51
|
Morrel J, Singapuri K, Landa RJ, Reetzke R. Neural correlates and predictors of speech and language development in infants at elevated likelihood for autism: a systematic review. Front Hum Neurosci 2023; 17:1211676. [PMID: 37662636 PMCID: PMC10469683 DOI: 10.3389/fnhum.2023.1211676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent and heterogeneous neurodevelopmental condition, characterized by social communicative differences, and a combination of repetitive behaviors, focused interests, and sensory sensitivities. Early speech and language delays are characteristic of young autistic children and are one of the first concerns reported by parents; often before their child's second birthday. Elucidating the neural mechanisms underlying these delays has the potential to improve early detection and intervention efforts. To fill this gap, this systematic review aimed to synthesize evidence on early neurobiological correlates and predictors of speech and language development across different neuroimaging modalities in infants with and without a family history of autism [at an elevated (EL infants) and low likelihood (LL infants) for developing autism, respectively]. A comprehensive, systematic review identified 24 peer-reviewed articles published between 2012 and 2023, utilizing structural magnetic resonance imaging (MRI; n = 2), functional MRI (fMRI; n = 4), functional near-infrared spectroscopy (fNIRS; n = 4), and electroencephalography (EEG; n = 14). Three main themes in results emerged: compared to LL infants, EL infants exhibited (1) atypical language-related neural lateralization; (2) alterations in structural and functional connectivity; and (3) mixed profiles of neural sensitivity to speech and non-speech stimuli, with some differences detected as early as 6 weeks of age. These findings suggest that neuroimaging techniques may be sensitive to early indicators of speech and language delays well before overt behavioral delays emerge. Future research should aim to harmonize experimental paradigms both within and across neuroimaging modalities and additionally address the feasibility, acceptability, and scalability of implementing such methodologies in non-academic, community-based settings.
Collapse
Affiliation(s)
- Jessica Morrel
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kripi Singapuri
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Rebecca J. Landa
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Reetzke
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
52
|
Gado S, Lingelbach K, Wirzberger M, Vukelić M. Decoding Mental Effort in a Quasi-Realistic Scenario: A Feasibility Study on Multimodal Data Fusion and Classification. SENSORS (BASEL, SWITZERLAND) 2023; 23:6546. [PMID: 37514840 PMCID: PMC10383122 DOI: 10.3390/s23146546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Humans' performance varies due to the mental resources that are available to successfully pursue a task. To monitor users' current cognitive resources in naturalistic scenarios, it is essential to not only measure demands induced by the task itself but also consider situational and environmental influences. We conducted a multimodal study with 18 participants (nine female, M = 25.9 with SD = 3.8 years). In this study, we recorded respiratory, ocular, cardiac, and brain activity using functional near-infrared spectroscopy (fNIRS) while participants performed an adapted version of the warship commander task with concurrent emotional speech distraction. We tested the feasibility of decoding the experienced mental effort with a multimodal machine learning architecture. The architecture comprised feature engineering, model optimisation, and model selection to combine multimodal measurements in a cross-subject classification. Our approach reduces possible overfitting and reliably distinguishes two different levels of mental effort. These findings contribute to the prediction of different states of mental effort and pave the way toward generalised state monitoring across individuals in realistic applications.
