51
|
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol 2014; 5:259. [PMID: 25538678 PMCID: PMC4259123 DOI: 10.3389/fneur.2014.00259] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022] Open
Abstract
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.
Collapse
Affiliation(s)
- David N Vaughan
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
52
|
Li A, Gire DH, Bozza T, Restrepo D. Precise detection of direct glomerular input duration by the olfactory bulb. J Neurosci 2014; 34:16058-64. [PMID: 25429146 PMCID: PMC4244471 DOI: 10.1523/jneurosci.3382-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
Sensory neuron input to the olfactory bulb (OB) was activated precisely for different durations with blue light in mice expressing channelrhodopsin-2 in olfactory sensory neurons. Behaviorally the mice discriminated differences of 10 ms in duration of direct glomerular activation. In addition, a subset of mitral/tufted cells in the OB of awake mice responded tonically therefore conveying information on stimulus duration. Our study provides evidence that duration of the input to glomeruli not synchronized to sniffing is detected. This potent cue may be used to obtain information on puffs in odor plumes.
Collapse
Affiliation(s)
- Anan Li
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences/State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China 430071
| | - David H Gire
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, and
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
| |
Collapse
|
53
|
Crossmodal correspondences between odors and contingent features: odors, musical notes, and geometrical shapes. Psychon Bull Rev 2014; 20:878-96. [PMID: 23463615 DOI: 10.3758/s13423-013-0397-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Olfactory experiences represent a domain that is particularly rich in crossmodal associations. Whereas associations between odors and tastes, or other properties of their typical sources such as color or temperature, can be straightforwardly explained by associative learning, other matchings are much harder to explain in these terms, yet surprisingly are shared across individuals: The majority of people, for instance, associate certain odors and auditory features, such as pitch (Belkin, Martin, Kemp, & Gilbert, Psychological Science 8:340-342, 1997; Crisinel & Spence, Chemical Senses 37:151-158, 2012b) or geometrical shapes (Hanson-Vaux, Crisinel, & Spence, Chemical Senses 38:161-166, 2013; Seo, Arshamian, et al., Neuroscience Letters 478:175-178, 2010). If certain odors might indeed have been encountered while listening to certain pieces of music or seeing certain geometrical shapes, these encounters are very unlikely to have been statistically more relevant than others; for this reason, associative learning from regular exposure is ruled out, and thus alternative explanations in terms of metaphorical mappings are usually defended. Here we argue that these associations are not primarily conceptual or linguistic, but are grounded in structural perceptual or neurological determinants. These cases of crossmodal correspondences established between contingent environmental features can be explained as amodal, indirect, and transitive mappings across modalities. Surprising associations between odors and contingent sensory features can be investigated as genuine cases of crossmodal correspondences, akin to other widespread cases of functional correspondences that hold, for instance, between auditory and visual features, and can help reveal the structural determinants weighing on the acquisition of these crossmodal associations.
Collapse
|
54
|
Abstract
In Batty (2010b), I argue that there are no olfactory illusions. Central to the traditional notions of illusion and hallucination is a notion of object-failure—the failure of an experience to represent particular objects. Because there are no presented objects in the case of olfactory experience, I argue that the traditional ways of categorizing non-veridical experience do not apply to the olfactory case. In their place, I propose a novel notion of non-veridical experience for the olfactory case. In his (2011), Stevenson responds to my claim that there are no olfactory illusions. Although he agrees that it is natural—or at least commonplace—to think there are no olfactory illusions, he argues that there are and provides examples of them, many of which he suggests have analogs in the visual and auditory domains. In this paper, I examine the nature of the disagreement between us. I argue that Stevenson fails to argue against my conclusion that there are no olfactory illusions.
Collapse
Affiliation(s)
- Clare Batty
- Department of Philosophy, University of Kentucky Lexington, KY, USA
| |
Collapse
|
55
|
Köster EP, Møller P, Mojet J. A "Misfit" Theory of Spontaneous Conscious Odor Perception (MITSCOP): reflections on the role and function of odor memory in everyday life. Front Psychol 2014; 5:64. [PMID: 24575059 PMCID: PMC3920064 DOI: 10.3389/fpsyg.2014.00064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/16/2014] [Indexed: 01/12/2023] Open
Abstract
Our senses have developed as an answer to the world we live in (Gibson, 1966) and so have the forms of memory that accompany them. All senses serve different purposes and do so in different ways. In vision, where orientation and object recognition are important, memory is strongly linked to identification. In olfaction, the guardian of vital functions such as breathing and food ingestion, perhaps the most important (and least noticed and researched) role of odor memory is to help us not to notice the well-known odors or flavors in our everyday surroundings, but to react immediately to the unexpected ones. At the same time it provides us with a feeling of safety when our expectancies are met. All this happens without any smelling intention or conscious knowledge of our expectations. Identification by odor naming is not involved in this and people are notoriously bad at it. Odors are usually best identified via the episodic memory of the situation in which they once occurred. Spontaneous conscious odor perception normally only occurs in situations where attention is demanded, either because the inhaled air or the food smell is particularly good or particularly bad and people search for its source or because people want to actively enjoy the healthiness and pleasantness of their surroundings or food. Odor memory is concerned with novelty detection rather than with recollection of odors. In this paper, these points are illustrated with experimental results and their consequences for doing ecologically valid odor memory research are drawn. Furthermore, suggestions for ecologically valid research on everyday odor memory and some illustrative examples are given.
