51
|
Abstract
The olfactory system removes correlations in natural odors using a network of inhibitory neurons in the olfactory bulb. It has been proposed that this network integrates the response from all olfactory receptors and inhibits them equally. However, how such global inhibition influences the neural representations of odors is unclear. Here, we study a simple statistical model of the processing in the olfactory bulb, which leads to concentration-invariant, sparse representations of the odor composition. We show that the inhibition strength can be tuned to obtain sparse representations that are still useful to discriminate odors that vary in relative concentration, size, and composition. The model reveals two generic consequences of global inhibition: (i) odors with many molecular species are more difficult to discriminate and (ii) receptor arrays with heterogeneous sensitivities perform badly. Comparing these predictions to experiments will help us to understand the role of global inhibition in shaping normalized odor representations in the olfactory bulb.
Collapse
Affiliation(s)
- David Zwicker
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, United States of America
- * E-mail:
| |
Collapse
|
52
|
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb. Sci Rep 2016; 6:36514. [PMID: 27824096 PMCID: PMC5099913 DOI: 10.1038/srep36514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness).
Collapse
|
53
|
Fogli Iseppe A, Pignatelli A, Belluzzi O. Calretinin-Periglomerular Interneurons in Mice Olfactory Bulb: Cells of Few Words. Front Cell Neurosci 2016; 10:231. [PMID: 27774053 PMCID: PMC5054022 DOI: 10.3389/fncel.2016.00231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
Within the olfactory bulb (OB), periglomerular (PG) cells consist of various types of interneurons, generally classified by their chemical properties such as neurotransmitter and calcium binding proteins. Calretinin (CR) characterizes morphologically and functionally the more numerous and one of the less known subpopulation of PG cells in the OB. Using of transgenic mice expressing eGFP under the CR promoter, we have tried to obtain the first functional characterization of these cells. Electrophysiological recordings were made in these cells using the patch-clamp technique in thin slices. Using ion substitution methods and specific blockers, we dissected the main voltage-dependent conductances present, obtaining a complete kinetic description for each of them. The more peculiar property of these cells from the electrophysiological point of view is the presence only of a single K-current, A-type – there is no trace of delayed rectifier or of Ca-dependent K-current. Other currents identified, isolated and fully characterized are a fast sodium current, a small L-type calcium current, and an inward rectifier, h-type cationic current. As a consequence of the peculiar complement of voltage-dependent conductances present in these cells, and in particular the absence of delayed-rectifier potassium currents, under the functional point of view these cells present two interesting properties. First, in response to prolonged depolarisations, after the inactivation of the A-current these cells behave as a purely ohmic elements, showing no outward rectification. Second, the CR cells studied can respond only with a single action potential to excitatory inputs; since they send inhibitory synapses to projection neurones, they seem to be designed to inhibit responses of the main neurones to isolated, random excitatory signals, rapidly losing their vetoing effect in response to more structured, repetitive excitatory signals. We propose that a possible role for these rather untalkative interneurons in the intense exchange of messages within the OB might be that of improving the signal-to-noise ratio in the first stages of the olfactory information processing.
Collapse
Affiliation(s)
- Alex Fogli Iseppe
- Biology and Evolution - Neurobiology, Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy; Department of Neurobiology, Physiology and Behavior, University of California at Davis, DavisCA, USA
| | - Angela Pignatelli
- Biology and Evolution - Neurobiology, Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Ottorino Belluzzi
- Biology and Evolution - Neurobiology, Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| |
Collapse
|
54
|
Pietra G, Dibattista M, Menini A, Reisert J, Boccaccio A. The Ca2+-activated Cl- channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. J Gen Physiol 2016; 148:293-311. [PMID: 27619419 PMCID: PMC5037344 DOI: 10.1085/jgp.201611622] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
TMEM16B is expressed in olfactory sensory neurons, but previous attempts to establish a physiological role in olfaction have been unsuccessful. Pietra et al. find that genetic ablation of TMEM16B results in defects in the olfactory behavior of mice and the cellular physiology of olfactory sensory neurons. The Ca2+-activated Cl− channel TMEM16B is highly expressed in the cilia of olfactory sensory neurons (OSNs). Although a large portion of the odor-evoked transduction current is carried by Ca2+-activated Cl− channels, their role in olfaction is still controversial. A previous report (Billig et al. 2011. Nat. Neurosci.http://dx.doi.org/10.1038/nn.2821) showed that disruption of the TMEM16b/Ano2 gene in mice abolished Ca2+-activated Cl− currents in OSNs but did not produce any major change in olfactory behavior. Here we readdress the role of TMEM16B in olfaction and show that TMEM16B knockout (KO) mice have behavioral deficits in odor-guided food-finding ability. Moreover, as the role of TMEM16B in action potential (AP) firing has not yet been studied, we use electrophysiological recording methods to measure the firing activity of OSNs. Suction electrode recordings from isolated olfactory neurons and on-cell loose-patch recordings from dendritic knobs of neurons in the olfactory epithelium show that randomly selected neurons from TMEM16B KO mice respond to stimulation with increased firing activity than those from wild-type (WT) mice. Because OSNs express different odorant receptors (ORs), we restrict variability by using a mouse line that expresses a GFP-tagged I7 OR, which is known to be activated by heptanal. In response to heptanal, we measure dramatic changes in the firing pattern of I7-expressing neurons from TMEM16B KO mice compared with WT: responses are prolonged and display a higher number of APs. Moreover, lack of TMEM16B causes a markedly reduced basal spiking activity in I7-expressing neurons, together with an alteration of axonal targeting to the olfactory bulb, leading to the appearance of supernumerary I7 glomeruli. Thus, TMEM16B controls AP firing and ensures correct glomerular targeting of OSNs expressing I7. Altogether, these results show that TMEM16B does have a relevant role in normal olfaction.