Collapse
Affiliation(s)
- Sabrina Gado
- Experimental Clinical Psychology, Department of Psychology, Julius-Maximilians-University of Würzburg, 97070 Würzburg, Germany
| | - Katharina Lingelbach
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, 70569 Stuttgart, Germany
- Applied Neurocognitive Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Maria Wirzberger
- Department of Teaching and Learning with Intelligent Systems, University of Stuttgart, 70174 Stuttgart, Germany
- LEAD Graduate School & Research Network, University of Tübingen, 72072 Tübingen, Germany
| | - Mathias Vukelić
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, 70569 Stuttgart, Germany
| |
Collapse
|
53
|
Liu C, Zhang C, Sun L, Liu K, Liu H, Zhu W, Jiang C. Detection of Pilot's Mental Workload Using a Wireless EEG Headset in Airfield Traffic Pattern Tasks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1035. [PMID: 37509982 PMCID: PMC10378707 DOI: 10.3390/e25071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Elevated mental workload (MWL) experienced by pilots can result in increased reaction times or incorrect actions, potentially compromising flight safety. This study aims to develop a functional system to assist administrators in identifying and detecting pilots' real-time MWL and evaluate its effectiveness using designed airfield traffic pattern tasks within a realistic flight simulator. The perceived MWL in various situations was assessed and labeled using NASA Task Load Index (NASA-TLX) scores. Physiological features were then extracted using a fast Fourier transformation with 2-s sliding time windows. Feature selection was conducted by comparing the results of the Kruskal-Wallis (K-W) test and Sequential Forward Floating Selection (SFFS). The results proved that the optimal input was all PSD features. Moreover, the study analyzed the effects of electroencephalography (EEG) features from distinct brain regions and PSD changes across different MWL levels to further assess the proposed system's performance. A 10-fold cross-validation was performed on six classifiers, and the optimal accuracy of 87.57% was attained using a multi-class K-Nearest Neighbor (KNN) classifier for classifying different MWL levels. The findings indicate that the wireless headset-based system is reliable and feasible. Consequently, numerous wireless EEG device-based systems can be developed for application in diverse real-driving scenarios. Additionally, the current system contributes to future research on actual flight conditions.
Collapse
Affiliation(s)
- Chenglin Liu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Chenyang Zhang
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Luohao Sun
- School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
| | - Kun Liu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Haiyue Liu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Wenbing Zhu
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| | - Chaozhe Jiang
- School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
54
|
Marcantoni I, Assogna R, Del Borrello G, Di Stefano M, Morano M, Romagnoli S, Leoni C, Bruschi G, Sbrollini A, Morettini M, Burattini L. Ratio Indexes Based on Spectral Electroencephalographic Brainwaves for Assessment of Mental Involvement: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5968. [PMID: 37447818 DOI: 10.3390/s23135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND This review systematically examined the scientific literature about electroencephalogram-derived ratio indexes used to assess human mental involvement, in order to deduce what they are, how they are defined and used, and what their best fields of application are. (2) Methods: The review was carried out according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. (3) Results: From the search query, 82 documents resulted. The majority (82%) were classified as related to mental strain, while 12% were classified as related to sensory and emotion aspects, and 6% to movement. The electroencephalographic electrode montage used was low-density in 13%, high-density in 6% and very-low-density in 81% of documents. The most used electrode positions for computation of involvement indexes were in the frontal and prefrontal cortex. Overall, 37 different formulations of involvement indexes were found. None of them could be directly related to a specific field of application. (4) Conclusions: Standardization in the definition of these indexes is missing, both in the considered frequency bands and in the exploited electrodes. Future research may focus on the development of indexes with a unique definition to monitor and characterize mental involvement.
