51
|
Tsvetanov KA, Henson RNA, Jones PS, Mutsaerts H, Fuhrmann D, Tyler LK, Rowe JB. The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology 2021; 58:e13714. [PMID: 33210312 PMCID: PMC8244027 DOI: 10.1111/psyp.13714] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Accurate identification of brain function is necessary to understand neurocognitive aging, and thereby promote health and well-being. Many studies of neurocognitive aging have investigated brain function with the blood-oxygen level-dependent (BOLD) signal measured by functional magnetic resonance imaging. However, the BOLD signal is a composite of neural and vascular signals, which are differentially affected by aging. It is, therefore, essential to distinguish the age effects on vascular versus neural function. The BOLD signal variability at rest (known as resting state fluctuation amplitude, RSFA), is a safe, scalable, and robust means to calibrate vascular responsivity, as an alternative to breath-holding and hypercapnia. However, the use of RSFA for normalization of BOLD imaging assumes that age differences in RSFA reflecting only vascular factors, rather than age-related differences in neural function (activity) or neuronal loss (atrophy). Previous studies indicate that two vascular factors, cardiovascular health (CVH) and cerebrovascular function, are insufficient when used alone to fully explain age-related differences in RSFA. It remains possible that their joint consideration is required to fully capture age differences in RSFA. We tested the hypothesis that RSFA no longer varies with age after adjusting for a combination of cardiovascular and cerebrovascular measures. We also tested the hypothesis that RSFA variation with age is not associated with atrophy. We used data from the population-based, lifespan Cam-CAN cohort. After controlling for cardiovascular and cerebrovascular estimates alone, the residual variance in RSFA across individuals was significantly associated with age. However, when controlling for both cardiovascular and cerebrovascular estimates, the variance in RSFA was no longer associated with age. Grey matter volumes did not explain age differences in RSFA, after controlling for CVH. The results were consistent between voxel-level analysis and independent component analysis. Our findings indicate that cardiovascular and cerebrovascular signals are together sufficient predictors of age differences in RSFA. We suggest that RSFA can be used to separate vascular from neuronal factors, to characterize neurocognitive aging. We discuss the implications and make recommendations for the use of RSFA in the research of aging.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Richard N. A. Henson
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - P. Simon Jones
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Henk Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Delia Fuhrmann
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Lorraine K. Tyler
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Cam‐CAN
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| |
Collapse
|
52
|
Stickland RC, Zvolanek KM, Moia S, Ayyagari A, Caballero-Gaudes C, Bright MG. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function. Neuroimage 2021; 239:118306. [PMID: 34175427 PMCID: PMC8552969 DOI: 10.1016/j.neuroimage.2021.118306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a CO2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemodynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural activity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting-state data segments, and in data segments which added a 2–3 minute breathing task to the start of a resting-state segment. Two different breathing tasks were used to induce fluctuations in arterial CO2 pressure: a breath-hold task to induce hypercapnia (CO2 increase) and a cued deep breathing task to induce hypocapnia (CO2 decrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO2 by systematically shifting the CO2 regressor in time to optimize the model fit. This optimization inherently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant relationship between CO2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemodynamic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider applications for fMRI denoising and interpretation.
Collapse
Affiliation(s)
- Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain; University of the Basque Country EHU/UPV, Donostia, Gipuzkoa, Spain
| | - Apoorva Ayyagari
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
53
|
Almdahl IS, Martinussen LJ, Agartz I, Hugdahl K, Korsnes MS. Inhibition of emotions in healthy aging: age-related differences in brain network connectivity. Brain Behav 2021; 11:e02052. [PMID: 33543596 PMCID: PMC8119855 DOI: 10.1002/brb3.2052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Successful inhibition of distracting emotions is important for preserving well-being and daily functioning. There is conflicting evidence regarding the impact of healthy aging on emotional inhibition, and possible age-related alterations in the neuronal underpinnings of emotional interference processing are unexplored. METHODS Thirty younger (mean age 26 years; 15 women) and 30 older (mean age 71 years; 13 women) healthy adults performed a face-word emotional Stroop task while undergoing functional magnetic resonance imaging of the brain. A resting-state scan was acquired for calculating the amplitude of low-frequency fluctuations as an estimate of vascular reactivity. Comparisons of brain activation during the task were assessed in a whole-brain, voxel-wise analysis, contrasting congruent, and incongruent conditions. The canonical regions of the frontoparietal, salience, dorsal attention, and default mode networks were used as seed regions for assessing functional connectivity within and between large-scale brain networks. Task performance was evaluated using response accuracy and response time. RESULTS The older adults had longer response times and lower task accuracy than the younger adults, but the emotional interference effect was not significantly different between the groups. Whole-brain analysis revealed no significant age-related differences in brain activation patterns. Rescaling the data for estimated variability in vascular reactivity did not affect the results. In older adults, there was relatively stronger functional connectivity with the default mode network, the sensorimotor network, and the dorsal attention network for the frontoparietal and salience network seeds during the task. Conversely, younger adults had relatively stronger connections within and between the frontoparietal and salience networks. CONCLUSION In this first fMRI study of emotional Stroop interference in older and younger adults, we found that the emotional interference effect was unchanged in healthy aging and replicated the finding from non-emotional task studies that older adults have greater between-network and less within-network connectivity compared to younger adults.
Collapse
Affiliation(s)
- Ina S Almdahl
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Liva J Martinussen
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Maria S Korsnes
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
55
|
Krishnamurthy V, Sprick JD, Krishnamurthy LC, Barter JD, Turabi A, Hajjar IM, Nocera JR. The Utility of Cerebrovascular Reactivity MRI in Brain Rehabilitation: A Mechanistic Perspective. Front Physiol 2021; 12:642850. [PMID: 33815146 PMCID: PMC8009989 DOI: 10.3389/fphys.2021.642850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebrovascular control and its integration with other physiological systems play a key role in the effective maintenance of homeostasis in brain functioning. Maintenance, restoration, and promotion of such a balance are one of the paramount goals of brain rehabilitation and intervention programs. Cerebrovascular reactivity (CVR), an index of cerebrovascular reserve, plays an important role in chemo-regulation of cerebral blood flow. Improved vascular reactivity and cerebral blood flow are important factors in brain rehabilitation to facilitate desired cognitive and functional outcomes. It is widely accepted that CVR is impaired in aging, hypertension, and cerebrovascular diseases and possibly in neurodegenerative syndromes. However, a multitude of physiological factors influence CVR, and thus a comprehensive understanding of underlying mechanisms are needed. We are currently underinformed on which rehabilitation method will improve CVR, and how this information can inform on a patient's prognosis and diagnosis. Implementation of targeted rehabilitation regimes would be the first step to elucidate whether such regimes can modulate CVR and in the process may assist in improving our understanding for the underlying vascular pathophysiology. As such, the high spatial resolution along with whole brain coverage offered by MRI has opened the door to exciting recent developments in CVR MRI. Yet, several challenges currently preclude its potential as an effective diagnostic and prognostic tool in treatment planning and guidance. Understanding these knowledge gaps will ultimately facilitate a deeper understanding for cerebrovascular physiology and its role in brain function and rehabilitation. Based on the lessons learned from our group's past and ongoing neurorehabilitation studies, we present a systematic review of physiological mechanisms that lead to impaired CVR in aging and disease, and how CVR imaging and its further development in the context of brain rehabilitation can add value to the clinical settings.