Collapse
Affiliation(s)
- Egon P. Köster
- Psychological Laboratory, Helmholtz Institute, Utrecht UniversityUtrecht, Netherlands
| | - Per Møller
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| | - Jozina Mojet
- Wageningen – UR, Food and Biobased ResearchWageningen, Netherlands
| |
Collapse
|
56
|
Encoding and representation of intranasal CO2 in the mouse olfactory cortex. J Neurosci 2013; 33:13873-81. [PMID: 23966706 DOI: 10.1523/jneurosci.0422-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intranasal trigeminal sensory input, often perceived as a burning, tingling, or stinging sensation, is well known to affect odor perception. While both anatomical and functional imaging data suggest that the influence of trigeminal stimuli on odor information processing may occur within the olfactory cortex, direct electrophysiological evidence for the encoding of trigeminal information at this level of processing is unavailable. Here, in agreement with human functional imaging studies, we found that 26% of neurons in the mouse piriform cortex (PCX) display modulation in firing to carbon dioxide (CO2), an odorless stimulant with known trigeminal capacity. Interestingly, CO2 was represented within the PCX by distinct temporal dynamics, differing from those evoked by odor. Experiments with ascending concentrations of isopentyl acetate, an odorant known to elicit both olfactory and trigeminal sensations, resulted in morphing of the temporal dynamics of stimulus-evoked responses. Whereas low concentrations of odorant evoked responses upon stimulus onset, high concentrations of odorant and/or CO2 often evoked responses structured to stimulus offset. These physiological experiments in mice suggest that PCX neurons possess the capacity to encode for stimulus modality (olfactory vs trigeminal) by differential patterns of firing. These data provide mechanistic insights into the influences of trigeminal information on odor processing and place constraints on models of olfactory-trigeminal sensory integration.
Collapse
|
57
|
Konefal S, Elliot M, Crespi B. The adaptive significance of adult neurogenesis: an integrative approach. Front Neuroanat 2013; 7:21. [PMID: 23882188 PMCID: PMC3712125 DOI: 10.3389/fnana.2013.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts.
Collapse
Affiliation(s)
- Sarah Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General HospitalMontreal, QC, Canada
| | - Mick Elliot
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|
58
|
Abstract
Chemicals selectively stimulating the olfactory nerve typically cannot be localized in a lateralization task. Purpose of this study was to investigate whether the ability of subjects to localize an olfactory stimulus delivered passively to 1 of the 2 nostrils would improve under training. Fifty-two young, normosmic women divided in 2 groups participated. One group performed olfactory lateralization training, whereas the other group performed cognitive tasks. Results showed that only subjects performing lateralization training significantly improved in their ability to lateralize olfactory stimuli compared with subjects who did not undergo such training.
Collapse
Affiliation(s)
- Simona Negoias
- Department of Otorhinolaryngology, Interdisciplinary Centre for Smell and Taste, University of Dresden Medical School, Dresden, Germany.
| | | | | | | |
Collapse
|
59
|
Abstract
Many species use bilateral sampling for odor-guided navigation. Bilateral localization strategies typically involve balanced and lateralized sensory input and early neuronal processing. For example, if gradient direction is estimated by differential sampling, then any asymmetry could bias the perceived direction. Subsequent neuronal processing can compensate for this asymmetry but requires the presence of mechanisms to track changes in asymmetry. A high degree of laterality is also important for differential sampling because spillover of signals will dilute the perceived odor gradient. In apparent contradiction to this model, both symmetry and laterality of nasal air flow have been reported to be incomplete in rats. Here, we measured symmetry and laterality in early olfactory processing in the rat. We first established behavioral readouts of precisely controlled bilateral odorant stimuli. We found that rats could rapidly and accurately report the direction of a wide range of odor gradients, presented in random sequence. We then showed that nasal air flow was symmetric over an entire day in awake rats. Furthermore, odor sampling from the two nostrils in the behavioral task was highly lateralized. This lateralization extended to the receptor epithelium responses as measured by electro-olfactograms. We finally observed strong lateralization of intrinsic signal responses from the glomerular layer of the olfactory bulb. We confirmed that a differential comparison of glomerular responses was sufficient to localize odorants. Together, these results suggest that the rat olfactory system is symmetric, with highly lateralized odor flow and neuronal responses. In combination, these attributes support odor localization by differential comparison.
Collapse
|
60
|
Kéïta L, Frasnelli J, La Buissonnière-Ariza V, Lepore F. Response times and response accuracy for odor localization and identification. Neuroscience 2013; 238:82-6. [DOI: 10.1016/j.neuroscience.2013.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/29/2013] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
|
61
|
Frasnelli J, Lundström JN, Schöpf V, Negoias S, Hummel T, Lepore F. Dual processing streams in chemosensory perception. Front Hum Neurosci 2012; 6:288. [PMID: 23091456 PMCID: PMC3476497 DOI: 10.3389/fnhum.2012.00288] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/01/2012] [Indexed: 11/13/2022] Open
Abstract
Higher order sensory processing follows a general subdivision into a ventral and a dorsal stream for visual, auditory, and tactile information. Object identification is processed in temporal structures (ventral stream), whereas object localization leads to activation of parietal structures (dorsal stream). To examine whether the chemical senses demonstrate a similar dissociation, we investigated odor identification and odor localization in 16 healthy young subjects using functional MRI. We used two odors—(1) eucalyptol; (2) a mixture of phenylethanol and carbon dioxide)—which were delivered to only one nostril. During odor identification subjects had to recognize the odor; during odor localization they had to detect the stimulated nostril. We used general linear model (GLM) as a classical method as well as independent component analysis (ICA) in order to investigate a possible neuroanatomical dissociation between both tasks. Both methods showed differences between tasks—confirming a dual processing stream in the chemical senses—but revealed complementary results. Specifically, GLM identified the left intraparietal sulcus and the right superior frontal sulcus to be more activated when subjects were localizing the odorants. For the same task, ICA identified a significant cluster in the left parietal lobe (paracentral lobule) but also in the right hippocampus. While GLM did not find significant activations for odor identification, ICA revealed two clusters (in the left central fissure and the left superior frontal gyrus) for this task. These data demonstrate that higher order chemosensory processing shares the general subdivision into a ventral and a dorsal processing stream with other sensory systems and suggest that this is a global principle, independent of sensory channels.