Collapse
Affiliation(s)
- Ilaria Marcantoni
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Raffaella Assogna
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giulia Del Borrello
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Marina Di Stefano
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Martina Morano
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Sofia Romagnoli
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Chiara Leoni
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giulia Bruschi
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Agnese Sbrollini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Micaela Morettini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Laura Burattini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
55
|
Craik A, González-España JJ, Alamir A, Edquilang D, Wong S, Sánchez Rodríguez L, Feng J, Francisco GE, Contreras-Vidal JL. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface. SENSORS (BASEL, SWITZERLAND) 2023; 23:5930. [PMID: 37447780 DOI: 10.3390/s23135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Objective: We designed and validated a wireless, low-cost, easy-to-use, mobile, dry-electrode headset for scalp electroencephalography (EEG) recordings for closed-loop brain-computer (BCI) interface and internet-of-things (IoT) applications. Approach: The EEG-based BCI headset was designed from commercial off-the-shelf (COTS) components using a multi-pronged approach that balanced interoperability, cost, portability, usability, form factor, reliability, and closed-loop operation. Main Results: The adjustable headset was designed to accommodate 90% of the population. A patent-pending self-positioning dry electrode bracket allowed for vertical self-positioning while parting the user's hair to ensure contact of the electrode with the scalp. In the current prototype, five EEG electrodes were incorporated in the electrode bracket spanning the sensorimotor cortices bilaterally, and three skin sensors were included to measure eye movement and blinks. An inertial measurement unit (IMU) provides monitoring of head movements. The EEG amplifier operates with 24-bit resolution up to 500 Hz sampling frequency and can communicate with other devices using 802.11 b/g/n WiFi. It has high signal-to-noise ratio (SNR) and common-mode rejection ratio (CMRR) (121 dB and 110 dB, respectively) and low input noise. In closed-loop BCI mode, the system can operate at 40 Hz, including real-time adaptive noise cancellation and 512 MB of processor memory. It supports LabVIEW as a backend coding language and JavaScript (JS), Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) as front-end coding languages and includes training and optimization of support vector machine (SVM) neural classifiers. Extensive bench testing supports the technical specifications and human-subject pilot testing of a closed-loop BCI application to support upper-limb rehabilitation and provides proof-of-concept validation for the device's use at both the clinic and at home. Significance: The usability, interoperability, portability, reliability, and programmability of the proposed wireless closed-loop BCI system provides a low-cost solution for BCI and neurorehabilitation research and IoT applications.
Collapse
Affiliation(s)
- Alexander Craik
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| | - Juan José González-España
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| | - Ayman Alamir
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
- Department of Electrical Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - David Edquilang
- Department of Industrial Design, University of Houston, Houston, TX 77004, USA
| | - Sarah Wong
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
- Department of Industrial Design, University of Houston, Houston, TX 77004, USA
| | - Lianne Sánchez Rodríguez
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| | - Jeff Feng
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
- Department of Industrial Design, University of Houston, Houston, TX 77004, USA
| | - Gerard E Francisco
- Department of Physical Medicine & Rehabilitation, University of Texas Health McGovern Medical School, Houston, TX 77030, USA
- The Institute for Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Jose L Contreras-Vidal
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
56
|
Stangl M, Maoz SL, Suthana N. Mobile cognition: imaging the human brain in the 'real world'. Nat Rev Neurosci 2023; 24:347-362. [PMID: 37046077 PMCID: PMC10642288 DOI: 10.1038/s41583-023-00692-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/14/2023]
Abstract
Cognitive neuroscience studies in humans have enabled decades of impactful discoveries but have primarily been limited to recording the brain activity of immobile participants in a laboratory setting. In recent years, advances in neuroimaging technologies have enabled recordings of human brain activity to be obtained during freely moving behaviours in the real world. Here, we propose that these mobile neuroimaging methods can provide unique insights into the neural mechanisms of human cognition and contribute to the development of novel treatments for neurological and psychiatric disorders. We further discuss the challenges associated with studying naturalistic human behaviours in complex real-world settings as well as strategies for overcoming them. We conclude that mobile neuroimaging methods have the potential to bring about a new era of cognitive neuroscience in which neural mechanisms can be studied with increased ecological validity and with the ability to address questions about natural behaviour and cognitive processes in humans engaged in dynamic real-world experiences.