Collapse
Affiliation(s)
- Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Justin D. Sprick
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
| | - Jolie D. Barter
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Aaminah Turabi
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Ihab M. Hajjar
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Joe R. Nocera
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
56
|
Wolf RL, Ware JB. Cerebrovascular Reactivity Mapping Made Simpler: A Pragmatic Approach for the Clinic and Laboratory. Radiology 2021; 299:426-427. [PMID: 33689475 DOI: 10.1148/radiol.2021210165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ronald L Wolf
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA 19104
| | - Jeffrey B Ware
- From the Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA 19104
| |
Collapse
|
57
|
Liu P, Liu G, Pinho MC, Lin Z, Thomas BP, Rundle M, Park DC, Huang J, Welch BG, Lu H. Cerebrovascular Reactivity Mapping Using Resting-State BOLD Functional MRI in Healthy Adults and Patients with Moyamoya Disease. Radiology 2021; 299:419-425. [PMID: 33687287 DOI: 10.1148/radiol.2021203568] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Cerebrovascular reserve, the potential capacity of brain tissue to receive more blood flow when needed, is a desirable marker in evaluating ischemic risk. However, current measurement methods require acetazolamide injection or hypercapnia challenge, prompting a clinical need for resting-state (RS) blood oxygen level-dependent (BOLD) functional MRI data to measure cerebrovascular reactivity (CVR). Purpose To optimize and evaluate an RS CVR MRI technique and demonstrate its relationship to neurosurgical treatment. Materials and Methods In this HIPAA-compliant study, RS BOLD functional MRI data collected in 170 healthy controls between December 2008 and September 2010 were retrospectively evaluated to identify the optimal frequency range of temporal filtering on the basis of spatial correlation with the reference standard CVR map obtained with CO2 inhalation. Next, the optimized RS method was applied in a new, prospective cohort of 50 participants with Moyamoya disease who underwent imaging between June 2014 and August 2019. Finally, CVR values were compared between brain hemispheres with and brain hemispheres without revascularization surgery by using Mann-Whitney U test. Results A total of 170 healthy controls (mean age ± standard deviation, 51 years ± 20; 105 women) and 100 brain hemispheres of 50 participants with Moyamoya disease (mean age, 41 years ± 12; 43 women) were evaluated. RS CVR maps based on a temporal filtering frequency of [0, 0.1164 Hz] yielded the highest spatial correlation (r = 0.74) with the CO2 inhalation CVR results. In patients with Moyamoya disease, 77 middle cerebral arteries (MCAs) had stenosis. RS CVR in the MCA territory was lower in the group that did not undergo surgery (n = 30) than in the group that underwent surgery (n = 47) (mean, 0.407 relative units [ru] ± 0.208 vs 0.532 ru ± 0.182, respectively; P = .006), which is corroborated with the CO2 inhalation CVR data (mean, 0.242 ru ± 0.273 vs 0.437 ru ± 0.200; P = .003). Conclusion Cerebrovascular reactivity mapping performed by using resting-state blood oxygen level-dependent functional MRI provided a task-free method to measure cerebrovascular reserve and depicted treatment effect of revascularization surgery in patients with Moyamoya disease comparable to that with the reference standard of CO2 inhalation MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wolf and Ware in this issue.
Collapse
Affiliation(s)
- Peiying Liu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Gongkai Liu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Marco C Pinho
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Zixuan Lin
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Binu P Thomas
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Melissa Rundle
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Denise C Park
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Judy Huang
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Babu G Welch
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Hanzhang Lu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| |
Collapse
|
58
|
Moia S, Termenon M, Uruñuela E, Chen G, Stickland RC, Bright MG, Caballero-Gaudes C. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI. Neuroimage 2021; 233:117914. [PMID: 33684602 PMCID: PMC8351526 DOI: 10.1016/j.neuroimage.2021.117914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi-echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined data, to more complex models including regressors obtained from multi-echo independent component analysis with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to make signal intensity changes independent from motion, as well as the reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results reveal that a conservative independent component analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward due to their complex interaction with the BH-induced BOLD response.
Collapse
Affiliation(s)
- Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain.
| | - Maite Termenon
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Eneko Uruñuela
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH/HHS, Bethesda, MD, United States
| | - Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
59
|
Uddin N, Tivarus M, Adams H, Little E, Schifitto G, Lande MB. Magnetic Resonance Imaging in Childhood Primary Hypertension: Potential in the Study of Cognitive Outcomes. Hypertension 2021; 77:751-758. [PMID: 33566685 PMCID: PMC7880540 DOI: 10.1161/hypertensionaha.120.15242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary hypertension in youth and young adulthood is associated with decreased neurocognitive test performance both in midlife and during youth itself, leading to concern of subsequent cognitive decline and dementia in later life. The early vascular effects of hypertension in youth are likely involved in the pathogenesis of hypertensive target organ damage to the brain, but the potential impact of antihypertensive treatment from youth on subsequent cognitive health is not known. This review will highlight the need to answer the question of whether treatment of hypertension from early in life would slow cognitive decline in adulthood, and will then outline, for the nonneurologist, magnetic resonance imaging techniques potentially useful in the study of the pathogenesis of decreased cognition in hypertensive youth and for use as potential biomarkers for early antihypertensive treatment interventions.
Collapse
Affiliation(s)
- Nasir Uddin
- Department of Neurology, University of Rochester,
Rochester, NY
| | - Madalina Tivarus
- Department of Imaging Sciences, University of Rochester,
Rochester, NY
- Department of Neuroscience, University of Rochester,
Rochester, NY
| | - Heather Adams
- Department of Neurology, University of Rochester,
Rochester, NY
- Department of Pediatrics, University of Rochester,
Rochester, NY
| | - Erika Little
- Department of Pediatrics, University of Rochester,
Rochester, NY
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester,
Rochester, NY
- Department of Imaging Sciences, University of Rochester,
Rochester, NY
| | - Marc B. Lande
- Department of Pediatrics, University of Rochester,
Rochester, NY
| |
Collapse
|
60
|
Ma J, Cao X, Chen F, Ye Q, Qin R, Cheng Y, Zhu X, Xu Y. Exosomal MicroRNAs Contribute to Cognitive Impairment in Hypertensive Patients by Decreasing Frontal Cerebrovascular Reactivity. Front Neurosci 2021; 15:614220. [PMID: 33732103 PMCID: PMC7957933 DOI: 10.3389/fnins.2021.614220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
Mechanisms underlying cognitive impairment (CI) in hypertensive patients remain relatively unclear. The present study aimed to explore the relationship among serum exosomal microRNAs (miRNAs), cerebrovascular reactivity (CVR), and cognitive function in hypertensive patients. Seventy-three hypertensive patients with CI (HT-CI), 67 hypertensive patients with normal cognition (HT-NC), and 37 healthy controls underwent identification of exosomal miRNA, multimodal magnetic resonance imaging (MRI) scans, and neuropsychological tests. CVR mapping was investigated based on resting-state functional MRI data. Compared with healthy subjects and HT-NC subjects, HT-CI subjects displayed decreased serum exosomal miRNA-330-3p. The group difference of CVR was mainly found in the left frontal lobe and demonstrated that HT-CI group had a lower CVR than both HT-NC group and control group. Furthermore, both the CVR in the left medial superior frontal gyrus and the miRNA-330-3p level were significantly correlated with executive function (r = -0.275, P = 0.021, and r = -0.246, P = 0.04, respectively) in HT-CI subjects, and the CVR was significantly correlated with the miRNA-330-3p level (r = 0.246, P = 0.040). Notably, path analysis showed that the CVR mediated the association between miRNA-330-3p and executive function. In conclusion, decreased miRNA-330-3p might contribute to CI in hypertensive patients by decreasing frontal CVR and could be a biomarker of early diagnosis.