Collapse
Affiliation(s)
- Gianluca Pietra
- Neurobiology Group, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | | | - Anna Menini
- Neurobiology Group, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | | | - Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), 16149 Genova, Italy
| |
Collapse
|
55
|
Wasilewski T, Gębicki J, Kamysz W. Bioelectronic nose: Current status and perspectives. Biosens Bioelectron 2016; 87:480-494. [PMID: 27592240 DOI: 10.1016/j.bios.2016.08.080] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
A characteristic feature of human and animal organs of smell is the ability to identify hundreds of thousands of odours. It is accompanied by particular smell sensations, which are a basic source of information about odour mixture. The main structural elements of biological smell systems are the olfactory receptors. Small differences in a structure of odorous molecules (odorants) can lead to significant change of odour, which is due to the fact that each of the olfactory receptors is coded with different gene and usually corresponds to different type of odour. Discovery and characterisation of the gene family coding the olfactory receptors contributed to the elaboration and development of the electronic smell systems, the so-called bioelectronic noses. The olfactory receptors are employed as a biological element in this type of instruments. An electronic system includes a converter part, which allows measurement and processing of generated signals. A suitable data analysis system is also required to visualise the results. Application potentialities of the bioelectronic noses are focused on the fields of economy and science where highly selective and sensitive analysis of odorous substances is required. The paper presents a review of the latest achievements and critical evaluation of the state of art in the field of bioelectronic noses.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Al. Hallera 107, Gdansk 80-416, Poland.
| | - Jacek Gębicki
- Gdańsk University of Technology, Department of Chemical and Process Engineering, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., Gdańsk 80-233, Poland
| | - Wojciech Kamysz
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Al. Hallera 107, Gdansk 80-416, Poland
| |
Collapse
|
56
|
Vaaga CE, Westbrook GL. Parallel processing of afferent olfactory sensory information. J Physiol 2016; 594:6715-6732. [PMID: 27377344 DOI: 10.1113/jp272755] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional synaptic connectivity between olfactory receptor neurons and principal cells within the olfactory bulb is not well understood. One view suggests that mitral cells, the primary output neuron of the olfactory bulb, are solely activated by feedforward excitation. Using focal, single glomerular stimulation, we demonstrate that mitral cells receive direct, monosynaptic input from olfactory receptor neurons. Compared to external tufted cells, mitral cells have a prolonged afferent-evoked EPSC, which serves to amplify the synaptic input. The properties of presynaptic glutamate release from olfactory receptor neurons are similar between mitral and external tufted cells. Our data suggest that afferent input enters the olfactory bulb in a parallel fashion. ABSTRACT Primary olfactory receptor neurons terminate in anatomically and functionally discrete cortical modules known as olfactory bulb glomeruli. The synaptic connectivity and postsynaptic responses of mitral and external tufted cells within the glomerulus may involve both direct and indirect components. For example, it has been suggested that sensory input to mitral cells is indirect through feedforward excitation from external tufted cells. We also observed feedforward excitation of mitral cells with weak stimulation of the olfactory nerve layer; however, focal stimulation of an axon bundle entering an individual glomerulus revealed that mitral cells receive monosynaptic afferent inputs. Although external tufted cells had a 4.1-fold larger peak EPSC amplitude, integration of the evoked currents showed that the synaptic charge was 5-fold larger in mitral cells, reflecting the prolonged response in mitral cells. Presynaptic afferents onto mitral and external tufted cells had similar quantal amplitude and release probability, suggesting that the larger peak EPSC in external tufted cells was the result of more synaptic contacts. The results of the present study indicate that the monosynaptic afferent input to mitral cells depends on the strength of odorant stimulation. The enhanced spiking that we observed in response to brief afferent input provides a mechanism for amplifying sensory information and contrasts with the transient response in external tufted cells. These parallel input paths may have discrete functions in processing olfactory sensory input.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Vollum Institute.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
57
|
Wienisch M, Murthy VN. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb. Sci Rep 2016; 6:29308. [PMID: 27388949 PMCID: PMC4937346 DOI: 10.1038/srep29308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons.
Collapse
Affiliation(s)
- Martin Wienisch
- Center for Brain Science and Department of Molecular &Cellular Biology Harvard University, Cambridge 02138, MA, USA
| | - Venkatesh N Murthy
- Center for Brain Science and Department of Molecular &Cellular Biology Harvard University, Cambridge 02138, MA, USA
| |
Collapse
|
58
|
Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli. Neuron 2016; 91:397-411. [PMID: 27346531 DOI: 10.1016/j.neuron.2016.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 10/30/2015] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles.
Collapse
|
59
|
Roland B, Jordan R, Sosulski DL, Diodato A, Fukunaga I, Wickersham I, Franks KM, Schaefer AT, Fleischmann A. Massive normalization of olfactory bulb output in mice with a 'monoclonal nose'. eLife 2016; 5. [PMID: 27177421 PMCID: PMC4919110 DOI: 10.7554/elife.16335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/12/2016] [Indexed: 12/24/2022] Open
Abstract
Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a “monoclonal nose”, glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a “monoclonal nose” and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output. DOI:http://dx.doi.org/10.7554/eLife.16335.001 The lining of the nose contains cells called olfactory sensory neurons that allow different smells to be detected. Odor molecules bind to receptor proteins that are embedded in the surface of the olfactory sensory neuron. Different receptors respond to different odors, and the nose contains hundreds of different receptors that work together to distinguish thousands of scents. When an odor molecule binds to a receptor, it triggers a pattern of electrical activity in the neuron. These patterns are the building blocks that allow smells to be recognized and if necessary, acted upon – by not eating food that smells rancid, for example. In 2008, researchers genetically engineered mice so that nearly all of their olfactory sensory neurons produced the same type of olfactory receptor. Unexpectedly, these mice could still detect and discriminate between many different smells. Now, Roland, Jordan, Sosulski et al. – including several of the researchers involved in the 2008 study – have tracked the brain activity of these mice as they were exposed to various smells to find out how they can recognize such a wide range of odors with such a limited repertoire of receptors. The results of the experiments revealed that neural circuits in the brains of these modified mice still produce largely normal patterns of activity in response to an odor. This ‘normalization’ of activity relies on a fine balance between ‘excitatory’ processes that increase the activity of neurons and ‘inhibitory’ processes that reduce this activity. Overall, the findings of Roland, Jordan, Sosulski et al. provide a link between how a scent is detected and how this information is processed in the brain. In future experiments, it will be important to determine how this processing of odor information is influenced by learning and experience to generate the long-lasting odor memories that guide behavior. DOI:http://dx.doi.org/10.7554/eLife.16335.002
Collapse
Affiliation(s)
- Benjamin Roland
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Rebecca Jordan
- The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Dara L Sosulski
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Assunta Diodato
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Izumi Fukunaga
- The Francis Crick Institute, London, United Kingdom.,Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Ian Wickersham
- MIT Genetic Neuroengineering Group, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, United States
| | - Andreas T Schaefer
- The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| |
Collapse
|
60
|
Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. J Neurosci 2016; 35:14103-22. [PMID: 26490853 DOI: 10.1523/jneurosci.0746-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates.