Collapse
Affiliation(s)
- Johannes Frasnelli
- Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal Montréal, QC, Canada ; Department of ENT-Medicine, Technical University of Dresden Dresden, Germany
| | | | | | | | | | | |
Collapse
|
62
|
Bojanowski V, Hummel T. Retronasal perception of odors. Physiol Behav 2012; 107:484-7. [PMID: 22425641 DOI: 10.1016/j.physbeh.2012.03.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/18/2022]
Abstract
We perceive odors orthonasally during sniffing; in contrast, we perceive odors retronasally during eating when they enter the nose through the pharynx. There are clear differences between orthonasal and retronasal olfaction in neuronal processing and perception, so that these two pathways convey two distinct sensory signals. The perception of foods is based on the interaction between ortho- and retronasal smell, taste, trigeminal activation and texture, so it is difficult to investigate one of these factors in isolation. Specific clinical aspects include effects of retronasal olfaction on satiation and swallowing.
Collapse
Affiliation(s)
- Viola Bojanowski
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden Medical School, Fetscherstrasse 74, 01307 Dresden, Germany
| | | |
Collapse
|
63
|
Khan AG, Sarangi M, Bhalla US. Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling. Nat Commun 2012; 3:703. [PMID: 22426224 DOI: 10.1038/ncomms1712] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/30/2012] [Indexed: 11/09/2022] Open
Abstract
Tracking odour trails is a crucial behaviour for many animals, often leading to food, mates or away from danger. It is an excellent example of active sampling, where the animal itself controls how to sense the environment. Here we show that rats can track odour trails accurately with near-optimal sampling. We trained rats to follow odour trails drawn on paper spooled through a treadmill. By recording local field potentials (LFPs) from the olfactory bulb, and sniffing rates, we find that sniffing but not LFPs differ between tracking and non-tracking conditions. Rats can track odours within ~1 cm, and this accuracy is degraded when one nostril is closed. Moreover, they show path prediction on encountering a fork, wide 'casting' sweeps on encountering a gap and detection of reappearance of the trail in 1-2 sniffs. We suggest that rats use a multi-layered strategy, and achieve efficient sampling and high accuracy in this complex task.
Collapse
Affiliation(s)
- Adil Ghani Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | | |
Collapse
|
64
|
Wise PM, Wysocki CJ, Lundström JN. Stimulus selection for intranasal sensory isolation: eugenol is an irritant. Chem Senses 2012; 37:509-14. [PMID: 22293937 DOI: 10.1093/chemse/bjs002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Both the olfactory and the trigeminal systems are able to respond to intranasal presentations of chemical vapor. Accordingly, when the nose detects a volatile chemical, it is often unclear whether we smell it, feel it, or both. The distinction may often be unimportant in our everyday perception of fragrances or aromas, but it can matter in experiments that purport to isolate olfactory processes or study the interaction between olfaction and chemesthesis. Researchers turn to a small pool of compounds that are believed to be "pure olfactory" stimuli with little or no trigeminal impact. The current report reexamines one such commonly used compound, namely eugenol, a flavor and fragrance ingredient that has anesthetic properties under some conditions. Using a standard method involving many trials during an experimental session (Experiment 1), subjects were unable to reliably lateralize eugenol, consistent with claims that this compound is detected primarily through olfaction. However, with more limited exposure (Experiments 2 and 3), subjects were able to lateralize eugenol. We speculate that anesthetic properties of eugenol could blunt its trigeminal impact in some paradigms. Regardless, the current experiments suggest that eugenol can in fact stimulate the trigeminal nerve but in a complex concentration-dependent manner. Implications and strategies for selection of model odorants are discussed.
Collapse
Affiliation(s)
- Paul M Wise
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
65
|
Moessnang C, Finkelmeyer A, Vossen A, Schneider F, Habel U. Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm. PLoS One 2011; 6:e29614. [PMID: 22216331 PMCID: PMC3246472 DOI: 10.1371/journal.pone.0029614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 12/01/2011] [Indexed: 11/21/2022] Open
Abstract
Background Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal. Methods A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment. Results No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research. Conclusion The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans.
Collapse
Affiliation(s)
- Carolin Moessnang
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | |
Collapse
|
66
|
Bensafi M. The Role of the Piriform Cortex in Human Olfactory Perception: Insights from Functional Neuroimaging Studies. CHEMOSENS PERCEPT 2011. [DOI: 10.1007/s12078-011-9110-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Abstract
Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness.
Collapse
Affiliation(s)
- Andreas Keller
- Department of Philosophy, Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
68
|
Zelano C, Mohanty A, Gottfried JA. Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 2011; 72:178-87. [PMID: 21982378 DOI: 10.1016/j.neuron.2011.08.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2011] [Indexed: 11/29/2022]
Abstract
Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, prestimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to poststimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or "search images" in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception.
Collapse
Affiliation(s)
- Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
69
|
Frasnelli J, Hummel T, Berg J, Huang G, Doty RL. Intranasal localizability of odorants: influence of stimulus volume. Chem Senses 2011; 36:405-10. [PMID: 21310764 PMCID: PMC3105605 DOI: 10.1093/chemse/bjr001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2011] [Indexed: 11/14/2022] Open
Abstract
When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicylate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a "relatively pure" olfactory stimulus.