Collapse
Affiliation(s)
- Junyi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiang Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Fangyu Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Qing Ye
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yue Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| |
Collapse
|
61
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
62
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
63
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
64
|
Murray KD, Singh MV, Zhuang Y, Uddin MN, Qiu X, Weber MT, Tivarus ME, Wang HZ, Sahin B, Zhong J, Maggirwar SB, Schifitto G. Pathomechanisms of HIV-Associated Cerebral Small Vessel Disease: A Comprehensive Clinical and Neuroimaging Protocol and Analysis Pipeline. Front Neurol 2020; 11:595463. [PMID: 33384655 PMCID: PMC7769815 DOI: 10.3389/fneur.2020.595463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: We provide an in-depth description of a comprehensive clinical, immunological, and neuroimaging study that includes a full image processing pipeline. This approach, although implemented in HIV infected individuals, can be used in the general population to assess cerebrovascular health. Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD). The study focuses on the interaction of activated platelets, pro-inflammatory monocytes and endothelial cells and their impact on the neurovascular unit. The effects on the neurovascular unit are evaluated by a novel combination of imaging biomarkers. Sample Size: We will enroll 110 HIV-infected individuals on stable combination anti-retroviral therapy for at least three months and an equal number of age-matched controls. We anticipate a drop-out rate of 20%. Methods and Design: Subjects are followed for three years and evaluated by flow cytometric analysis of whole blood (to measure platelet activation, platelet monocyte complexes, and markers of monocyte activation), neuropsychological testing, and brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the recommended clinical small vessel imaging standards and adds several advanced sequences to obtain quantitative assessments of brain tissues including white matter microstructure, tissue susceptibility, and blood perfusion. Discussion: The study provides further understanding of the underlying mechanisms of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study design and comprehensive approach allows the investigation of quantitative changes in imaging metrics and their impact on cognitive performance.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
65
|
Dodd AB, Lu H, Wertz CJ, Ling JM, Shaff NA, Wasserott BC, Meier TB, Park G, Oglesbee SJ, Phillips JP, Campbell RA, Liu P, Mayer AR. Persistent alterations in cerebrovascular reactivity in response to hypercapnia following pediatric mild traumatic brain injury. J Cereb Blood Flow Metab 2020; 40:2491-2504. [PMID: 31903838 PMCID: PMC7820694 DOI: 10.1177/0271678x19896883] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/15/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022]
Abstract
Much attention has been paid to the effects of mild traumatic brain injury (mTBI) on cerebrovascular reactivity in adult populations, yet it remains understudied in pediatric injury. In this study, 30 adolescents (12-18 years old) with pediatric mTBI (pmTBI) and 35 age- and sex-matched healthy controls (HC) underwent clinical and neuroimaging assessments during sub-acute (6.9 ± 2.2 days) and early chronic (120.4 ± 11.7 days) phases of injury. Relative to controls, pmTBI reported greater initial post-concussion symptoms, headache, pain, and anxiety, resolving by four months post-injury. Patients reported increased sleep issues and exhibited deficits in processing speed and attention across both visits. In grey-white matter interface areas throughout the brain, pmTBI displayed increased maximal fit/amplitude of a time-shifted end-tidal CO2 regressor to blood oxygen-level dependent response relative to HC, as well as increased latency to maximal fit. The alterations persisted through the early chronic phase of injury, with maximal fit being associated with complaints of ongoing sleep disturbances during post hoc analyses but not cognitive measures of processing speed or attention. Collectively, these findings suggest that deficits in the speed and degree of cerebrovascular reactivity may persist longer than current conceptualizations about clinical recovery within 30 days.
Collapse
Affiliation(s)
- Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Wertz
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Benjamin C Wasserott
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Grace Park
- Department of Pediatric Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Scott J Oglesbee
- Department of Pediatric Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Richard A Campbell
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
66
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
67
|
Ni L, Zhang B, Yang D, Qin R, Xu H, Ma J, Shao P, Xu Y. Lower Cerebrovascular Reactivity Contributed to White Matter Hyperintensity-Related Cognitive Impairment: A Resting-State Functional MRI Study. J Magn Reson Imaging 2020; 53:703-711. [PMID: 32996183 DOI: 10.1002/jmri.27376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) plays an important role in the pathophysiology of white matter hyperintensities (WMHs). The pathogenesis of CVR in the development of WMH-related cognitive impairment (CI) remains poorly understood. PURPOSE To detect the CVR status in WMH subjects with/without CI by using a resting-state blood oxygenation level-dependent (BOLD) approach and to explore the mediating relationships among CVR, WMH, and cognitive level. STUDY TYPE Prospective. SUBJECTS Subjects with moderate to severe WMH (with CI [WMH-CI], n = 68; without CI [WMH-no-CI, n = 63) as well as normal controls (NCs, n = 87). FIELD STRENGTH/SEQUENCE 3.0T with gradient-recalled echoplanar imaging and 3D fluid-attenuated inversion recovery. ASSESSMENT The CVR, WMH volume, and cognitive level were assessed. The CVR map was derived using BOLD signal obtained from resting-state functional MRI data. STATISTICAL TESTS CVR maps were compared among the three groups. Partial correlation analyses were performed to correlate impaired CVR with WMH volume and cognitive test scores. Mediation analysis was conducted to determine whether WMH acted as a mediating factor between CVR and cognitive function. RESULTS Compared with the NC group, both WMH groups showed reduced CVR in the left hemisphere (P < 0.05). The WMH-CI group showed further decreased CVR in the left frontal area, when compared with the WMH-no-CI group (P < 0.05). In the WMH-CI group, the lower CVR in left frontal area was a strong indicator of poor performance on general cognition (r = 0.311), executive function (r = 0.362), and information processing speed (r = 0.399) (all P < 0.05). Periventricular WMH (PWMH) volume mediated these correlations, the β and 95% bootstrap confidence intervals were (0.5097, [0.1498,1.1385]), (-0.4081, [-1.0256,-0.1363]), and (-0.5576, [-1.4666,-0.1538]), respectively. DATA CONCLUSION WMH-CI subjects showed a greater reduction of CVR derived from a resting-state BOLD approach in the left frontal area than WMH-no-CI subjects. Cognition was highly dependent on the integrity of cerebrovascular reactivity and mediated by PWMH burden. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dan Yang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
68
|
Chan ST, Evans KC, Song TY, Selb J, van der Kouwe A, Rosen BR, Zheng YP, Ahn AC, Kwong KK. Dynamic brain-body coupling of breath-by-breath O2-CO2 exchange ratio with resting state cerebral hemodynamic fluctuations. PLoS One 2020; 15:e0238946. [PMID: 32956397 PMCID: PMC7505589 DOI: 10.1371/journal.pone.0238946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The origin of low frequency cerebral hemodynamic fluctuations (CHF) in the resting state remains unknown. Breath-by breath O2-CO2 exchange ratio (bER) has been reported to correlate with the cerebrovascular response to brief breath hold challenge at the frequency range of 0.008-0.03Hz in healthy adults. bER is defined as the ratio of the change in the partial pressure of oxygen (ΔPO2) to that of carbon dioxide (ΔPCO2) between end inspiration and end expiration. In this study, we aimed to investigate the contribution of respiratory gas exchange (RGE) metrics (bER, ΔPO2 and ΔPCO2) to low frequency CHF during spontaneous breathing. METHODS Twenty-two healthy adults were included. We used transcranial Doppler sonography to evaluate CHF by measuring the changes in cerebral blood flow velocity (ΔCBFv) in bilateral middle cerebral arteries. The regional CHF were mapped with blood oxygenation level dependent (ΔBOLD) signal changes using functional magnetic resonance imaging. Temporal features and frequency characteristics of RGE metrics during spontaneous breathing were examined, and the simultaneous measurements of RGE metrics and CHF (ΔCBFv and ΔBOLD) were studied for their correlation. RESULTS We found that the time courses of ΔPO2 and ΔPCO2 were interdependent but not redundant. The oscillations of RGE metrics were coherent with resting state CHF at the frequency range of 0.008-0.03Hz. Both bER and ΔPO2 were superior to ΔPCO2 in association with CHF while CHF could correlate more strongly with bER than with ΔPO2 in some brain regions. Brain regions with the strongest coupling between bER and ΔBOLD overlapped with many areas of default mode network including precuneus and posterior cingulate. CONCLUSION Although the physiological mechanisms underlying the strong correlation between bER and CHF are unclear, our findings suggest the contribution of bER to low frequency resting state CHF, providing a novel insight of brain-body interaction via CHF and oscillations of RGE metrics.