Collapse
|
61
|
Jeanne JM, Wilson RI. Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy. Neuron 2015; 88:1014-1026. [PMID: 26586183 DOI: 10.1016/j.neuron.2015.10.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022]
Abstract
One of the proposed canonical circuit motifs employed by the brain is a feedforward network where parallel signals converge, diverge, and reconverge. Here we investigate a network with this architecture in the Drosophila olfactory system. We focus on a glomerulus whose receptor neurons converge in an all-to-all manner onto six projection neurons that then reconverge onto higher-order neurons. We find that both convergence and reconvergence improve the ability of a decoder to detect a stimulus based on a single neuron's spike train. The first transformation implements averaging, and it improves peak detection accuracy but not speed; the second transformation implements coincidence detection, and it improves speed but not peak accuracy. In each case, the integration time and threshold of the postsynaptic cell are matched to the statistics of convergent spike trains.
Collapse
Affiliation(s)
- James M Jeanne
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice. Neurochem Res 2015; 41:722-30. [PMID: 26493872 DOI: 10.1007/s11064-015-1741-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.
Collapse
|
63
|
Gilra A, Bhalla US. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 2015; 10:e0098045. [PMID: 25942312 PMCID: PMC4420273 DOI: 10.1371/journal.pone.0098045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
Collapse
Affiliation(s)
- Aditya Gilra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
- * E-mail:
| |
Collapse
|
64
|
Circuit formation and function in the olfactory bulb of mice with reduced spontaneous afferent activity. J Neurosci 2015; 35:146-60. [PMID: 25568110 DOI: 10.1523/jneurosci.0613-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type of neuronal activity required for circuit development is a matter of significant debate. We addressed this issue by analyzing the topographic organization of the olfactory bulb in transgenic mice engineered to have very little afferent spontaneous activity due to the overexpression of the inwardly rectifying potassium channel Kir2.1 in the olfactory sensory neurons (Kir2.1 mice). In these conditions, the topography of the olfactory bulb was unrefined. Odor-evoked responses were readily recorded in glomeruli with reduced spontaneous afferent activity, although the functional maps were coarser than in controls and contributed to altered olfactory discrimination behavior. In addition, overexpression of Kir2.1 in adults induced a regression of the already refined connectivity to an immature (i.e., coarser) status. Our data suggest that spontaneous activity plays a critical role not only in the development but also in the maintenance of the topography of the olfactory bulb and in sensory information processing.
Collapse
|
65
|
Abstract
Animals need to discriminate differences in spatiotemporally distributed sensory signals in terms of quality as well as quantity for generating adaptive behavior. Olfactory signals characterized by odor identity and concentration are intermittently distributed in the environment. From these intervals of stimulation, animals process odorant concentration to localize partners or food sources. Although concentration-response characteristics in olfactory neurons have traditionally been investigated using single stimulus pulses, their behavior under intermittent stimulus regimens remains largely elusive. Using the silkmoth (Bombyx mori) pheromone processing system, a simple and behaviorally well-defined model for olfaction, we investigated the neuronal representation of odorant concentration upon intermittent stimulation in the naturally occurring range. To the first stimulus in a series, the responses of antennal lobe (AL) projection neurons (PNs) showed a concentration dependence as previously shown in many olfactory systems. However, PN response amplitudes dynamically changed upon exposure to intermittent stimuli of the same odorant concentration and settled to a constant, largely concentration-independent level. As a result, PN responses emphasized odorant concentration changes rather than encoding absolute concentration in pulse trains of stimuli. Olfactory receptor neurons did not contribute to this response transformation which was due to long-lasting inhibition affecting PNs in the AL. Simulations confirmed that inhibition also provides advantages when stimuli have naturalistic properties. The primary olfactory center thus functions as an odorant concentration differentiator to efficiently detect concentration changes, thereby improving odorant source orientation over a wide concentration range.
Collapse
|
66
|
Hillje AL, Beckmann E, Pavlou MAS, Jaeger C, Pacheco MP, Sauter T, Schwamborn JC, Lewejohann L. The neural stem cell fate determinant TRIM32 regulates complex behavioral traits. Front Cell Neurosci 2015; 9:75. [PMID: 25852471 PMCID: PMC4364253 DOI: 10.3389/fncel.2015.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/20/2015] [Indexed: 12/22/2022] Open
Abstract
In mammals, new neurons are generated throughout the entire lifespan in two restricted areas of the brain, the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ)—olfactory bulb (OB) system. In both regions newborn neurons display unique properties that clearly distinguish them from mature neurons. Enhanced excitability and increased synaptic plasticity enables them to add specific properties to information processing by modulating the existing local circuitry of already established mature neurons. Hippocampal neurogenesis has been suggested to play a role in spatial-navigation learning, spatial memory, and spatial pattern separation. Cumulative evidences implicate that adult-born OB neurons contribute to learning processes and odor memory. We recently demonstrated that the cell fate determinant TRIM32 is upregulated in differentiating neuroblasts of the SVZ-OB system in the adult mouse brain. The absence of TRIM32 leads to increased progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated OB neurons. Here, we present novel data from behavioral studies showing that such an enhancement of OB neurogenesis not necessarily leads to increased olfactory performance but in contrast even results in impaired olfactory capabilities. In addition, we show at the cellular level that TRIM32 protein levels increase during differentiation of neural stem cells (NSCs). At the molecular level, several metabolic intermediates that are connected to glycolysis, glycine, or cysteine metabolism are deregulated in TRIM32 knockout mice brain tissue. These metabolomics pathways are directly or indirectly linked to anxiety or depression like behavior. In summary, our study provides comprehensive data on how the impairment of neurogenesis caused by the loss of the cell fate determinant TRIM32 causes a decrease of olfactory performance as well as a deregulation of metabolomic pathways that are linked to mood disorders.