Collapse
Affiliation(s)
- Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sabrina L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
57
|
López-Larraz E, Escolano C, Robledo-Menéndez A, Morlas L, Alda A, Minguez J. A garment that measures brain activity: proof of concept of an EEG sensor layer fully implemented with smart textiles. Front Hum Neurosci 2023; 17:1135153. [PMID: 37305362 PMCID: PMC10250743 DOI: 10.3389/fnhum.2023.1135153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
This paper presents the first garment capable of measuring brain activity with accuracy comparable to that of state-of-the art dry electroencephalogram (EEG) systems. The main innovation is an EEG sensor layer (i.e., the electrodes, the signal transmission, and the cap support) made entirely of threads, fabrics, and smart textiles, eliminating the need for metal or plastic materials. The garment is connected to a mobile EEG amplifier to complete the measurement system. As a first proof of concept, the new EEG system (Garment-EEG) was characterized with respect to a state-of-the-art Ag/AgCl dry-EEG system (Dry-EEG) over the forehead area of healthy participants in terms of: (1) skin-electrode impedance; (2) EEG activity; (3) artifacts; and (4) user ergonomics and comfort. The results show that the Garment-EEG system provides comparable recordings to Dry-EEG, but it is more susceptible to artifacts under adverse recording conditions due to poorer contact impedances. The textile-based sensor layer offers superior ergonomics and comfort compared to its metal-based counterpart. We provide the datasets recorded with Garment-EEG and Dry-EEG systems, making available the first open-access dataset of an EEG sensor layer built exclusively with textile materials. Achieving user acceptance is an obstacle in the field of neurotechnology. The introduction of EEG systems encapsulated in wearables has the potential to democratize neurotechnology and non-invasive brain-computer interfaces, as they are naturally accepted by people in their daily lives. Furthermore, supporting the EEG implementation in the textile industry may result in lower cost and less-polluting manufacturing processes compared to metal and plastic industries.
Collapse
|
58
|
Tan X, Wang D, Chen J, Xu M. Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification. Bioengineering (Basel) 2023; 10:bioengineering10050609. [PMID: 37237679 DOI: 10.3390/bioengineering10050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Exploring the effective signal features of electroencephalogram (EEG) signals is an important issue in the research of brain-computer interface (BCI), and the results can reveal the motor intentions that trigger electrical changes in the brain, which has broad research prospects for feature extraction from EEG data. In contrast to previous EEG decoding methods that are based solely on a convolutional neural network, the traditional convolutional classification algorithm is optimized by combining a transformer mechanism with a constructed end-to-end EEG signal decoding algorithm based on swarm intelligence theory and virtual adversarial training. The use of a self-attention mechanism is studied to expand the receptive field of EEG signals to global dependence and train the neural network by optimizing the global parameters in the model. The proposed model is evaluated on a real-world public dataset and achieves the highest average accuracy of 63.56% in cross-subject experiments, which is significantly higher than that found for recently published algorithms. Additionally, good performance is achieved in decoding motor intentions. The experimental results show that the proposed classification framework promotes the global connection and optimization of EEG signals, which can be further applied to other BCI tasks.
Collapse
Affiliation(s)
- Xiyue Tan
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Dan Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiaming Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Meng Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
59
|
Wu YC, Maymon C, Paden J, Liu W. Launching Your VR Neuroscience Laboratory. Curr Top Behav Neurosci 2023; 65:25-46. [PMID: 37306851 DOI: 10.1007/7854_2023_420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The proliferation and refinement of affordable virtual reality (VR) technologies and wearable sensors have opened new frontiers in cognitive and behavioral neuroscience. This chapter offers a broad overview of VR for anyone interested in leveraging it as a research tool. In the first section, it examines the fundamental functionalities of VR and outlines important considerations that inform the development of immersive content that stimulates the senses. In the second section, the focus of the discussion shifts to the implementation of VR in the context of the neuroscience lab. Practical advice is offered on adapting commercial, off-the-shelf devices to a researcher's specific purposes. Further, methods are explored for recording, synchronizing, and fusing heterogeneous forms of data obtained through the VR system or add-on sensors, as well as for labeling events and capturing game play. The reader should come away with an understanding of fundamental considerations that need to be addressed in order to launch a successful VR neuroscience research program.
Collapse
Affiliation(s)
- Ying Choon Wu
- University of California San Diego, San Diego, CA, USA
| | | | | | - Weichen Liu
- University of California San Diego, San Diego, CA, USA
| |
Collapse
|