Collapse
Affiliation(s)
- Suk-tak Chan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Karleyton C. Evans
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tian-yue Song
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Juliette Selb
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Bruce R. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Yong-ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Andrew C. Ahn
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kenneth K. Kwong
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
69
|
Samudra N, Motes M, Lu H, Sheng M, Diaz-Arrastia R, Devous M, Hart J, Womack KB. A Pilot Study of Changes in Medial Temporal Lobe Fractional Amplitude of Low Frequency Fluctuations after Sildenafil Administration in Patients with Alzheimer's Disease. J Alzheimers Dis 2020; 70:163-170. [PMID: 31156166 DOI: 10.3233/jad-190128] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of neurodegenerative cognitive impairment, defined by abnormal accumulations of amyloid-β and tau. Approaches directly targeting these proteins have not resulted in a disease modifying therapy. Neurovascular unit dysfunction is a feature of AD offering an alternative target for intervention. Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, improves cognitive functioning in mouse models of AD. Recent work in AD patients has demonstrated increased cerebral blood flow, as well as brain oxygen utilization after a single dose of sildenafil. Its effect on nitric oxide-cGMP signaling may have downstream effects on neuroplasticity, amyloid-β processing, and improved neurovascular unit function. Fractional amplitude of low frequency fluctuations (fALFF) assesses spontaneous neural activity via resting state fMRI BOLD signal (0.01-0.08 or 0.10 Hz). In AD, other assessments have revealed increased fALFF in hippocampi and parahippocampal gyri. Here, we examined the effects of a single dose of sildenafil on fALFF in a cohort of 10 AD patients. We found a decrease (p < 0.03, α= 0.05) in fALFF an hour after sildenafil administration in the right hippocampus. Additionally, cerebral vascular reactivity in response to carbon dioxide inhalation, a measure of neural vascular reserve previously collected on most of these participants, was not significantly correlated with this decrease, implying that change in fALFF may not have been solely due to altered vascular reactivity to CO2. We demonstrate that in patients with AD, hippocampal fALFF decreases in response to sildenafil, suggesting a normalization. These findings support further investigation into the effects of sildenafil in AD.
Collapse
Affiliation(s)
- Niyatee Samudra
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Motes
- School of Behavioral & Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Sheng
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Penn Presbyterian Medical Center, Philadelphia, PA, USA
| | - Michael Devous
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral & Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - John Hart
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral & Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle B Womack
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral & Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
70
|
Shih CT, Chiu SC, Peng SL. Caffeine enhances BOLD responses to electrical whisker pad stimulation in rats during alpha-chloralose anaesthesia. Eur J Neurosci 2020; 53:601-610. [PMID: 32926471 DOI: 10.1111/ejn.14968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
By reducing the cerebral blood flow and thereby increasing the resting deoxyhaemoglobin concentration, many human studies have shown that caffeine has a beneficial effect on enhancing the magnitude of blood-oxygenation-level-dependent (BOLD) responses. However, the effect of caffeine on BOLD responses in animals under anaesthesia has not been demonstrated. In this study, we aimed to determine the effect of systemic caffeine administration on BOLD responses in rats under alpha-chloralose. By applying electric whisker pad stimulation to male Sprague-Dawley rats, we performed fMRI measurements before and after the caffeine injection (40 mg/kg, n = 7) or an equivalent volume of saline (n = 6) at 7T. To understand the potential perturbation of animal physiology during stimulation, arterial blood pressure was measured in a separate group of animals (n = 3) outside the scanner. Caffeine significantly decreased baseline BOLD signals (p = .05) due to the increased deoxyhaemoglobin level. Both BOLD responses and t-values in the primary somatosensory cortex were significantly increased (both p < .05). The blood pressure changed insignificantly (p > .05). No significant differences in BOLD responses and t-values were observed in the control condition of saline injection (both p > .05). These findings suggested that, although the cerebral activity was lower under alpha-chloralose anaesthesia, the higher level of deoxygemoglobin at the baseline under the caffeinated condition can benefit the magnitude of BOLD responses in rats. These findings suggest that animal models might serve as potential platforms for further caffeine-related fMRI research studies.
Collapse
Affiliation(s)
- Cheng-Ting Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
71
|
Taneja K, Liu P, Xu C, Turner M, Zhao Y, Abdelkarim D, Thomas BP, Rypma B, Lu H. Quantitative Cerebrovascular Reactivity in Normal Aging: Comparison Between Phase-Contrast and Arterial Spin Labeling MRI. Front Neurol 2020; 11:758. [PMID: 32849217 PMCID: PMC7411174 DOI: 10.3389/fneur.2020.00758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose: Cerebrovascular reactivity (CVR) is an index of the dilatory function of cerebral blood vessels and has shown great promise in the diagnosis of risk factors in cerebrovascular disease. Aging is one such risk factor; thus, it is important to characterize age-related differences in CVR. CVR can be measured by BOLD MRI but few studies have measured quantitative cerebral blood flow (CBF)-based CVR in the context of aging. This study aims to determine the age effect on CVR using two quantitative CBF techniques, phase-contrast (PC), and arterial spin labeling (ASL) MRI. Methods: In 49 participants (32 younger and 17 older), CVR was measured with PC, ASL, and BOLD MRI. These CVR methods were compared across young and older groups to determine their dependence on age. PC and ASL CVR were also studied for inter-correlation and mean differences. Gray and white matter CVR values were also studied. Results: PC CVR was higher in younger participants than older participants (by 17%, p = 0.046). However, there were no age differences in ASL or BOLD CVR. ASL CVR was significantly correlated with PC CVR (p = 0.042) and BOLD CVR (p = 0.016), but its values were underestimated compared to PC CVR (p = 0.045). ASL CVR map revealed no difference between gray matter and white matter tissue types, whereas gray matter was significantly higher than white matter in the BOLD CVR map. Conclusion: This study compared two quantitative CVR techniques in the context of brain aging and revealed that PC CVR is a more sensitive method for detection of age differences, despite the absence of spatial information. The ASL method showed a significant correlation with PC and BOLD, but it tends to underestimate CVR due to confounding factors associated with this technique. Importantly, our data suggest that there is not a difference in CBF-based CVR between the gray and white matter, in contrast to previous observation using BOLD MRI.
Collapse
Affiliation(s)
- Kamil Taneja
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peiying Liu
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuimei Xu
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Monroe Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanzhang Lu
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
72
|
Liu P, Xu C, Lin Z, Sur S, Li Y, Yasar S, Rosenberg P, Albert M, Lu H. Cerebrovascular reactivity mapping using intermittent breath modulation. Neuroimage 2020; 215:116787. [PMID: 32278094 DOI: 10.1016/j.neuroimage.2020.116787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cerebrovascular reactivity (CVR), an index of brain vessel's dilatory capacity, is typically measured using hypercapnic gas inhalation or breath-holding as a vasoactive challenge. However, these methods require considerable subject cooperation and could be challenging in clinical studies. More recently, there have been attempts to use resting-state BOLD data to map CVR by utilizing spontaneous changes in breathing pattern. However, in subjects who have small fluctuations in their spontaneous breathing pattern, the CVR results could be noisy and unreliable. In this study, we aim to develop a new method for CVR mapping that does not require gas-inhalation yet provides substantially higher sensitivity than resting-state CVR mapping. This new method is largely based on resting-state scan, but introduces intermittent modulation of breathing pattern in the subject to enhance fluctuations in their end-tidal CO2 (EtCO2) level. Here we examined the comfort level, sensitivity, and accuracy of this method in two studies. First, in 8 healthy young subjects, we developed the intermittent breath-modulation method using two different modulation frequencies, 6 s per breath and 12 s per breath, respectively, and compared the results to three existing CVR methods, specifically hypercapnic gas inhalation, breath-holding, and resting-state. Our results showed that the comfort level of the 6-s breath-modulation method was significantly higher than breath-holding (p = 0.007) and CO2-inhalation (p = 0.015) methods, while not different from the resting-state, i.e. free breathing method (p = 0.52). When comparing the sensitivity of CVR methods, the breath-modulation methods revealed higher Z-statistics compared to the resting-state scan (p < 0.008) and was comparable to breath-holding results. Next, we tested the feasibility of breath-modulation CVR mapping (6 s per breath) in 21 cognitively normal elderly participants and compared quantitative CVR values to that obtained with the CO2-inhalation method. Whole-brain CVR was found to be 0.150 ± 0.055 and 0.154 ± 0.032 %ΔBOLD/mmHg for the breath-modulation and CO2-inhalation method, respectively, with a significant correlation between them (y = 0.97x, p = 0.007). CVR mapping with intermittent breath modulation may be a useful method that combines the advantages of resting-state and CO2-inhalation based approaches.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandeepa Sur
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
73
|
Sachdev PS. Developing robust biomarkers for vascular cognitive disorders: adding 'V' to the AT(N) research framework. Curr Opin Psychiatry 2020; 33:148-155. [PMID: 31895155 DOI: 10.1097/yco.0000000000000577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The AT(N) research framework was introduced in 2018 to define Alzheimer's disease as a biological entity. It is recognized that Alzheimer's disease lesions rarely occur in isolation in older brains, with cerebrovascular disease (CVD) being a common comorbidity. To fully characterize the disorder of dementia, the AT(N) framework needs to be extended with biomarkers for other disorders. The present review examines some of the requirements for adding a 'V' to the AT(N), and examines the currently available biomarkers as definitive markers of CVD. RECENT FINDINGS Neuroimaging biomarkers of CVD have received the greatest attention, with rapid advances in MRI techniques showing the greatest promise. Challenges remain in standardization of techniques, validation of some of the results and assessing total CVD burden from diverse lesion types. Retinal imaging shows promise as a window to cerebral vasculature. Biochemical markers are advancing rapidly, but their specificity for CVD is not established. SUMMARY Biomarkers of CVD have seen rapid advances but further validation and determination of their specificity are needed before they can be reliably used to delineate a V in the AT(N) framework as definitive indicators of significant CVD.