Collapse
Affiliation(s)
- Anna-Lena Hillje
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster Münster, Germany ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg Luxembourg, Luxembourg
| | - Elisabeth Beckmann
- Department of Behavioural Biology, Westfälische Wilhelms-Universität Münster Münster, Germany
| | - Maria A S Pavlou
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster Münster, Germany ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg Luxembourg, Luxembourg
| | - Christian Jaeger
- Life Sciences Research Unit, University of Luxembourg Luxembourg, Luxembourg
| | - Maria P Pacheco
- Life Sciences Research Unit, University of Luxembourg Luxembourg, Luxembourg
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg Luxembourg, Luxembourg
| | - Jens C Schwamborn
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster Münster, Germany ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg Luxembourg, Luxembourg
| | - Lars Lewejohann
- Department of Behavioural Biology, Westfälische Wilhelms-Universität Münster Münster, Germany
| |
Collapse
|
67
|
Bartel DL, Rela L, Hsieh L, Greer CA. Dendrodendritic synapses in the mouse olfactory bulb external plexiform layer. J Comp Neurol 2015; 523:1145-61. [PMID: 25420934 DOI: 10.1002/cne.23714] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and was equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites were more prevalent in the outer EPL. In contrast, individual gephyrin-immunoreactive (IR) puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated for by an increase in synaptic density.
Collapse
Affiliation(s)
- Dianna L Bartel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, 06520-8082
| | | | | | | |
Collapse
|
68
|
Abstract
Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing.
Collapse
|
69
|
Adam Y, Livneh Y, Miyamichi K, Groysman M, Luo L, Mizrahi A. Functional transformations of odor inputs in the mouse olfactory bulb. Front Neural Circuits 2014; 8:129. [PMID: 25408637 PMCID: PMC4219419 DOI: 10.3389/fncir.2014.00129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022] Open
Abstract
Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.
Collapse
Affiliation(s)
- Yoav Adam
- Department of Neurobiology, Institute of Life Sciences, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Yoav Livneh
- Department of Neurobiology, Institute of Life Sciences, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Kazunari Miyamichi
- Department of Biology, Howard Hughes Medical Institute, Stanford University Stanford, CA, USA
| | - Maya Groysman
- Department of Neurobiology, Institute of Life Sciences, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University Stanford, CA, USA
| | - Adi Mizrahi
- Department of Neurobiology, Institute of Life Sciences, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
70
|
Brai E, Marathe S, Zentilin L, Giacca M, Nimpf J, Kretz R, Scotti A, Alberi L. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. Eur J Neurosci 2014; 40:3436-49. [PMID: 25234246 DOI: 10.1111/ejn.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour.
Collapse
Affiliation(s)
- Emanuele Brai
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route de Gockel, 1, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98. [PMID: 25232305 PMCID: PMC4153298 DOI: 10.3389/fncir.2014.00098] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
72
|
Mainland JD, Lundström JN, Reisert J, Lowe G. From molecule to mind: an integrative perspective on odor intensity. Trends Neurosci 2014; 37:443-54. [PMID: 24950600 PMCID: PMC4119848 DOI: 10.1016/j.tins.2014.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/01/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022]
Abstract
A fundamental problem in systems neuroscience is mapping the physical properties of a stimulus to perceptual characteristics. In vision, wavelength translates into color; in audition, frequency translates into pitch. Although odorant concentration is a key feature of olfactory stimuli, we do not know how concentration is translated into perceived intensity by the olfactory system. A variety of neural responses at several levels of processing have been reported to vary with odorant concentration, suggesting specific coding models. However, it remains unclear which, if any, of these phenomena underlie the perception of odor intensity. Here, we provide an overview of current models at different stages of olfactory processing, and identify promising avenues for future research.
Collapse
Affiliation(s)
- Joel D Mainland
- Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| | - Johan N Lundström
- Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Graeme Lowe
- Monell Chemical Senses Center, Philadelphia, PA, USA
| |
Collapse
|
73
|
Cazakoff BN, Lau BYB, Crump KL, Demmer HS, Shea SD. Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice. Nat Neurosci 2014; 17:569-76. [PMID: 24584050 DOI: 10.1038/nn.3669] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/04/2014] [Indexed: 12/14/2022]
Abstract
Olfactory representations are shaped by brain state and respiration. The interaction and circuit substrates of these influences are unclear. Granule cells (GCs) in the main olfactory bulb (MOB) are presumed to sculpt activity reaching the cortex via inhibition of mitral/tufted cells (MTs). GCs potentially make ensemble activity more sparse by facilitating lateral inhibition among MTs and/or enforce temporally precise activity locked to breathing. Yet the selectivity and temporal structure of wakeful GC activity are unknown. We recorded GCs in the MOB of anesthetized and awake mice and identified state-dependent features of odor coding and temporal patterning. Under anesthesia, GCs were sparsely active and strongly and synchronously coupled to respiration. Upon waking, GCs desynchronized, broadened their tuning and largely fired independently from respiration. Thus, during wakefulness, GCs exhibited stronger odor responses with less temporal structure. We propose that during wakefulness GCs may shape MT odor responses through broadened lateral interactions rather than respiratory synchronization.
Collapse
Affiliation(s)
| | - Billy Y B Lau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kerensa L Crump
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Heike S Demmer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
74
|
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R. Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS One 2014; 9:e89132. [PMID: 24586546 PMCID: PMC3929629 DOI: 10.1371/journal.pone.0089132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/21/2014] [Indexed: 11/24/2022] Open
Abstract
Although odorant concentration-response characteristics of olfactory neurons have been widely investigated in a variety of animal species, the effect of odorant concentration on neural processing at circuit level is still poorly understood. Using calcium imaging in the silkmoth (Bombyx mori) pheromone processing circuit of the antennal lobe (AL), we studied the effect of odorant concentration on second-order projection neuron (PN) responses. While PN calcium responses of dendrites showed monotonic increases with odorant concentration, calcium responses of somata showed decreased responses at higher odorant concentrations due to postsynaptic inhibition. Simultaneous calcium imaging and electrophysiology revealed that calcium responses of PN somata but not dendrites reflect spiking activity. Inhibition shortened spike response duration rather than decreasing peak instantaneous spike frequency (ISF). Local interneurons (LNs) that were specifically activated at high odorant concentrations at which PN responses were suppressed are the putative source of inhibition. Our results imply the existence of an intraglomerular mechanism that preserves time resolution in olfactory processing over a wide odorant concentration range.
Collapse
Affiliation(s)
- Terufumi Fujiwara
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Stephan Shuichi Haupt
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryohei Kanzaki
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
75
|
Kaplan BA, Lansner A. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system. Front Neural Circuits 2014; 8:5. [PMID: 24570657 PMCID: PMC3916767 DOI: 10.3389/fncir.2014.00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/09/2014] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.
