBI.
Collapse
|
75
|
Kloskowska E, Malkiewicz K, Winblad B, Benedikz E, Bruton JD. APPswe mutation increases the frequency of spontaneous Ca2+-oscillations in rat hippocampal neurons. Neurosci Lett 2008; 436:250-4. [PMID: 18403114 DOI: 10.1016/j.neulet.2008.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/03/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Altered calcium homeostasis is implicated in the pathogenesis of Alzheimer's disease (AD). Much effort has been put into understanding the association between protein mutations causative of this devastating neurodegenerative disease and perturbed calcium signaling. Whereas the presenilin mutations have received most attention in the context of neuronal calcium signaling, we focused on the effects of APP with the so-called Swedish mutation (APPswe) on spontaneous neuronal activity. We observed that primary hippocampal neurons from an APPswe transgenic rat showed increased frequency and unaltered amplitude of spontaneous calcium oscillations as compared to wild-type neurons. We found that the altered calcium signaling of APPswe transgenic neurons was unlikely to be due to modulation of the NMDA or nicotinic neurotransmitter systems, and did not depend on secreted APP derivates. The implications of this effect of APP are discussed.
Collapse
Affiliation(s)
- Ewa Kloskowska
- Karolinska Institutet, NVS Department, Div. Neurodegeneration, Novum Plan 5, 14186 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
76
|
Age-Related Changes in Neurons and S100-, GFAP-Immunoreactive Cells in the Motor Cortex of Cats. Zool Res 2008. [DOI: 10.3724/sp.j.1141.2008.00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
77
|
Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2008; 131:1327-39. [PMID: 18160041 DOI: 10.1016/j.cell.2007.11.039] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/02/2007] [Accepted: 11/15/2007] [Indexed: 01/10/2023]
Abstract
Deviations in basal Ca2+ levels interfere with receptor-mediated Ca2+ signaling as well as endoplasmic reticulum (ER) and mitochondrial function. While defective basal Ca2+ regulation has been linked to various diseases, the regulatory mechanism that controls basal Ca2+ is poorly understood. Here we performed an siRNA screen of the human signaling proteome to identify regulators of basal Ca2+ concentration and found STIM2 as the strongest positive regulator. In contrast to STIM1, a recently discovered signal transducer that triggers Ca2+ influx in response to receptor-mediated depletion of ER Ca2+ stores, STIM2 activated Ca2+ influx upon smaller decreases in ER Ca2+. STIM2, like STIM1, caused Ca2+ influx via activation of the plasma membrane Ca2+ channel Orai1. Our study places STIM2 at the center of a feedback module that keeps basal cytosolic and ER Ca2+ concentrations within tight limits.
Collapse
Affiliation(s)
- Onn Brandman
- Department of Chemical and Systems Biology, Bio-X/Clark Center W200, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
78
|
Shiozaki M, Yoshimura K, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T. Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience 2008; 152:924-41. [PMID: 18343589 DOI: 10.1016/j.neuroscience.2008.01.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/07/2008] [Accepted: 01/22/2008] [Indexed: 12/23/2022]
Abstract
Klotho mutant mice, defective in the klotho gene, develop multiple age-related disorders with very short lifespans. Introduction of the exogenous klotho gene into these mutant mice leads to an improvement in their phenotypes, while overexpression of this gene in wild-type mice significantly extends their lifespan. These observations suggest that the klotho gene/protein has an anti-aging function. Since there have been only a few reports with some disagreement about results on the CNS of the mutant mice, we tried to clarify whether the CNS neurons generate aging-like features, even in premature stages, using biochemical and morphological approaches. Results obtained from the mutant mice, when compared with wild-type mice, were as follows. Neurofilaments (NFs) were increased significantly in axons, with the subunit proteins showing a significant enhancement in phosphorylation or expression of NF-H or NF-L, respectively. Microtubules in Purkinje cell dendrites were closer to each other, and in the CNS tissue tubulin was unaltered, but microtubule-associated protein (MAP) 2 was significantly reduced in expression. Neuronal cellular organelles were morphologically disordered. Lysosomes, cathepsin D and light chain 3 of MAP1A/B (LC3) were augmented with the appearance of putative autophagy-related structures. Antiapoptotic Bcl-xL and proapoptotic Bax were reduced and enhanced, respectively, and mitogen-activated protein kinase was reduced. Synapse-related proteins and structures were decreased. Neuronal degeneration was evident in hippocampal pyramidal cells, and possibly in Purkinje cells. Astrocytic glial filaments and glial fibrillary acidic protein were increased in density and expression, respectively. Together, the CNS neuronal alterations in klotho mutant mice were quite similar to those found in aged animals, including even premature death, so this mouse should be a more appropriate animal model for CNS aging than those previously reported.