Collapse
Affiliation(s)
- Perminder S Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales and the Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
74
|
Guidi M, Huber L, Lampe L, Merola A, Ihle K, Möller HE. Cortical laminar resting-state signal fluctuations scale with the hypercapnic blood oxygenation level-dependent response. Hum Brain Mapp 2020; 41:2014-2027. [PMID: 31957959 PMCID: PMC7267967 DOI: 10.1002/hbm.24926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 11/06/2022] Open
Abstract
Calibrated functional magnetic resonance imaging can remove unwanted sources of signal variability in the blood oxygenation level‐dependent (BOLD) response. This is achieved by scaling, using information from a perfusion‐sensitive scan during a purely vascular challenge, typically induced by a gas manipulation or a breath‐hold task. In this work, we seek for a validation of the use of the resting‐state fluctuation amplitude (RSFA) as a scaling factor to remove vascular contributions from the BOLD response. Given the peculiarity of depth‐dependent vascularization in gray matter, BOLD and vascular space occupancy (VASO) data were acquired at submillimeter resolution and averaged across cortical laminae. RSFA from the primary motor cortex was, thus, compared to the amplitude of hypercapnia‐induced signal changes (tSDhc) and with the M factor of the Davis model on a laminar level. High linear correlations were observed for RSFA and tSDhc (R2 = 0.92 ± 0.06) and somewhat reduced for RSFA and M (R2 = 0.62 ± 0.19). Laminar profiles of RSFA‐normalized BOLD signal changes yielded good agreement with corresponding VASO profiles. Overall, this suggests that RSFA contains strong vascular components and is also modulated by baseline quantities contained in the M factor. We conclude that RSFA may replace the scaling factor tSDhc for normalizing the laminar BOLD response.
Collapse
Affiliation(s)
- Maria Guidi
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alberto Merola
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kristin Ihle
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
75
|
Co-localized impaired regional cerebrovascular reactivity in chronic concussion is associated with BOLD activation differences during a working memory task. Brain Imaging Behav 2020; 14:2438-2449. [PMID: 31903527 DOI: 10.1007/s11682-019-00194-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to quantify differences in blood oxygen level dependent (BOLD) activation on a working memory task, baseline cerebral blood flow (CBF0), and cerebrovascular reactivity (CVR) between participants with and without a history of concussion. A dual-echo pseudo-continuous arterial spin labelling (pCASL) sequence was performed on a group of 10 subjects with a previous concussion (126 ± 15 days prior) and on a control group (n = 10) during a visual working memory protocol. A separate dual-echo pCASL sequence was used to derive CVR and CBF0 measurements from a boxcar hypercapnic breathing protocol. Brain areas with significant activation differences on the working memory task between groups were identified and combined as an aggregate region of interest for CBF and CVR analyses. Areas of reduced BOLD activation during the working memory task in the concussed group included the ventral anterior cingulate cortex (ACC), the medial temporal gyrus (MTG), and the lateral occipital cortex in two loci. A single area of increased activation was located in the parietal operculum. Further analyses of CBF0 and CVR in these regions revealed reduced CVR in the concussed group in the MTG and ACC, while CBF0 did not differ. The differences in CVR between the two groups in these regions suggest that concussive injury may result in microvascular dysfunction. In turn, the decreased BOLD response during the task could be due to altered neurovascular coupling, rather than an impairment in neural activation alone. However, in other regions associated with working memory, unchanged CBF0 and CVR suggests that neural injury also persists after concussion. In the future, BOLD results should be normalized to CVR in order achieve a clearer understanding of the neural and vascular contributions to the differences in the signal.
Collapse
|
76
|
Duyn JH, Ozbay PS, Chang C, Picchioni D. Physiological changes in sleep that affect fMRI inference. Curr Opin Behav Sci 2019; 33:42-50. [PMID: 32613032 DOI: 10.1016/j.cobeha.2019.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
fMRI relies on a localized cerebral blood flow (CBF) response to changes in cortical neuronal activity. An underappreciated aspect however is its sensitivity to contributions from autonomic physiology that may affect CBF through changes in vascular resistance and blood pressure. As is reviewed here, this is crucial to consider in fMRI studies of sleep, given the close linkage between the regulation of arousal state and autonomic physiology. Typical methods for separating these effects are based on the use of reference signals that may include physiological parameters such as heart rate and respiration; however, the use of time-invariant models may not be adequate due to the possibly changing relationship between reference and fMRI signals with arousal state. In addition, recent research indicates that additional physiological reference signals may be needed to accurately describe changes in systemic physiology, including sympathetic indicators such as finger skin vascular tone and blood pressure.
Collapse
Affiliation(s)
- Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| | - Pinar S Ozbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University
| | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| |
Collapse
|
77
|
Kassinopoulos M, Mitsis GD. Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration. Neuroimage 2019; 202:116150. [PMID: 31487547 DOI: 10.1016/j.neuroimage.2019.116150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is widely viewed as the gold standard for studying brain function due to its high spatial resolution and non-invasive nature. However, it is well established that changes in breathing patterns and heart rate strongly influence the blood oxygen-level dependent (BOLD) fMRI signal and this, in turn, can have considerable effects on fMRI studies, particularly resting-state studies. The dynamic effects of physiological processes are often quantified by using convolution models along with simultaneously recorded physiological data. In this context, physiological response function (PRF) curves (cardiac and respiratory response functions), which are convolved with the corresponding physiological fluctuations, are commonly employed. While it has often been suggested that the PRF curves may be region- or subject-specific, it is still an open question whether this is the case. In the present study, we propose a novel framework for the robust estimation of PRF curves and use this framework to rigorously examine the implications of using population-, subject-, session- and scan-specific PRF curves. The proposed framework was tested on resting-state fMRI and physiological data from the Human Connectome Project. Our results suggest that PRF curves vary significantly across subjects and, to a lesser extent, across sessions from the same subject. These differences can be partly attributed to physiological variables such as the mean and variance of the heart rate during the scan. The proposed methodological framework can be used to obtain robust scan-specific PRF curves from data records with duration longer than 5 min, exhibiting significantly improved performance compared to previously defined canonical cardiac and respiration response functions. Besides removing physiological confounds from the BOLD signal, accurate modeling of subject- (or session-/scan-) specific PRF curves is of importance in studies that involve populations with altered vascular responses, such as aging subjects.