Collapse
Affiliation(s)
- Bernhard A Kaplan
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology Stockholm, Sweden ; Stockholm Brain Institute, Karolinska Institute Stockholm, Sweden
| | - Anders Lansner
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology Stockholm, Sweden ; Stockholm Brain Institute, Karolinska Institute Stockholm, Sweden ; Department of Numerical Analysis and Computer Science, Stockholm University Stockholm, Sweden
| |
Collapse
|
76
|
Abstract
The adult mammalian brain is continuously supplied with adult-born neurons in the olfactory bulb (OB) and hippocampus, where they are thought to be important for circuit coding and plasticity. However, direct evidence for the actual involvement of these neurons in neural processing is still lacking. We recorded the spiking activity of adult-born periglomerular neurons in the mouse OB in vivo using two-photon-targeted patch recordings. We show that odor responsiveness reaches a peak during neuronal development and then recedes at maturity. Sensory enrichment during development enhances the selectivity of adult-born neurons after maturation, without affecting neighboring resident neurons. Thus, in the OB circuit, adult-born neurons functionally integrate into the circuit, where they acquire distinct response profiles in an experience-dependent manner. The constant flow of these sensitive neurons into the circuit provides it with a mechanism of long-term plasticity, wherein new neurons mature to process odor information based on past demands.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Yoav Adam
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel.
| |
Collapse
|
77
|
Adult neurogenesis in the olfactory system shapes odor memory and perception. PROGRESS IN BRAIN RESEARCH 2014; 208:157-75. [PMID: 24767482 DOI: 10.1016/b978-0-444-63350-7.00006-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world.
Collapse
|
78
|
Desprez T, Marsicano G, Soria-Gómez E. Olfactory Habituation in Fasted Mice. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
79
|
Kato HK, Gillet SN, Peters AJ, Isaacson JS, Komiyama T. Parvalbumin-expressing interneurons linearly control olfactory bulb output. Neuron 2013; 80:1218-31. [PMID: 24239124 DOI: 10.1016/j.neuron.2013.08.036] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
In the olfactory bulb, odor representations by principal mitral cells are modulated by local inhibitory circuits. While dendrodendritic synapses between mitral and granule cells are typically thought to be a major source of this modulation, the contributions of other inhibitory neurons remain unclear. Here we demonstrate the functional properties of olfactory bulb parvalbumin-expressing interneurons (PV cells) and identify their important role in odor coding. Using paired recordings, we find that PV cells form reciprocal connections with the majority of nearby mitral cells, in contrast to the sparse connectivity between mitral and granule cells. In vivo calcium imaging in awake mice reveals that PV cells are broadly tuned to odors. Furthermore, selective PV cell inactivation enhances mitral cell responses in a linear fashion while maintaining mitral cell odor preferences. Thus, dense connections between mitral and PV cells underlie an inhibitory circuit poised to modulate the gain of olfactory bulb output.
Collapse
Affiliation(s)
- Hiroyuki K Kato
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
80
|
Miyamichi K, Shlomai-Fuchs Y, Shu M, Weissbourd BC, Luo L, Mizrahi A. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron 2013; 80:1232-45. [PMID: 24239125 DOI: 10.1016/j.neuron.2013.08.027] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
In the mouse olfactory bulb, information from sensory neurons is extensively processed by local interneurons before being transmitted to the olfactory cortex by mitral and tufted (M/T) cells. The precise function of these local networks remains elusive because of the vast heterogeneity of interneurons, their diverse physiological properties, and their complex synaptic connectivity. Here we identified the parvalbumin interneurons (PVNs) as a prominent component of the M/T presynaptic landscape by using an improved rabies-based transsynaptic tracing method for local circuits. In vivo two-photon-targeted patch recording revealed that PVNs have exceptionally broad olfactory receptive fields and exhibit largely excitatory and persistent odor responses. Transsynaptic tracing indicated that PVNs receive direct input from widely distributed M/T cells. Both the anatomical and functional extent of this M/T→PVN→M/T circuit contrasts with the narrowly confined M/T→granule cell→M/T circuit, suggesting that olfactory information is processed by multiple local circuits operating at distinct spatial scales.
Collapse
Affiliation(s)
- Kazunari Miyamichi
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
81
|
Zhang D, Li Y, Wu S, Rasch MJ. Design principles of the sparse coding network and the role of "sister cells" in the olfactory system of Drosophila. Front Comput Neurosci 2013; 7:141. [PMID: 24167488 PMCID: PMC3806038 DOI: 10.3389/fncom.2013.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022] Open
Abstract
Sensory systems face the challenge to represent sensory inputs in a way to allow easy readout of sensory information by higher brain areas. In the olfactory system of the fly drosopohila melanogaster, projection neurons (PNs) of the antennal lobe (AL) convert a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon cells (KCs) in the mushroom body (MB). Here we investigate the design principles of the olfactory system of drosophila in regard to the capabilities to discriminate odor quality from the MB representation and its robustness to different types of noise. We focus on understanding the role of highly correlated homotypic projection neurons (“sister cells”) found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost identical sensory inputs, but target randomly different KCs in MB. We show that sister cells might play a crucial role in increasing the robustness of the MB odor representation to noise. Computationally, sister cells thus might help the system to improve the generalization capabilities in face of noise without impairing the discriminability of odor quality at the same time.
Collapse
Affiliation(s)
- Danke Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; School of Automation Science and Engineering, South China University of Technology Guangzhou, China
| | | | | | | |
Collapse
|
82
|
Abstract
In the olfactory system of Drosophila melanogaster, it is relatively straightforward to target in vivo measurements of neural activity to specific processing channels. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred. These mechanisms also place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
83
|
Lepousez G, Lledo PM. Odor discrimination requires proper olfactory fast oscillations in awake mice. Neuron 2013; 80:1010-24. [PMID: 24139818 DOI: 10.1016/j.neuron.2013.07.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 01/20/2023]
Abstract
Gamma oscillations are commonly observed in sensory brain structures, notably in the olfactory bulb. The mechanism by which gamma is generated in the awake rodent and its functional significance are still unclear. We combined pharmacological and genetic approaches in the awake mouse olfactory bulb to show that gamma oscillations required the synaptic interplay between excitatory output neurons and inhibitory interneurons. Gamma oscillations were amplified, or abolished, after optogenetic activation or selective lesions to the bulbar output neurons. In response to a moderate increase of the excitation/inhibition ratio in output neurons, long-range gamma synchronization was selectively enhanced while the mean firing activity and the amplitude of inhibitory inputs both remained unchanged in output neurons. This excitation/inhibition imbalance also impaired odor discrimination in an olfactory learning task, suggesting that proper fast neuronal synchronization may be critical for the correct discrimination of similar sensory stimuli.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Laboratory for Perception and Memory, Institut Pasteur, F-75015 Paris, France; CNRS UMR 3571, F-75015 Paris, France.
