51
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541934. [PMID: 37292996 PMCID: PMC10245853 DOI: 10.1101/2023.05.23.541934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
52
|
Lee CH, Park H, Lee MJ, Park BY. Whole-brain functional gradients reveal cortical and subcortical alterations in patients with episodic migraine. Hum Brain Mapp 2023; 44:2224-2233. [PMID: 36649309 PMCID: PMC10028679 DOI: 10.1002/hbm.26204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Migraine is a type of headache with multiple neurological symptoms. Prior neuroimaging studies in patients with migraine based on functional magnetic resonance imaging have found regional as well as network-level alterations in brain function. Here, we expand on prior studies by establishing whole-brain functional connectivity patterns in patients with migraine using dimensionality reduction techniques. We studied functional brain connectivity in 50 patients with episodic migraine and sex- and age-matched healthy controls. Using dimensionality reduction techniques that project high-dimensional functional connectivity onto low-dimensional representations (i.e., eigenvectors), we found significant between-group differences in the eigenvectors between patients with migraine and healthy controls, particularly in the sensory/motor and limbic cortices. Furthermore, we assessed between-group differences in subcortical connectivity with subcortical weighted manifolds defined by subcortico-cortical connectivity multiplied by cortical eigenvectors and revealed significant alterations in the amygdala. Finally, leveraging supervised machine learning, we moderately predicted headache frequency using cortical and subcortical functional connectivity features, again indicating that sensory and limbic regions play a particularly important role in predicting migraine frequency. Our study confirmed that migraine is a hierarchical disease of the brain that shows alterations along the sensory-limbic axis, and therefore, the functional connectivity in these areas could be a useful marker to investigate migraine symptomatology.
Collapse
Affiliation(s)
- Chae Hyeon Lee
- Department of Statistics, Inha University, Incheon, Republic of Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Data Science, Inha University, Incheon, Republic of Korea
| |
Collapse
|