Collapse
Affiliation(s)
- J Frasnelli
- Smell and Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Fetscherstrasse 74, Dresden, Germany
| | | | | | | | | |
Collapse
|
70
|
Abstract
A new study has found that when a shark turns towards an odor, its directional decision is based on inter-nostril differences in odorant time of arrival, rather than on inter-nostril differences in odorant concentration.
Collapse
Affiliation(s)
- Anat Arzi
- Department of Neurobiology, Weizmann Institute of Science, 76100 Israel
| | | |
Collapse
|
71
|
Livneh U, Paz R. An implicit measure of olfactory performance for non-human primates reveals aversive and pleasant odor conditioning. J Neurosci Methods 2010; 192:90-5. [DOI: 10.1016/j.jneumeth.2010.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
72
|
Sela L, Sobel N. Human olfaction: a constant state of change-blindness. Exp Brain Res 2010; 205:13-29. [PMID: 20603708 PMCID: PMC2908748 DOI: 10.1007/s00221-010-2348-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022]
Abstract
Paradoxically, although humans have a superb sense of smell, they don’t trust their nose. Furthermore, although human odorant detection thresholds are very low, only unusually high odorant concentrations spontaneously shift our attention to olfaction. Here we suggest that this lack of olfactory awareness reflects the nature of olfactory attention that is shaped by the spatial and temporal envelopes of olfaction. Regarding the spatial envelope, selective attention is allocated in space. Humans direct an attentional spotlight within spatial coordinates in both vision and audition. Human olfactory spatial abilities are minimal. Thus, with no olfactory space, there is no arena for olfactory selective attention. Regarding the temporal envelope, whereas vision and audition consist of nearly continuous input, olfactory input is discreet, made of sniffs widely separated in time. If similar temporal breaks are artificially introduced to vision and audition, they induce “change blindness”, a loss of attentional capture that results in a lack of awareness to change. Whereas “change blindness” is an aberration of vision and audition, the long inter-sniff-interval renders “change anosmia” the norm in human olfaction. Therefore, attentional capture in olfaction is minimal, as is human olfactory awareness. All this, however, does not diminish the role of olfaction through sub-attentive mechanisms allowing subliminal smells a profound influence on human behavior and perception.
Collapse
Affiliation(s)
- Lee Sela
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Noam Sobel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
73
|
Tubaldi F, Turella L, Pierno AC, Grodd W, Tirindelli R, Castiello U. Smelling odors, understanding actions. Soc Neurosci 2010; 6:31-47. [PMID: 20379900 DOI: 10.1080/17470911003691089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Previous evidence indicates that we understand others' actions not only by perceiving their visual features but also by their sound. This raises the possibility that brain regions responsible for action understanding respond to cues coming from different sensory modalities. Yet no studies, to date, have examined if this extends to olfaction. Here we addressed this issue by using functional magnetic resonance imaging. We searched for brain activity related to the observation of an action executed towards an object that was smelled rather than seen. The results show that temporal, parietal, and frontal areas were activated when individuals observed a hand grasping a smelled object. This activity differed from that evoked during the observation of a mimed grasp. Furthermore, superadditive activity was revealed when the action target-object was both seen and smelled. Together these findings indicate the influence of olfaction on action understanding and its contribution to multimodal action representations.
Collapse
|
74
|
|
75
|
Yeshurun Y, Sobel N. An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Annu Rev Psychol 2010; 61:219-41, C1-5. [PMID: 19958179 DOI: 10.1146/annurev.psych.60.110707.163639] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Olfaction is often referred to as a multidimensional sense. It is multidimensional in that approximately 1000 different receptor types, each tuned to particular odor aspects, together contribute to the olfactory percept. In humans, however, this percept is nearly unidimensional. Humans can detect and discriminate countless odorants, but can identify few by name. The one thing humans can and do invariably say about an odor is whether it is pleasant or not. We argue that this hedonic determination is the key function of olfaction. Thus, the boundaries of an odor object are determined by its pleasantness, which--unlike something material and more like an emotion--remains poorly delineated with words.
Collapse
Affiliation(s)
- Yaara Yeshurun
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | |
Collapse
|
76
|
Lascano AM, Hummel T, Lacroix JS, Landis BN, Michel CM. Spatio-temporal dynamics of olfactory processing in the human brain: an event-related source imaging study. Neuroscience 2010; 167:700-8. [PMID: 20153813 DOI: 10.1016/j.neuroscience.2010.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 11/19/2022]
Abstract
Although brain structures involved in central nervous olfactory processing in humans have been well identified with functional neuroimaging, little is known about the temporal sequence of their activation. We recorded olfactory event-related potentials (ERP) to H(2)S stimuli presented to the left and right nostril in 12 healthy subjects. Topographic and source analysis identified four distinct processing steps between 200 and 1000 ms. Activation started ipsilateral to the stimulated nostril in the mesial and lateral temporal cortex (amygdala, parahippocampal gyrus, superior temporal gyrus, insula). Subsequently, the corresponding structures on the contralateral side became involved, followed by frontal structures at the end of the activation period. Thus, based on EEG-related data, current results suggest that olfactory information in humans is processed first ipsilaterally to the stimulated nostril and then activates the major relays in olfactory information processing in both hemispheres. Most importantly, the currently described techniques allow the investigation of the spatial processing of olfactory information at a high temporal resolution.