| | | |
Collapse
|
84
|
Zhou P, Burton SD, Urban NN, Ermentrout GB. Impact of neuronal heterogeneity on correlated colored noise-induced synchronization. Front Comput Neurosci 2013; 7:113. [PMID: 23970864 PMCID: PMC3748396 DOI: 10.3389/fncom.2013.00113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022] Open
Abstract
Synchronization plays an important role in neural signal processing and transmission. Many hypotheses have been proposed to explain the origin of neural synchronization. In recent years, correlated noise-induced synchronization has received support from many theoretical and experimental studies. However, many of these prior studies have assumed that neurons have identical biophysical properties and that their inputs are well modeled by white noise. In this context, we use colored noise to induce synchronization between oscillators with heterogeneity in both phase-response curves and frequencies. In the low noise limit, we derive novel analytical theory showing that the time constant of colored noise influences correlated noise-induced synchronization and that oscillator heterogeneity can limit synchronization. Surprisingly, however, heterogeneous oscillators may synchronize better than homogeneous oscillators given low input correlations. We also find resonance of oscillator synchronization to colored noise inputs when firing frequencies diverge. Collectively, these results prove robust for both relatively high noise regimes and when applied to biophysically realistic spiking neuron models, and further match experimental recordings from acute brain slices.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Program in Neural Computation, Carnegie Mellon University Pittsburgh, PA, USA ; Center for the Neural Basis of Cognition Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
85
|
Abstract
The main olfactory system encodes information about molecules in a combinatorial fashion by distributed spatiotemporal activity patterns. As activity propagates from sensory neurons to the olfactory bulb and to higher brain areas, odor information is processed by multiple transformations of these activity patterns. This review discusses neuronal computations associated with such transformations in the olfactory system of zebrafish, a small vertebrate that offers advantages for the quantitative analysis and manipulation of neuronal activity in the intact brain. The review focuses on pattern decorrelation in the olfactory bulb and on the readout of multiplexed sensory representations in the telencephalic area Dp, the homolog of the olfactory cortex. These computations are difficult to study in larger species and may provide insights into general information-processing strategies in the brain.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
86
|
Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 2013; 33:5285-300. [PMID: 23516293 DOI: 10.1523/jneurosci.4824-12.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.
Collapse
|
87
|
Kikuta S, Fletcher ML, Homma R, Yamasoba T, Nagayama S. Odorant response properties of individual neurons in an olfactory glomerular module. Neuron 2013; 77:1122-35. [PMID: 23522047 DOI: 10.1016/j.neuron.2013.01.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
Abstract
Neuronal networks that are directly associated with glomeruli in the olfactory bulb are thought to comprise functional modules. However, this has not yet been experimentally proven. In this study, we explored the anatomical and functional architecture of glomerular modules using in vivo two-photon calcium imaging. Surprisingly, the deep portions of the glomerular modules showed considerable spatial overlap with other modules. Juxtaglomerular cells showed similar excitatory odorant response profiles to presynaptic olfactory sensory neuron inputs. Mitral cells exhibited a more sharply tuned molecular receptive range compared to juxtaglomerular cells, and their odorant response profiles varied depending on their interneuronal horizontal distances. These data suggest that glomerular modules are composed of functionally distinct neurons, and that homogenous odor inputs to each glomerulus may be parsed and processed in different fashions within the modules before being sent to higher olfactory centers.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
88
|
Connelly T, Savigner A, Ma M. Spontaneous and sensory-evoked activity in mouse olfactory sensory neurons with defined odorant receptors. J Neurophysiol 2013; 110:55-62. [PMID: 23596334 DOI: 10.1152/jn.00910.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems need to tease out stimulation-evoked activity against a noisy background. In the olfactory system, the odor response profile of an olfactory sensory neuron (OSN) is dependent on the type of odorant receptor it expresses. OSNs also exhibit spontaneous activity, which plays a role in establishing proper synaptic connections and may also increase the sensitivity of the cells. However, where the spontaneous activity originates and whether it informs sensory-evoked activity remain unclear. We addressed these questions by examining patch-clamp recordings of genetically labeled mouse OSNs with defined odorant receptors in intact olfactory epithelia. We show that OSNs expressing different odorant receptors had significantly different rates of basal activity. Additionally, OSNs expressing an inactive mutant I7 receptor completely lacked spontaneous activity, despite being able to fire action potentials in response to current injection. This finding strongly suggests that the spontaneous firing of an OSN originates from the spontaneous activation of its G protein-coupled odorant receptor. Moreover, OSNs expressing the same receptor displayed considerable variation in their spontaneous activity, and the variation was broadened upon odor stimulation. Interestingly, there is no significant correlation between the spontaneous and sensory-evoked activity in these neurons. This study reveals that the odorant receptor type determines the spontaneous firing rate of OSNs, but the basal activity does not correlate with the activity induced by near-saturated odor stimulation. The implications of these findings on olfactory information processing are discussed.
Collapse
Affiliation(s)
- Timothy Connelly
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
89
|
Yu Y, McTavish TS, Hines ML, Shepherd GM, Valenti C, Migliore M. Sparse distributed representation of odors in a large-scale olfactory bulb circuit. PLoS Comput Biol 2013; 9:e1003014. [PMID: 23555237 PMCID: PMC3610624 DOI: 10.1371/journal.pcbi.1003014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/14/2013] [Indexed: 11/20/2022] Open
Abstract
In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments, through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of these synchronized spiking patterns also modulated by the sniff cycle. In the paper we address the role of lateral inhibition in a neuronal network. It is an essential and widespread mechanism of neural processing that has been demonstrated in many brain systems. A key finding that would reveal how and to what extent it can modulate input signals and give rise to some form of perception would involve network-wide recording of individual cells during in vivo behavioral experiments. While this problem has been intensely investigated, it is beyond current methods to record from a reasonable set of cells experimentally to decipher the emergent properties and behavior of the network, leaving the underlying computational and functional roles of lateral inhibition still poorly understood. We addressed this problem using a large-scale model of the olfactory bulb. The model demonstrates how lateral inhibition modulates the evolving dynamics of the olfactory bulb network, generating mitral and granule cell responses that account for critical experimental findings. It also suggests how odor identity can be represented by a combination of temporal and spatial patterns of mitral cell activity, with both feedforward excitation and lateral inhibition via dendrodendritic synapses as the underlying mechanisms facilitating network self-organization and the emergence of synchronized oscillations.