Collapse
Affiliation(s)
- Michalis Kassinopoulos
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
78
|
Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study. Magn Reson Imaging 2019; 59:46-52. [PMID: 30849484 DOI: 10.1016/j.mri.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE To demonstrate the feasibility of mapping cerebrovascular reactivity (CVR) using resting-state functional MRI (fMRI) data without gas or other challenges in patients with cerebrovascular diseases and to show that brain regions affected by the diseases have diminished vascular reactivity. MATERIALS AND METHODS Two sub-studies were performed on patients with stroke and Moyamoya disease. In Study 1, 20 stroke patients (56.3 ± 9.7 years, 7 females) were enrolled and resting-state blood‑oxygenation-level-dependent (rs-BOLD) fMRI data were collected, from which CVR maps were computed. CVR values were compared across lesion, perilesional and control ROIs defined on anatomic images. Reproducibility of the CVR measurement was tested in 6 patients with follow-up scans. In Study 2, rs-BOLD fMRI and dynamic susceptibility contrast (DSC) MRI scans were collected in 5 patients with Moyamoya disease (32.4 ± 8.2 years, 4 females). Cerebral blood flow (CBF), cerebral blood volume (CBV), and time-to-peak (TTP) maps were obtained from the DSC MRI data. CVR values were compared between stenotic brain regions and control regions perfused by non-stenotic arteries. RESULTS In stroke patients, lesion CVR (0.250 ± 0.055 relative unit (r.u.)) was lower than control CVR (0.731 ± 0.088 r.u., p = 0.0002). CVR was also lower in the perilesional regions in a graded manner (perilesion 1 CVR = 0.422 ± 0.051 r.u., perilesion 2 CVR = 0.492 ± 0.046 r.u.), relative to that in the control regions (p = 0.005 and 0.036, respectively). In the repeatability analysis, a strong correlation was observed between lesion CVR (r2 = 0.91, p = 0.006) measured at two time points, as well as between control CVR (r2 = 0.79, p = 0.036) at two time points. In Moyamoya patients, CVR in the perfusion deficit regions delineated by DSC TTP maps (0.178 ± 0.189 r.u.) was lower than that in the control regions (0.868 ± 0.214 r.u., p = 0.013). Furthermore, the extent of reduction in CVR was significantly correlated with the extent of lengthening in TTP (r2 = 0.91, p = 0.033). CONCLUSION Our findings suggested that rs-BOLD data can be used to reproducibly evaluate CVR in patients with cerebrovascular diseases without the use of any vasoactive challenges.
Collapse
|
79
|
Agarwal S, Sair HI, Gujar S, Hua J, Lu H, Pillai JJ. Functional Magnetic Resonance Imaging Activation Optimization in the Setting of Brain Tumor-Induced Neurovascular Uncoupling Using Resting-State Blood Oxygen Level-Dependent Amplitude of Low Frequency Fluctuations. Brain Connect 2019; 9:241-250. [PMID: 30547681 DOI: 10.1089/brain.2017.0562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The goal of this study was to demonstrate that a novel resting state BOLD ALFF (amplitude of low frequency fluctuations)-based correction method can substantially enhance the detectability of motor task activation in the presence of tumor-induced neurovascular uncoupling (NVU). Twelve de novo brain tumor patients who underwent comprehensive clinical BOLD fMRI exams including task fMRI and resting state fMRI (rsfMRI) were evaluated. Each patient displayed decreased/absent task fMRI activation in the ipsilesional primary motor cortex in the absence of corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model (GLM) analysis (reflecting motor activation vs. rest). ALFF maps were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and ipsilesional (IL) hemispheres were parcellated using an Automated Anatomical Labeling (AAL) template for each patient. A novel ALFF-based correction method was used to identify the NVU affected voxels in the ipsilesional primary motor cortex (PMC), and a correction factor was applied to normalize the baseline Z-scores for these voxels. In all cases, substantially greater activation was seen on post-ALFF correction motor activation maps within the ipsilesional precentral gyri than in the pre-ALFF correction activation maps. We have demonstrated the feasibility of a new resting state ALFF-based technique for effective correction of brain tumor-related NVU in the primary motor cortex.
Collapse
Affiliation(s)
- Shruti Agarwal
- 1 Divisions of Neuroradiology and Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haris I Sair
- 1 Divisions of Neuroradiology and Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sachin Gujar
- 1 Divisions of Neuroradiology and Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Hua
- 2 Divisions of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,3 F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Hanzhang Lu
- 2 Divisions of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,3 F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jay J Pillai
- 1 Divisions of Neuroradiology and Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,4 Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
80
|
Juttukonda MR, Donahue MJ. Neuroimaging of vascular reserve in patients with cerebrovascular diseases. Neuroimage 2019; 187:192-208. [PMID: 29031532 PMCID: PMC5897191 DOI: 10.1016/j.neuroimage.2017.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular reactivity, defined broadly as the ability of brain parenchyma to adjust cerebral blood flow in response to altered metabolic demand or a vasoactive stimulus, is being measured with increasing frequency and may have a use for portending new or recurrent stroke risk in patients with cerebrovascular disease. The purpose of this review is to outline (i) the physiological basis of variations in cerebrovascular reactivity, (ii) available approaches for measuring cerebrovascular reactivity in research and clinical settings, and (iii) clinically-relevant cerebrovascular reactivity findings in the context of patients with cerebrovascular disease, including atherosclerotic arterial steno-occlusion, non-atherosclerotic arterial steno-occlusion, anemia, and aging. Literature references summarizing safety considerations for these procedures and future directions for standardizing protocols and post-processing procedures across centers are presented in the specific context of major unmet needs in the setting of cerebrovascular disease.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
81
|
Li Y, Liu P, Li Y, Fan H, Su P, Peng SL, Park DC, Rodrigue KM, Jiang H, Faria AV, Ceritoglu C, Miller M, Mori S, Lu H. ASL-MRICloud: An online tool for the processing of ASL MRI data. NMR IN BIOMEDICINE 2019; 32:e4051. [PMID: 30588671 PMCID: PMC6324946 DOI: 10.1002/nbm.4051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 05/30/2023]
Abstract
Arterial spin labeling (ASL) MRI is increasingly used in research and clinical settings. The purpose of this work is to develop a cloud-based tool for ASL data processing, referred to as ASL-MRICloud, which may be useful to the MRI community. In contrast to existing ASL toolboxes, which are based on software installation on the user's local computer, ASL-MRICloud uses a web browser for data upload and results download, and the computation is performed on the remote server. As such, this tool is independent of the user's operating system, software version, and CPU speed. The ASL-MRICloud tool was implemented to be compatible with data acquired by scanners from all major MRI manufacturers, is capable of processing several common forms of ASL, including pseudo-continuous ASL and pulsed ASL, and can process single-delay and multi-delay ASL data. The outputs of ASL-MRICloud include absolute and relative values of cerebral blood flow, arterial transit time, voxel-wise masks indicating regions with potential hyper-perfusion and hypo-perfusion, and an image quality index. The ASL tool is also integrated with a T1 -based brain segmentation and normalization tool in MRICloud to allow generation of parametric maps in standard brain space as well as region-of-interest values. The tool was tested on a large data set containing 309 ASL scans as well as on publicly available ASL data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
Collapse
Affiliation(s)
- Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Li
- AnatomyWorks, LLC, Baltimore, MD, USA
| | - Hongli Fan
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pan Su
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan
| | - Denise C. Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Karen M. Rodrigue
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hangyi Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Andreia V. Faria
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Can Ceritoglu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
82
|
Farhat NS, Theiss R, Santini T, Ibrahim TS, Aizenstein HJ. Neuroimaging of Small Vessel Disease in Late-Life Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:95-115. [PMID: 31705491 PMCID: PMC6939470 DOI: 10.1007/978-981-32-9721-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral small vessel disease is associated with late-life depression, cognitive impairment, executive dysfunction, distress, and loss of life for older adults. Late-life depression is becoming a substantial public health burden, and a considerable number of older adults presenting to primary care have significant clinical depression. Even though white matter hyperintensities are linked with small vessel disease, white matter hyperintensities are nonspecific to small vessel disease and can co-occur with other brain diseases. Advanced neuroimaging techniques at the ultrahigh field magnetic resonance imaging are enabling improved characterization, identification of cerebral small vessel disease and are elucidating some of the mechanisms that associate small vessel disease with late-life depression.