Collapse
Affiliation(s)
- A M Lascano
- Neurology Clinic, University Hospital and Department of Fundamental Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
77
|
The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data. ACTA ACUST UNITED AC 2009; 62:183-96. [PMID: 19913573 DOI: 10.1016/j.brainresrev.2009.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/17/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
Abstract
Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO(2)), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices-a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO(2) stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing.
Collapse
|
78
|
Abstract
Olfactory information reaches olfactory cortex without a thalamic relay. This neuroanatomical substrate has combined with functional findings to suggest that, in olfaction, the typical thalamic role in sensory processing has shifted to the olfactory bulb or olfactory cortex. With this in mind, we set out to ask whether the thalamus at all plays a significant functional role in human olfaction. We tested olfactory function in 17 patients with unilateral focal thalamic lesions and in age-matched healthy controls. We found that thalamic lesions did not significantly influence olfactory detection but significantly impaired olfactory identification, and only right lesions altered olfactory hedonics by reducing the pleasantness of pleasant odors. An auditory control revealed that this shift in pleasantness was olfactory specific. These olfactory impairments were evident in explicit measures of perception, as well as in patterns of sniffing. Whereas healthy subjects modulated their sniffs in accordance with odorant content, thalamic patients did not. We conclude that, although the thalamus is not in the path of olfactory information from periphery to cortex, it nevertheless plays a significant functional role in human olfaction.
Collapse
|
79
|
Zhou W, Chen D. Binaral rivalry between the nostrils and in the cortex. Curr Biol 2009; 19:1561-5. [PMID: 19699095 PMCID: PMC2901510 DOI: 10.1016/j.cub.2009.07.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/16/2022]
Abstract
When two different images are presented to the two eyes, we perceive alternations between seeing one image and seeing the other. Termed binocular rivalry, this visual phenomenon has been known for over a century and has been systematically studied in recent years at both the behavioral and neural levels. A similar phenomenon has been documented in audition. Here we report the discovery of alternating olfactory percepts when two different odorants are presented to the two nostrils. This binaral rivalry involves both cortical and peripheral (olfactory receptor) adaptations. Our discovery opens up new avenues to explore the workings of the olfactory system and olfactory awareness.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Psychology MS-25, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Denise Chen
- Department of Psychology MS-25, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
80
|
Zelano C, Montag J, Khan R, Sobel N. A specialized odor memory buffer in primary olfactory cortex. PLoS One 2009; 4:e4965. [PMID: 19305509 PMCID: PMC2654926 DOI: 10.1371/journal.pone.0004965] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/05/2009] [Indexed: 11/25/2022] Open
Abstract
Background The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes. Methodology/Principal Findings We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex. Conclusions/Significance These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks.
Collapse
Affiliation(s)
- Christina Zelano
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
81
|
Kleemann AM, Albrecht J, Schöpf V, Haegler K, Kopietz R, Hempel JM, Linn J, Flanagin VL, Fesl G, Wiesmann M. Trigeminal perception is necessary to localize odors. Physiol Behav 2009; 97:401-5. [PMID: 19303891 DOI: 10.1016/j.physbeh.2009.03.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/09/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
The human ability to localize odorants has been examined in a number of studies, but the findings are contradictory. In the present study we investigated the human sensitivity and ability to localize hydrogen sulphide (H(2)S), which in low concentrations stimulates the olfactory system selectively, the olfactory-trigeminal substance isoamyl acetate (IAA), and the trigeminal substance carbon dioxide (CO(2)). A general requirement for testing of localization was the conscious perception of the applied stimuli by the participants. Using Signal Detection Theory, we determined the human sensitivity in response to stimulation with these substances. Then the subjects' ability to localize the three different substances was tested. We found that humans can detect H(2)S in low concentration (2 ppm) with moderate sensitivity, and possess a high sensitivity in response to stimulation with 8 ppm H(2)S, 17.5% IAA, 50% v/v CO(2). In the localization experiment, subjects could localize neither the low nor the high concentration of H(2)S. In contrast, subjects possessed the ability to localize IAA and CO(2) stimuli. These results clearly demonstrate that humans, in spite of the aware perception, are not able to localize substances which only activate the olfactory system independent of their concentration, but they possess an ability to localize odorants that additionally excite the trigeminal system.
Collapse
Affiliation(s)
- A M Kleemann
- Department of Neuroradiology, Ludwig-Maximilians-University of Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Odors are inhaled through the nostrils into two segregated nasal passages and detected by sensory neurons in the bilateral olfactory epithelia. Airflow through the two nasal passages is usually asymmetrical because of alternating changes in nasal mucosal congestion. Here we show that neurons in the anterior olfactory nucleus (AON) of the adult rat olfactory cortex are ordinarily dominated by ipsi-nasal inputs and that binasal neurons in the AON respond to ipsilateral and contralateral nasal inputs with nearly equivalent odorant category selectivity. Deprivation of ipsilateral nasal inputs by unilateral nostril obstruction greatly enhanced the response to contralateral odor stimulation, in a reversible manner, in approximately 33% of AON neurons within only several minutes. In 27% of AON neurons that showed spike responses induced by the inspiration of room air, ipsilateral nasal obstruction initially suppressed respiration phase-locked spike discharges and, several minutes later, induced respiration phase-locked discharges with longer delays between inspiration and response. Recordings from AON neurons in rats with anterior commissure (AC) transection indicated that the resumed respiration phase-locked discharges with longer delays were mediated by the contralateral pathway via the AC. The ipsi-nasal occlusion-induced switching of nasal inputs to individual AON neurons shows that a subset of AON neurons in the adult rat has neuronal mechanisms for rapid nostril dominance plasticity, which may enable both right and left olfactory cortices to preserve their responsiveness to the external odor world, despite reciprocal changes in nasal airflow.