Collapse
Affiliation(s)
- Yuguo Yu
- Centre for Computational Systems Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas S. McTavish
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael L. Hines
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gordon M. Shepherd
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Cesare Valenti
- Department of Mathematics and Informatics, University of Palermo, Palermo, Italy
| | - Michele Migliore
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Institute of Biophysics, National Research Council, Palermo, Italy
- * E-mail:
| |
Collapse
|
90
|
Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb. J Neurosci 2013; 33:1552-63. [PMID: 23345229 DOI: 10.1523/jneurosci.3410-12.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition between neurons occurs in many different sensory systems, where it can perform such functions as contrast enhancement. In the olfactory bulb, lateral inhibition may occur between odorant receptor-specific glomeruli that are linked anatomically by GABAergic granule cells (GCs) and cells within the glomerular layer, although evidence supporting lateral inhibition at a functional level is modest. Here, we used patch-clamp, imaging, and glutamate uncaging methods in rat olfactory bulb slices to test for the presence of interglomerular lateral inhibition, as well as its underlying mechanisms. We found that a conditioning stimulus applied at one or a small group of glomeruli could suppress stimulus-evoked excitation of output mitral cells (MCs) at another glomerulus for interstimulus intervals of 20-50 ms and glomerular separations of up to 600 μm. The observed lateral inhibition was entirely dependent on circuitry within the glomerular layer, rather than GCs, and it involved GABAergic synaptic inputs that were targeted mainly onto tufted cells, which act as intermediaries in the excitation between olfactory sensory neurons and MCs. The key cell type responsible for mediating lateral interactions between glomeruli were GABAergic short-axon cells. These results suggest a functional segregation of GABAergic cells within the bulb, with one set located in the glomerular layer mediating suppression of MC spiking across glomeruli, and a second set, the GCs, synchronizing different glomeruli.
Collapse
|
91
|
Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 2013. [PMID: 23516293 DOI: 10.1523/jneurosci.4824‐12.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.
Collapse
|
92
|
Huang L, Garcia I, Jen HI, Arenkiel BR. Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb. Front Neural Circuits 2013; 7:32. [PMID: 23459611 PMCID: PMC3584718 DOI: 10.3389/fncir.2013.00032] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/12/2013] [Indexed: 01/03/2023] Open
Abstract
Proper brain function relies on exquisite balance between excitation and inhibition, where inhibitory circuits play fundamental roles toward sculpting principle neuron output and information processing. In prominent models of olfactory bulb circuitry, inhibition of mitral cells by local interneurons sharpens odor tuning and provides contrast enhancement. Mitral cell inhibition occurs at both mitral cell apical dendrites and deep-layer dendrodendritic synapses between granule cells, the most abundant population of inhibitory interneurons in the olfactory bulb. However, it remains unclear whether other local interneurons make inhibitory connections onto mitral cells. Here, we report a novel circuitry with strong and reciprocal connectivity between a subpopulation of previously uncharacterized Corticotropin-Releasing Hormone (CRH)-expressing interneurons located in the external plexiform layer (EPL), and mitral cells. Using cell type-specific genetic manipulations, imaging, optogenetic stimulation, and electrophysiological recordings, we reveal that CRH-expressing EPL interneurons strongly inhibit mitral cell firing, and that they are reciprocally excited by fast glutamatergic mitral cell input. These findings functionally identify a novel subpopulation of olfactory bulb interneurons that show reciprocal connectivity with mitral cells, uncovering a previously unknown, and potentially critical player in olfactory bulb circuitry that may influence lateral interactions and/or facilitate odor processing.
Collapse
Affiliation(s)
- Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital Houston, TX, USA
| | | | | | | |
Collapse
|
93
|
Homma R, Kovalchuk Y, Konnerth A, Cohen LB, Garaschuk O. In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb. Front Neural Circuits 2013; 7:23. [PMID: 23459031 PMCID: PMC3578271 DOI: 10.3389/fncir.2013.00023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/02/2013] [Indexed: 01/05/2023] Open
Abstract
Juxtaglomerular neurons represent one of the largest cellular populations in the mammalian olfactory bulb yet their role for signal processing remains unclear. We used two-photon imaging and electrophysiological recordings to clarify the in vivo properties of these cells and their functional organization in the juxtaglomerular space. Juxtaglomerular neurons coded for many perceptual characteristics of the olfactory stimulus such as (1) identity of the odorant, (2) odorant concentration, (3) odorant onset, and (4) offset. The odor-responsive neurons clustered within a narrow area surrounding the glomerulus with the same odorant specificity, with ~80% of responding cells located ≤20 μm from the glomerular border. This stereotypic spatial pattern of activated cells persisted at different odorant concentrations and was found for neurons both activated and inhibited by the odorant. Our data identify a principal glomerulus with a narrow shell of juxtaglomerular neurons as a basic odor coding unit in the glomerular layer and underline the important role of intraglomerular circuitry.
Collapse
Affiliation(s)
- R Homma
- Department of Physiology, Yale University New Haven, CT, USA ; NeuroImaging Cluster, Marine Biological Laboratory Woods Hole, MA, USA
| | | | | | | | | |
Collapse
|
94
|
Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 2013; 76:962-75. [PMID: 23217744 DOI: 10.1016/j.neuron.2012.09.037] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 11/22/2022]
Abstract
How are sensory representations in the brain influenced by the state of an animal? Here we use chronic two-photon calcium imaging to explore how wakefulness and experience shape odor representations in the mouse olfactory bulb. Comparing the awake and anesthetized state, we show that wakefulness greatly enhances the activity of inhibitory granule cells and makes principal mitral cell odor responses more sparse and temporally dynamic. In awake mice, brief repeated odor experience leads to a gradual and long-lasting (months) weakening of mitral cell odor representations. This mitral cell plasticity is odor specific, recovers gradually over months, and can be repeated with different odors. Furthermore, the expression of this experience-dependent plasticity is prevented by anesthesia. Together, our results demonstrate the dynamic nature of mitral cell odor representations in awake animals, which is constantly shaped by recent odor experience.