Collapse
Affiliation(s)
- Nadim S Farhat
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Theiss
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Howard J Aizenstein
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
83
|
Bazzigaluppi P, Adams C, Koletar MM, Dorr A, Pikula A, Carlen PL, Stefanovic B. Oophorectomy Reduces Estradiol Levels and Long-Term Spontaneous Neurovascular Recovery in a Female Rat Model of Focal Ischemic Stroke. Front Mol Neurosci 2018; 11:338. [PMID: 30271324 PMCID: PMC6146137 DOI: 10.3389/fnmol.2018.00338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Although epidemiological evidence suggests significant sex and gender-based differences in stroke risk and recovery, females have been widely under-represented in preclinical stroke research. The neurovascular sequelae of brain ischemia in females, in particular, are largely uncertain. We set out to address this gap by a multimodal in vivo study of neurovascular recovery from endothelin-1 model of cortical focal-stroke in sham vs. ovariectomized female rats. Three weeks post ischemic insult, sham operated females recapitulated the phenotype previously reported in male rats in this model, of normalized resting perfusion but sustained peri-lesional cerebrovascular hyperreactivity. In contrast, ovariectomized (Ovx) females showed reduced peri-lesional resting blood flow, and elevated cerebrovascular responsivity to hypercapnia in the peri-lesional and contra-lateral cortices. Electrophysiological recordings showed an attenuation of theta to low-gamma phase-amplitude coupling in the peri-lesional tissue of Ovx animals, despite relative preservation of neuronal power. Further, this chronic stage neuronal network dysfunction was inversely correlated with serum estradiol concentration. Our pioneering data demonstrate dramatic differences in spontaneous recovery in the neurovascular unit between Ovx and Sham females in the chronic stage of stroke, underscoring the importance of considering hormonal-dependent aspects of the ischemic sequelae in the development of novel therapeutic approaches and patient recruitment in clinical trials.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Conner Adams
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Margaret M Koletar
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Adrienne Dorr
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Aleksandra Pikula
- Adult Vascular Neurology, Toronto Western Hospital, Toronto, ON, Canada
| | - Peter L Carlen
- Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
84
|
Sheng M, Lu H, Liu P, Li Y, Ravi H, Peng SL, Diaz-Arrastia R, Devous MD, Womack KB. Sildenafil Improves Vascular and Metabolic Function in Patients with Alzheimer's Disease. J Alzheimers Dis 2018; 60:1351-1364. [PMID: 29036811 DOI: 10.3233/jad-161006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of degenerative dementia in the aging population. Patients with AD have alterations in cerebral hemodynamic function including reduced cerebral blood flow (CBF) and cerebral metabolic rate. Therefore, improved cerebrovascular function may be an attractive goal for pharmaceutical intervention in AD. OBJECTIVE We wished to observe the acute effects of sildenafil on cerebrovascular function and brain metabolism in patients with AD. METHODS We used several novel non-invasive MRI techniques to investigate the alterations of CBF, cerebral metabolic rate of oxygen (CMRO2), and cerebrovascular reactivity (CVR) after a single dose of sildenafil administration in order to assess its physiological effects in patients with AD. CBF, CMRO2, and CVR measurements using MRI were performed before and one hour after the oral administration of 50 mg sildenafil. Baseline Montreal Cognitive Assessment score was also obtained. RESULTS Complete CBF and CMRO2 data were obtained in twelve patients. Complete CVR data were obtained in eight patients. Global CBF and CMRO2 significantly increased (p = 0.03, p = 0.05, respectively) following sildenafil administration. Voxel-wise analyses of CBF maps showed that increased CBF was most pronounced in the bilateral medial temporal lobes. CVR significantly decreased after administration of sildenafil. CONCLUSION Our data suggest that a single dose of sildenafil improves cerebral hemodynamic function and increases cerebral oxygen metabolism in patients with AD.
Collapse
Affiliation(s)
- Min Sheng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Beijing Eden Hospital, Beijing, China
| | - Hanzhang Lu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harshan Ravi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin-Lei Peng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Penn Presbyterian Medical Center, Philadelphia, PA, USA
| | - Michael D Devous
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle B Womack
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
85
|
De Vis JB, Bhogal AA, Hendrikse J, Petersen ET, Siero JCW. Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients. Neuroimage 2018; 179:530-539. [PMID: 29913284 PMCID: PMC6057274 DOI: 10.1016/j.neuroimage.2018.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background and purpose The BOLD signal amplitude as a response to a hypercapnia stimulus is commonly used to assess cerebrovascular reserve. Despite recent advances, the implementation remains cumbersome and alternative ways to assess hemodynamic impairment are desirable. Resting-state BOLD signal fluctuations (rsBOLD) have been proposed however data on its sensitivity and dependence on baseline venous cerebral blood volume (vCBV) is limited. The primary aim of this study was to compare the effect sizes of resting-state and hypercapnia induced BOLD signal changes in the detection of hemodynamic impairment. The second aim of the study was to assess the dependence of BOLD signal variability on vCBV. Materials and methods Fifteen patients with internal carotid artery occlusive disease and 15 matched healthy controls were included in this study. The BOLD signal was derived from a dual-echo gradient-echo echo-planar sequence during hypercapnia (HC) and hyperoxia (HO) gas modulations. BOLD (fractional) amplitude of low frequency fluctuations ((f)ALFF) was compared to HC-BOLD, BOLD response delays derived from time delay analysis and ΔBOLD in response to progressively increasing HC. Effect sizes (i.e. the standard mean difference between patients and controls) were calculated. HO-BOLD was used to estimate vCBV, and its contribution to the variability in rsBOLD signal was evaluated. Results The effect sizes of ALFF and fALFF (0.61 and 0.72) were lower than the effect sizes related to hypercapnia-based hemodynamic assessment analysis; 1.62, 1.56 and 0.90 for HC-BOLD, BOLD response delays and ΔBOLD in response to progressively increasing HC. A moderate relation was found between (f)ALFF and HC-BOLD in controls (R2 of 0.61 and 0.42), but this relation decreased in patients (R2 of 0.33 and 0.15). (f)ALFF did not differ between patients and controls whereas HC-BOLD did (p < 0.005). The ΔBOLD response to progressively increasing HC was significantly different in between patients and controls for ΔEtCO2 values ≥ 2 mmHg (at +2 mmHg F(1, 18) = 5.85, p = 0.026). Up to 31% and 53% of the variance in the ALFF and HC-BOLD spatial distribution could be explained by HO-BOLD. Conclusion ALFF and fALFF demonstrated a moderate effect size to detect hemodynamic impairment whereas the effect size was large for methods employing a hypercapnia-based vascular stress stimulus. Based on our analysis of BOLD signal change as a response to a progressively increasing hypercapnia stimulus we can argue that a hypercapnia stimulus of at least 2 mmHg above baseline EtCO2 is necessary to evaluate hemodynamic impairment. We also demonstrated that a substantial amount of information imbedded in the rsBOLD and HC-BOLD was explained by HO-BOLD. HO-BOLD can serve as a proxy for vCBV and this thus indicates that one should be careful when adopting these techniques in disease cases with compromised CBV.