Collapse
|
83
|
|
84
|
Abstract
Odors often produce different sensations when presented in front of the nose or intraorally, when eaten. It is a long-standing question whether these differences in sensations are due, for example, to the additional mechanical sensations elicited by the food in the mouth or additional odor release during mastication. To study this phenomenon in detail, a stimulation technique has been developed that allows controlled ortho- or retronasal presentation of odorous stimuli. Results from psychophysical, electrophysiological, and imaging studies suggest that there are clear differences in the perception of ortho- and retronasal stimuli. This 'duality of the sense of smell' is also observed in a clinical context where some patients exhibit good retronasal olfactory function with little or no orthonasal function left, and vice versa. The differences between ortho- and retronasal perception of odors are thought to be, at least partly, due to absorption of odors to the olfactory epithelium, which appears to differ in relation to the direction of the airflow across the olfactory epithelium.
Collapse
Affiliation(s)
- Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Fetscherstrasse 74, D-01307 Dresden.
| |
Collapse
|
85
|
Boyle JA, Djordjevic J, Olsson MJ, Lundstrom JN, Jones-Gotman M. The Human Brain Distinguishes between Single Odorants and Binary Mixtures. Cereb Cortex 2008; 19:66-71. [DOI: 10.1093/cercor/bhn058] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
86
|
Bensafi M, Iannilli E, Gerber J, Hummel T. Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems. Neuroscience 2008; 154:832-8. [PMID: 18485604 DOI: 10.1016/j.neuroscience.2008.03.079] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/21/2008] [Accepted: 03/24/2008] [Indexed: 11/16/2022]
Abstract
Nasal chemical sensations are mediated principally by the olfactory and the trigeminal systems. Over the last few years brain structures involved in processing of trigeminal stimuli have been more and more documented. However, the exact role of individual regions in stimulus intensity processing is unclear. The present study set out to examine the neural network involved in encoding stimulus intensity in the trigeminal system and the olfactory system of humans. Participants were presented with two concentrations of relatively specific trigeminal stimuli (CO2) and olfactory (H2S), respectively. Responses were assessed by functional magnetic resonance imaging (fMRI). Whereas brain responses to stimulus intensity in the olfactory modality involved a wide neural network including cerebellum, entorhinal cortex, visual areas, and frontal regions, contrasting high and low CO2 concentrations revealed activation in a less complex network including various sub-regions of the cingulate cortex. Taken together, these results suggest separate but overlapping neural networks involved in encoding stimulus intensity in the two chemosensory systems.
Collapse
Affiliation(s)
- M Bensafi
- Université Claude Bernard, Lyon, Laboratoire de Neurosciences Sensorielles, Comportement, Cognition, UMR 5020, Institut Fédératif des Neurosciences de Lyon, IFR19, CNRS, Lyon, France.
| | | | | | | |
Collapse
|
87
|
Abstract
The aim of the study was to investigate trigeminal function in children compared with that of adults. Trigeminal sensitivity was assessed using a lateralization task where participants were requested to identify the side of the nose to which an odorous stimulus was presented. The ability to localize the sensation is largely based on trigeminal function. A total of 344 people participated (191 females, 153 males; mean age 12 y [SD 7 y 9 mo], range 5-54 y). Eucalyptol (EUC) was administered as a mixed olfactory-trigeminal stimulant; phenylethyl alcohol (PEA) was used as a control stimulant with minimal trigeminal impact. In addition, sensitivity to vibration was assessed as a somatosensory control. With regard to all age groups, PEA could not be localized whereas this was easily possible for EUC. However, the ability to localize EUC increased with age, which was not the case for PEA. No sex-related difference was found for odour localization. These results provide data for normal intranasal trigeminal function in children. They also indicate that trigeminal sensitivity is already well-developed in children.
Collapse
Affiliation(s)
- T Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany.
| | | | | | | |
Collapse
|
88
|
Pasqualotto A, Newell FN. The role of visual experience on the representation and updating of novel haptic scenes. Brain Cogn 2007; 65:184-94. [PMID: 17845829 DOI: 10.1016/j.bandc.2007.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
We investigated the role of visual experience on the spatial representation and updating of haptic scenes by comparing recognition performance across sighted, congenitally and late blind participants. We first established that spatial updating occurs in sighted individuals to haptic scenes of novel objects. All participants were required to recognise a previously learned haptic scene of novel objects presented across the same or different orientation as learning whilst they either remained in the same position to moved to a new position relative to the scene. Scene rotation incurred a cost in recognition performance in all groups. However, overall haptic scene recognition performance was worse in the congenitally blind group. Moreover, unlike the late blind or sighted groups, the congenitally blind group were unable to compensate for the cost in scene rotation with observer motion. Our results suggest that vision plays an important role in representing and updating spatial information encoded through touch and have important implications for the role of vision in the development of neuronal areas involved in spatial cognition.
Collapse
Affiliation(s)
- Achille Pasqualotto
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
89
|
Bensafi M, Sobel N, Khan RM. Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception. J Neurophysiol 2007; 98:3254-62. [PMID: 17913994 DOI: 10.1152/jn.00349.2007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is known that visual imagery is accompanied by activity in visual cortical areas, including primary visual cortex, whether olfactory imagery exists remains controversial. Here we asked whether cue-dependent olfactory imagery was similarly accompanied by activity in olfactory cortex, and in particular whether hedonic-specific patterns of activity evident in olfactory perception would also be present during olfactory imagery. We used functional magnetic resonance imaging to measure activity in subjects who alternated between smelling and imagining pleasant and unpleasant odors. Activity induced by imagining odors mimicked that induced by perceiving real odorants, not only in the particular brain regions activated, but also in its hedonic-specific pattern. For both real and imagined odors, unpleasant stimuli induced greater activity than pleasant stimuli in the left frontal portion of piriform cortex and left insula. These findings combine with findings from other modalities to suggest activation of primary sensory cortical structures during mental imagery of sensory events.