Collapse
|
95
|
Nakashima N, Ishii TM, Bessho Y, Kageyama R, Ohmori H. Hyperpolarisation-activated cyclic nucleotide-gated channels regulate the spontaneous firing rate of olfactory receptor neurons and affect glomerular formation in mice. J Physiol 2013; 591:1749-69. [PMID: 23318872 DOI: 10.1113/jphysiol.2012.247361] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Olfactory receptor neurons (ORNs), which undergo lifelong neurogenesis, have been studied extensively to understand how neurons form precise topographical networks. Neural projections from ORNs are principally guided by the genetic code, which directs projections from ORNs that express a specific odorant receptor to the corresponding glomerulus in the olfactory bulb. In addition, ORNs utilise spontaneous firing activity to establish and maintain the neural map. However, neither the process of generating this spontaneous activity nor its role as a guidance cue in the olfactory bulb is clearly understood. Utilising extracellular unit-recordings in mouse olfactory epithelium slices, we demonstrated that the hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels in the somas of ORNs depolarise their membranes and boost their spontaneous firing rates by sensing basal cAMP levels; the odorant-sensitive cyclic nucleotide-gated (CNG) channels in cilia do not. The basal cAMP levels were maintained via the standing activation of β-adrenergic receptors. Using a Tet-off system to over-express HCN4 channels resulted in the enhancement of spontaneous ORN activity and dramatically reduced both the size and number of glomeruli in the olfactory bulb. This phenotype was rescued by the administration of doxycycline. These findings suggest that cAMP plays different roles in cilia and soma and that basal cAMP levels in the soma are directly converted via HCN channels into a spontaneous firing frequency that acts as an intrinsic guidance cue for the formation of olfactory networks.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
96
|
Yoshikawa K, Nakagawa H, Mori N, Watanabe H, Touhara K. An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor. Nat Chem Biol 2013; 9:160-2. [PMID: 23314914 DOI: 10.1038/nchembio.1164] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022]
Abstract
We report the identification of a physiological receptor-volatile pair in the mouse olfactory system. By activity-guided fractionation of exocrine gland extracts and subsequent chemical analysis, (Z)-5-tetradecen-1-ol was identified as a natural ligand for a mouse odorant receptor. (Z)-5-tetradecen-1-ol is excreted into male mouse urine under androgen control and enhances urine attractiveness to female mice. This report is to our knowledge the first to describe natural product-based deorphanization of an odorant receptor.
Collapse
Affiliation(s)
- Keiichi Yoshikawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
97
|
Zhou Z, Belluscio L. Coding odorant concentration through activation timing between the medial and lateral olfactory bulb. Cell Rep 2012; 2:1143-50. [PMID: 23168258 DOI: 10.1016/j.celrep.2012.09.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/31/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
In mammals, each olfactory bulb (OB) contains a pair of mirror-symmetric glomerular maps organized to reflect odorant receptor identity. The functional implication of maintaining these symmetric medial-lateral maps within each OB remains unclear. Here, using in vivo multielectrode recordings to simultaneously detect odorant-induced activity across the entire OB, we reveal a timing difference in the odorant-evoked onset latencies between the medial and lateral halves. Interestingly, the latencies in the medial and lateral OB decreased at different rates as odorant concentration increased, causing the timing difference between them to also diminish. As a result, output neurons in the medial and lateral OB fired with greater synchrony at higher odorant concentrations. Thus, we propose that temporal differences in activity between the medial and lateral OB can dynamically code odorant concentration, which is subsequently decoded in the olfactory cortex through the integration of synchronous action potentials.
Collapse
Affiliation(s)
- Zhishang Zhou
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892-3703, USA
| | | |
Collapse
|
98
|
Wang Y, Liu L. Recent progress of sensory system research in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:1026-1028. [PMID: 23160831 DOI: 10.1007/s11427-012-4402-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
99
|
Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb. J Neurosci 2012; 32:10105-16. [PMID: 22836246 DOI: 10.1523/jneurosci.0058-12.2012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main olfactory bulb (MOB) in mammals receives massive centrifugal input from cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, the activity of which is thought to be correlated with animal behaving states, such as attention. Cholinergic signals in the bulb facilitate olfactory discrimination and learning, but it has remained controversial how the activity of HDB cholinergic neurons modulates neuronal excitability and olfactory responses in the MOB. In this study, we used an optogenetic approach to selectively activate HDB cholinergic neurons and recorded the effect of this activation on the spontaneous firing activity and odor-evoked responses of mouse MOB neurons. Cells were juxtacellularly labeled and their specific types were morphologically determined. We find that light stimulation of HDB cholinergic neurons inhibits the spontaneous firing activity of all major cell types, including mitral/tufted (M/T) cells, periglomerular (PG) cells, and GABAergic granule cells. Inhibitions are significantly produced by stimulation at 10 Hz and further enhanced at higher frequencies. In addition, cholinergic activation sharpens the olfactory tuning curves of a majority of M/T cells but broadly potentiates odor-evoked responses of PG cells and granule cells. These results demonstrate strong effects of the basal forebrain cholinergic system on modulating neuronal excitability in the MOB and support the hypothesis that cholinergic activity increases olfactory discrimination capability.
Collapse
|
100
|
Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 2012; 32:7970-85. [PMID: 22674272 DOI: 10.1523/jneurosci.0154-12.2012] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Odor signals are conveyed from the olfactory bulb to the olfactory cortex (OC) by mitral cells (MCs) and tufted cells (TCs). However, whether and how the two types of projection neuron differ in function and axonal connectivity is still poorly understood. Odor responses and axonal projection patterns were compared between MCs and TCs in mice by visualizing axons of electrophysiologically identified single neurons. TCs demonstrated shorter onset latency for reliable responses than MCs. The shorter latency response of TCs was maintained in a wide range of odor concentrations, whereas MCs responded only to strong signals. Furthermore, individual TCs projected densely to focal targets only in anterior areas of the OC, whereas individual MCs dispersedly projected to all OC areas. Surprisingly, in anterior OC areas, the two cell types projected to segregated subareas. These results suggest that MCs and TCs transmit temporally distinct odor information to different OC targets.
Collapse
|