Collapse
Affiliation(s)
- M Shiozaki
- Laboratory of Cell Biology, College of Nutrition, Koshien University, 10-1 Momijigaoka, Takarazuka, Hyogo 665-0006, Japan
| | | | | | | | | | | | | |
Collapse
|
79
|
Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A. Increased intraneuronal resting [Ca2+] in adult Alzheimer's disease mice. J Neurochem 2007; 105:262-71. [PMID: 18021291 DOI: 10.1111/j.1471-4159.2007.05135.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurodegeneration in Alzheimer's disease (AD) has been linked to intracellular accumulation of misfolded proteins and dysregulation of intracellular Ca2+. In the current work, we determined the contribution of specific Ca2+ pathways to an alteration in Ca2+ homeostasis in primary cortical neurons from an adult triple transgenic (3xTg-AD) mouse model of AD that exhibits intraneuronal accumulation of beta-amyloid proteins. Resting free Ca2+ concentration ([Ca2+](i)), as measured with Ca2+-selective microelectrodes, was greatly elevated in neurons from 3xTg-AD and APP(SWE) mouse strains when compared with their respective non-transgenic neurons, while there was no alteration in the resting membrane potential. In the absence of the extracellular Ca2+, the [Ca2+](i) returned to near normal levels in 3xTg-AD neurons, demonstrating that extracellular Ca2+contributed to elevated [Ca2+](i). Application of nifedipine, or a non-L-type channel blocker, SKF-96365, partially reduced [Ca2+](i). Blocking the ryanodine receptors, with ryanodine or FLA-365 had no effect, suggesting that these channels do not contribute to the elevated [Ca2+](i). Conversely, inhibition of inositol trisphosphate receptors with xestospongin C produced a partial reduction in [Ca2+](i). These results demonstrate that an elevation in resting [Ca2+](i), contributed by aberrant Ca2+entry and release pathways, should be considered a major component of the abnormal Ca2+ homeostasis associated with AD.
Collapse
Affiliation(s)
- José R Lopez
- Department of Anesthesia, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
80
|
Bojarski L, Herms J, Kuznicki J. Calcium dysregulation in Alzheimer's disease. Neurochem Int 2007; 52:621-33. [PMID: 18035450 DOI: 10.1016/j.neuint.2007.10.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 09/12/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is the most common form of adult dementia. Its pathological hallmarks are synaptic degeneration, deposition of amyloid plaques and neurofibrillary tangles, leading to neuronal loss. A few hypotheses have been proposed to explain AD pathogenesis. The beta-amyloid (Abeta) and hyperphosphorylated tau hypotheses suggest that these proteins are the main players in AD development. Another hypothesis proposes that the dysregulation of calcium homeostasis may be a key factor in accelerating other pathological changes. Although Abeta and tau have been extensively studied, recently published data provide a growing body of evidence supporting the critical role of calcium signalling in AD. For example, presenilins, which are mutated in familial cases of AD, were demonstrated to form low conductance calcium channels in the ER and elevated cytosolic calcium concentration increases amyloid generation. Moreover, memantine, an antagonist of the NMDA-calcium channel receptor, has been found to have a beneficial effect for AD patients offering novel possibilities for a calcium signalling targeted therapy of AD. This review underscores the growing importance of calcium ions in AD development and focuses on the relevant aspects of calcium homeostasis.
Collapse
Affiliation(s)
- Lukasz Bojarski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | |
Collapse
|