Collapse
Affiliation(s)
- Moustafa Bensafi
- Laboratoire Neurosciences Sensorielles, Comportement, et Cognition, Université Claude Bernard Lyon, Lyon Cedex 07, France.
| | | | | |
Collapse
|
90
|
Elsaesser R, Paysan J. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells. BMC Neurosci 2007; 8 Suppl 3:S1. [PMID: 17903277 PMCID: PMC1995455 DOI: 10.1186/1471-2202-8-s3-s1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existence of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- Johns Hopkins University School of Medicine, 725 N. Wolfe St., 408 WBSB, Baltimore, MD 21205, USA
| | - Jacques Paysan
- Technical University of Darmstadt, Institute of Zoology, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany
| |
Collapse
|
91
|
Frasnelli J, Hummel T. Interactions between the chemical senses: Trigeminal function in patients with olfactory loss. Int J Psychophysiol 2007; 65:177-81. [PMID: 17434636 DOI: 10.1016/j.ijpsycho.2007.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/08/2007] [Indexed: 11/18/2022]
Abstract
The intranasal trigeminal and the olfactory system are intimately connected. There is evidence showing that acquired olfactory loss leads to reduced trigeminal sensitivity due to the lack of a central-nervous interaction. Both, the orbitofrontal cortex and the rostral insula appear to be of significance in the amplification of trigeminal input which is missing in patients with olfactory loss. On peripheral levels, however, adaptive mechanisms seem to produce an increase in the trigeminal responsiveness of patients with hyposmia or anosmia.
Collapse
Affiliation(s)
- J Frasnelli
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | | |
Collapse
|
92
|
|
93
|
Chalé-Rush A, Burgess JR, Mattes RD. Multiple routes of chemosensitivity to free fatty acids in humans. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1206-12. [PMID: 17234892 DOI: 10.1152/ajpgi.00471.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selected free fatty acids (FFAs) are documented effective somatosensory and olfactory stimuli whereas gustatory effects are less well established. This study examined orthonasal olfactory, retronasal olfactory, nasal irritancy, oral irritancy, gustatory, and multimodal threshold sensitivity to linoleic, oleic, and stearic acids. Sensitivity to oxidized linoleic acid was also determined. Detection thresholds were obtained using a three-alternative, forced-choice, ascending concentration presentation procedure. Participants included 22 healthy, physically fit adults sensitive to 6-n-propylthiouracil. Measurable thresholds were obtained for all FFAs tested and in 96% of the trials. Ceiling effects were observed in the remaining trials. Greater sensitivity was observed for multimodal stimulation and lower sensitivity for retronasal stimulation. There were no statistically significant correlations for linoleic acid thresholds between different modalities, suggesting that each route of stimulation contributes independently to fat perception. In summary, 18-carbon FFAs of varying saturation are detected by multiple sensory systems in humans.
Collapse
Affiliation(s)
- Angela Chalé-Rush
- Purdue Univ., Dept. of Foods and Nutrition, 700 W. State St., West Lafayette, IN 47907-1264, USA
| | | | | |
Collapse
|
94
|
Boyle JA, Heinke M, Gerber J, Frasnelli J, Hummel T. Cerebral Activation to Intranasal Chemosensory Trigeminal Stimulation. Chem Senses 2007; 32:343-53. [PMID: 17308328 DOI: 10.1093/chemse/bjm004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although numerous functional magnetic resonance imaging (FMRI) studies have been performed on the processing of olfactory information, the intranasal trigeminal system so far has not received much attention. In the present study, we sought to delineate the neural correlates of trigeminal stimulation using carbon dioxide (CO(2)) presented to the left or right nostril. Fifteen right-handed men underwent FMRI using single runs of 3 conditions (CO(2) in the right and the left nostrils and an olfactory stimulant-phenyl ethyl alcohol-in the right nostril). As expected, olfactory activations were located in the orbitofrontal cortex (OFC), amygdala, and rostral insula. For trigeminal stimulation, activations were found in "trigeminal" and "olfactory" regions including the pre- and postcentral gyrus, the cerebellum, the ventrolateral thalamus, the insula, the contralateral piriform cortex, and the OFC. Left compared with right side stimulations resulted in stronger cerebellar and brain stem activations; right versus left stimulation resulted in stronger activations of the superior temporal sulcus and OFC. These results suggest a trigeminal processing system that taps into similar cortical regions and yet is separate from that of the olfactory system. The overlapping pattern of cortical activation for trigeminal and olfactory stimuli is assumed to be due to the intimate connections in the processing of information from the 2 major intranasal chemosensory systems.
Collapse
Affiliation(s)
- Julie A Boyle
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
95
|
Zelano C, Montag J, Johnson B, Khan R, Sobel N. Dissociated representations of irritation and valence in human primary olfactory cortex. J Neurophysiol 2007; 97:1969-76. [PMID: 17215504 DOI: 10.1152/jn.01122.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irritation and negative valence are closely associated in perception. However, these perceptual aspects can be dissociated in olfaction where irritation can accompany both pleasant and unpleasant odorants. Whereas the sensation of odor reflects transduction at olfactory receptors, irritation reflects concurrent transduction of the odorant at trigeminal receptors. Thus a stimulus can be either a pure olfactant activating the olfactory receptors only or a bimodal odorant activating both types of receptors. Using event-related functional magnetic resonance imaging and a 2 x 2 experimental design contrasting odorant valence (pleasant/unpleasant) and odorant type (pure olfactant/bimodal) we found activity in piriform cortex to be associated with valence, and not type, of odors. In contrast, activity in the olfactory tubercle was associated with type, and not valence, of odors. Importantly, this was found when perceived intensity was held equal across odorants. These findings suggest that dissociable neural substrates subserve the encoding of irritation and valence in olfaction.