Collapse
Affiliation(s)
- Jill B De Vis
- National Institute of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.
| | - Alex A Bhogal
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Esben T Petersen
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, Denmark.
| | - Jeroen C W Siero
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
86
|
Agarwal S, Sair HI, Pillai JJ. Limitations of Resting-State Functional MR Imaging in the Setting of Focal Brain Lesions. Neuroimaging Clin N Am 2018; 27:645-661. [PMID: 28985935 DOI: 10.1016/j.nic.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methods of image acquisition and analysis for resting-state functional MR imaging (rsfMR imaging) are still evolving. Neurovascular uncoupling and susceptibility artifact are important confounds of rsfMR imaging in the setting of focal brain lesions such as brain tumors. This article reviews the detection of these confounds using rsfMR imaging metrics in the setting of focal brain lesions. In the near future, with the wide range of ongoing research in rsfMR imaging, these issues likely will be overcome and will open new windows into brain function and connectivity.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
87
|
Chen JJ. Cerebrovascular-Reactivity Mapping Using MRI: Considerations for Alzheimer's Disease. Front Aging Neurosci 2018; 10:170. [PMID: 29922153 PMCID: PMC5996106 DOI: 10.3389/fnagi.2018.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is associated with well-established macrostructural and cellular markers, including localized brain atrophy and deposition of amyloid. However, there is growing recognition of the link between cerebrovascular dysfunction and AD, supported by continuous experimental evidence in the animal and human literature. As a result, neuroimaging studies of AD are increasingly aiming to incorporate vascular measures, exemplified by measures of cerebrovascular reactivity (CVR). CVR is a measure that is rooted in clinical practice, and as non-invasive CVR-mapping techniques become more widely available, routine CVR mapping may open up new avenues of investigation into the development of AD. This review focuses on the use of MRI to map CVR, paying specific attention to recent developments in MRI methodology and on the emerging stimulus-free approaches to CVR mapping. It also summarizes the biological basis for the vascular contribution to AD, and provides critical perspective on the choice of CVR-mapping techniques amongst frail populations.
Collapse
Affiliation(s)
- J J Chen
- Rotman Research Institute, Baycrest, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
88
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
89
|
Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage 2018; 187:104-115. [PMID: 29574034 DOI: 10.1016/j.neuroimage.2018.03.047] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular reserve and provides important information about vascular health in a range of brain conditions and diseases. Unlike steady-state vascular parameters, such as cerebral blood flow (CBF) and cerebral blood volume (CBV), CVR measures the ability of cerebral vessels to dilate or constrict in response to challenges or maneuvers. Therefore, CVR mapping requires a physiological challenge while monitoring the corresponding hemodynamic changes in the brain. The present review primarily focuses on methods that use CO2 inhalation as a physiological challenge while monitoring changes in hemodynamic MRI signals. CO2 inhalation has been increasingly used in CVR mapping in recent literature due to its potency in causing vasodilation, rapid onset and cessation of the effect, as well as advances in MRI-compatible gas delivery apparatus. In this review, we first discuss the physiological basis of CVR mapping using CO2 inhalation. We then review the methodological aspects of CVR mapping, including gas delivery apparatus, the timing paradigm of the breathing challenge, the MRI imaging sequence, and data analysis. In addition, we review alternative approaches for CVR mapping that do not require CO2 inhalation.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| | - Jill B De Vis
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21287, United States; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, United States
| |
Collapse
|
90
|
Agarwal S, Sair HI, Pillai JJ. The Resting-State Functional Magnetic Resonance Imaging Regional Homogeneity Metrics-Kendall's Coefficient of Concordance-Regional Homogeneity and Coherence-Regional Homogeneity-Are Valid Indicators of Tumor-Related Neurovascular Uncoupling. Brain Connect 2018; 7:228-235. [PMID: 28363248 DOI: 10.1089/brain.2016.0482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study is to determine whether regional homogeneity (ReHo) of resting-state blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (rsfMRI) data based on Kendall's coefficient of concordance (KCC-ReHo) and coherence (Cohe-ReHo) metrics may allow detection of brain tumor-induced neurovascular uncoupling (NVU) in the sensorimotor network similar to findings in standard motor task-based BOLD fMRI (tbfMRI) activation. Twelve de novo brain tumor patients undergoing clinical fMRI exams (tbfMRI and rsfMRI) were included in this Institutional Review Board (IRB)-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional sensorimotor cortex in the absence of corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for motor tasks were obtained from the general linear model (GLM) analysis (reflecting motor activation vs. rest). KCC-ReHo and Cohe-ReHo maps were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and ipsilesional (IL) hemispheres were parcellated using an automated anatomical labeling (AAL) template for each patient. Similar region of interest (ROI) analysis was performed on tbfMRI, KCC-ReHo, and Cohe-ReHo maps to allow direct comparison of results. Voxel values in CL and IL ROIs of each map were divided by the corresponding global mean of KCC-ReHo and Cohe-ReHo in bihemispheric cortical brain tissue. Group analysis revealed significantly decreased IL mean KCC-ReHo (p = 0.02) and Cohe-ReHo (p = 0.04) metrics compared with respective values in the CL ROIs, consistent with similar findings of significantly decreased ipsilesional BOLD signal for tbfMRI (p = 0.0005). Ipsilesional abnormalities in ReHo derived from rsfMRI may serve as potential indicators of NVU in patients with brain tumors and other resectable brain lesions; as such, ReHo findings may complement findings on tbfMRI used for presurgical planning.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Haris I Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
91
|
Bowden SG, Gill BJA, Englander ZK, Horenstein CI, Zanazzi G, Chang PD, Samanamud J, Lignelli A, Bruce JN, Canoll P, Grinband J. Local Glioma Cells Are Associated with Vascular Dysregulation. AJNR Am J Neuroradiol 2018; 39:507-514. [PMID: 29371254 DOI: 10.3174/ajnr.a5526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Malignant glioma is a highly infiltrative malignancy that causes variable disruptions to the structure and function of the cerebrovasculature. While many of these structural disruptions have known correlative histopathologic alterations, the mechanisms underlying vascular dysfunction identified by resting-state blood oxygen level-dependent imaging are not yet known. The purpose of this study was to characterize the alterations that correlate with a blood oxygen level-dependent biomarker of vascular dysregulation. MATERIALS AND METHODS Thirty-two stereotactically localized biopsies were obtained from contrast-enhancing (n = 16) and nonenhancing (n = 16) regions during open surgical resection of malignant glioma in 17 patients. Preoperative resting-state blood oxygen level-dependent fMRI was used to evaluate the relationships between radiographic and histopathologic characteristics. Signal intensity for a blood oxygen level-dependent biomarker was compared with scores of tumor infiltration and microvascular proliferation as well as total cell and neuronal density. RESULTS Biopsies corresponded to a range of blood oxygen level-dependent signals, ranging from relatively normal (z = -4.79) to markedly abnormal (z = 8.84). Total cell density was directly related to blood oxygen level-dependent signal abnormality (P = .013, R2 = 0.19), while the neuronal labeling index was inversely related to blood oxygen level-dependent signal abnormality (P = .016, R2 = 0.21). The blood oxygen level-dependent signal abnormality was also related to tumor infiltration (P = .014) and microvascular proliferation (P = .045). CONCLUSIONS The relationship between local, neoplastic characteristics and a blood oxygen level-dependent biomarker of vascular function suggests that local effects of glioma cell infiltration contribute to vascular dysregulation.
Collapse
Affiliation(s)
- S G Bowden
- From the Department of Neurological Surgery (S.G.B.), Oregon Health & Science University, Portland, Oregon.,The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.)
| | - B J A Gill
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - Z K Englander
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - C I Horenstein
- Department of Radiology (C.I.H.), North Shore University Hospital, Long Island, New York
| | - G Zanazzi
- Pathology and Cell Biology (G.Z., P.C.)
| | - P D Chang
- Department of Radiology (P.D.C.), University of California, San Francisco, California
| | - J Samanamud
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.)
| | - A Lignelli
- Radiology (A.L., J.G.), Columbia University Medical Center, New York, New York
| | - J N Bruce
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - P Canoll
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.).,Pathology and Cell Biology (G.Z., P.C.)
| | - J Grinband
- Radiology (A.L., J.G.), Columbia University Medical Center, New York, New York
| |
Collapse
|
92
|
Zwanenburg JJM, van Osch MJP. Targeting Cerebral Small Vessel Disease With MRI. Stroke 2017; 48:3175-3182. [PMID: 28970280 DOI: 10.1161/strokeaha.117.016996] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Jaco J M Zwanenburg
- From the Deptartment of Radiology, University Medical Center Utrecht, the Netherlands (J.J.M.Z.); and Department of Radiology, Leiden University Medical Center, the Netherlands (M.J.P.v.O.).
| | - Matthias J P van Osch
- From the Deptartment of Radiology, University Medical Center Utrecht, the Netherlands (J.J.M.Z.); and Department of Radiology, Leiden University Medical Center, the Netherlands (M.J.P.v.O.)
| |
Collapse
|