Collapse
Affiliation(s)
- C Zelano
- Program in Biophysics, University of California, Berkeley, 3210 Tolman Hall MC 1650, Berkeley, CA 94702, USA.
| | | | | | | | | |
Collapse
|
96
|
Porter J, Craven B, Khan RM, Chang SJ, Kang I, Judkewitz B, Judkewicz B, Volpe J, Settles G, Sobel N. Mechanisms of scent-tracking in humans. Nat Neurosci 2006; 10:27-9. [PMID: 17173046 DOI: 10.1038/nn1819] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/22/2006] [Indexed: 11/08/2022]
Abstract
Whether mammalian scent-tracking is aided by inter-nostril comparisons is unknown. We assessed this in humans and found that (i) humans can scent-track, (ii) they improve with practice, (iii) the human nostrils sample spatially distinct regions separated by approximately 3.5 cm and, critically, (iv) scent-tracking is aided by inter-nostril comparisons. These findings reveal fundamental mechanisms of scent-tracking and suggest that the poor reputation of human olfaction may reflect, in part, behavioral demands rather than ultimate abilities.
Collapse
Affiliation(s)
- Jess Porter
- 299 Life Science Addition, MC 3200, Program in Biophysics, University of California Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wilson DA, Kadohisa M, Fletcher ML. Cortical contributions to olfaction: Plasticity and perception. Semin Cell Dev Biol 2006; 17:462-70. [PMID: 16750923 DOI: 10.1016/j.semcdb.2006.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In most sensory systems, the sensory cortex is the place where sensation approaches perception. As described in this review, olfaction is no different. The olfactory system includes both primary and higher order cortical regions. These cortical structures perform computations that take highly analytical afferent input and synthesize it into configural odor objects. Cortical plasticity plays an important role in this synthesis and may underlie olfactory perceptual learning. Olfactory cortex is also involved in odor memory and association of odors with multimodal input and contexts. Finally, the olfactory cortex serves as an important sensory gate, modulating information throughput based on recent experience and behavioral state.
Collapse
Affiliation(s)
- Donald A Wilson
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
98
|
Wiesmann M, Kopietz R, Albrecht J, Linn J, Reime U, Kara E, Pollatos O, Sakar V, Anzinger A, Fesl G, Brückmann H, Kobal G, Stephan T. Eye closure in darkness animates olfactory and gustatory cortical areas. Neuroimage 2006; 32:293-300. [PMID: 16631383 DOI: 10.1016/j.neuroimage.2006.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 02/25/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022] Open
Abstract
In two previous fMRI studies, it was reported that eyes-open and eyes-closed conditions in darkness had differential effects on brain activity, and typical patterns of cortical activity were identified. Without external stimulation, ocular motor and attentional systems were activated when the eyes were open. On the contrary, the visual, somatosensory, vestibular, and auditory systems were activated when the eyes were closed. In this study, we investigated whether cortical areas related to the olfactory and gustatory system are also animated by eye closure without any other external stimulation. In a first fMRI experiment (n = 22), we identified cortical areas including the piriform cortex activated by olfactory stimulation. In a second experiment (n = 12) subjects lying in darkness in the MRI scanner alternately opened and closed their eyes. In accordance to previous studies, we found activation clusters bilaterally in visual, somatosensory, vestibular and auditory cortical areas for the contrast eyes-closed vs. eyes-open. In addition, we were able to show that cortical areas related to the olfactory and gustatory system were also animated by eye closure. These results support the hypothesis that there are two different states of mental activity: with the eyes closed, an "interoceptive" state characterized by imagination and multisensory activity and with the eyes open, an "exteroceptive" state characterized by attention and ocular motor activity. Our study also suggests that the chosen baseline condition may have a considerable impact on activation patterns and on the interpretation of brain activation studies. This needs to be considered for studies of the olfactory and gustatory system.
Collapse
Affiliation(s)
- M Wiesmann
- Department of Neuroradiology, Ludwig Maximilian University Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
It has been hypothesized that rats and other mammals can use stereo cues to localize odor sources, but there is limited behavioral evidence to support this hypothesis. We found that rats trained on an odor-localization task can localize odors accurately in one or two sniffs. Bilateral sampling was essential for accurate odor localization, with internasal intensity and timing differences as directional cues. If the stimulus arrived at the correct point of the respiration cycle, internasal timing differences as short as 50 milliseconds sufficed. Neuronal recordings show that bulbar neurons responded differentially to stimuli from the left and stimuli from the right.
Collapse
Affiliation(s)
- Raghav Rajan
- National Centre for Biological Sciences, University of Agricultural Science-Gandhi Krishi Vignan Kendra Campus, Bellary Road, Bangalore, Karnataka 560065, India
| | | | | |
Collapse
|
100
|
Abstract
The past 15 years have seen significant advances in the study of olfaction, with particular emphasis on elucidating the molecular building blocks of the sensory process. However, much of the systems-level organization of olfaction remains unexplored. Here, we provide an overview at this level, highlighting results obtained from studying humans, whom we think provide an underutilized, yet critical, animal model for olfaction.
Collapse
Affiliation(s)
- Christina Zelano
- Program in Biophysics, University of California, Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|