51
|
Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. Eur J Neurosci 2020; 53:3988-4004. [PMID: 32510674 DOI: 10.1111/ejn.14853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Perineuronal nets (PNNs) represent a highly condensed specialized form of brain extracellular matrix (ECM) enwrapping mostly parvalbumin-positive interneurons in the brain in a mesh-like fashion. PNNs not only regulate the onset and completion of the critical period during postnatal brain development, control cell excitability, and synaptic transmission but are also implicated in several brain disorders including schizophrenia. Holes in the perineuronal nets, harboring the synaptic contacts, along with hole-surrounding ECM barrier can be viewed as PNN compartmentalization units that might determine the properties of synapses and heterosynaptic communication. In this study, we developed a novel open-source script for Fiji (ImageJ) to semi-automatically quantify structural alterations of PNNs such as the number of PNN units, area, mean intensity of PNN marker expression in 2D and 3D, shape parameters of PNN units in the ketamine-treated Sprague-Dawley rat model of schizophrenia using high-resolution confocal microscopic images. We discovered that the mean intensity of ECM within PNN units is inversely correlated with the area and the perimeter of the PNN holes. The intensity, size, and shape of PNN units proved to be three major principal factors to describe their variability. Ketamine-treated rats had more numerous but smaller and less circular PNN units than control rats. These parameters allowed to correctly classify individual PNNs as derived from control or ketamine-treated groups with ≈85% reliability. Thus, the proposed multidimensional analysis of PNN units provided a robust and comprehensive morphometric fingerprinting of fine ECM structure abnormalities in the experimental model of schizophrenia.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Nikita Lipachev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anastasia Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anastasia Dvoeglazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mikhail Paveliev
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
52
|
Lateralized Expression of Cortical Perineuronal Nets during Maternal Experience is Dependent on MECP2. eNeuro 2020; 7:ENEURO.0500-19.2020. [PMID: 32332080 PMCID: PMC7294466 DOI: 10.1523/eneuro.0500-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cortical neuronal circuits along the sensorimotor pathways are shaped by experience during critical periods of heightened plasticity in early postnatal development. After closure of critical periods, measured histologically by the formation and maintenance of extracellular matrix structures called perineuronal nets (PNNs), the adult mouse brain exhibits restricted plasticity and maturity. Mature PNNs are typically considered to be stable structures that restrict synaptic plasticity on cortical parvalbumin+ (PV+) GABAergic neurons. Changes in environment (i.e., novel behavioral training) or social contexts (i.e., motherhood) are known to elicit synaptic plasticity in relevant neural circuitry. However, little is known about concomitant changes in the PNNs surrounding the cortical PV+ GABAergic neurons. Here, we show novel changes in PNN density in the primary somatosensory cortex (SS1) of adult female mice after maternal experience [called surrogate (Sur)], using systematic microscopy analysis of a whole brain region. On average, PNNs were increased in the right barrel field and decreased in the left forelimb regions. Individual mice had left hemisphere dominance in PNN density. Using adult female mice deficient in methyl-CpG-binding protein 2 (MECP2), an epigenetic regulator involved in regulating experience-dependent plasticity, we found that MECP2 is critical for this precise and dynamic expression of PNN. Adult naive Mecp2-heterozygous (Het) females had increased PNN density in specific subregions in both hemispheres before maternal experience, compared with wild-type (WT) littermate controls. The laterality in PNN expression seen in naive Het (NH) was lost after maternal experience in Sur Het (SH) mice, suggesting possible intact mechanisms for plasticity. Together, our results identify subregion and hemisphere-specific alterations in PNN expression in adult females, suggesting extracellular matrix plasticity as a possible neurobiological mechanism for adult behaviors in rodents.
Collapse
|
53
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
54
|
Lazarevich I, Stasenko S, Rozhnova M, Pankratova E, Dityatev A, Kazantsev V. Activity-dependent switches between dynamic regimes of extracellular matrix expression. PLoS One 2020; 15:e0227917. [PMID: 31978183 PMCID: PMC6980407 DOI: 10.1371/journal.pone.0227917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 01/22/2023] Open
Abstract
Experimental studies highlight the important role of the extracellular matrix (ECM) in the regulation of neuronal excitability and synaptic connectivity in the nervous system. In its turn, the neural ECM is formed in an activity-dependent manner. Its maturation closes the so-called critical period of neural development, stabilizing the efficient configurations of neural networks in the brain. ECM is locally remodeled by proteases secreted and activated in an activity-dependent manner into the extracellular space and this process is important for physiological synaptic plasticity. We ask if ECM remodeling may be exaggerated under pathological conditions and enable activity-dependent switches between different regimes of ECM expression. We consider an analytical model based on known mechanisms of interaction between neuronal activity and expression of ECM, ECM receptors and ECM degrading proteases. We demonstrate that either inhibitory or excitatory influence of ECM on neuronal activity may lead to the bistability of ECM expression, so two stable stationary states are observed. Noteworthy, only in the case when ECM has predominant inhibitory influence on neurons, the bistability is dependent on the activity of proteases. Excitatory ECM-neuron feedback influences may also result in spontaneous oscillations of ECM expression, which may coexist with a stable stationary state. Thus, ECM-neuronal interactions support switches between distinct dynamic regimes of ECM expression, possibly representing transitions into disease states associated with remodeling of brain ECM.
Collapse
Affiliation(s)
- Ivan Lazarevich
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
- École Normale Supérieure, Paris Sciences et Lettres University, Laboratoire de Neurosciences Cognitives, Group for Neural Theory, Paris, France
- * E-mail: (IL); (SS)
| | - Sergey Stasenko
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
- * E-mail: (IL); (SS)
| | - Maiya Rozhnova
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | | | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Victor Kazantsev
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
55
|
Zarei-Kheirabadi M, Sadrosadat H, Mohammadshirazi A, Jaberi R, Sorouri F, Khayyatan F, Kiani S. Human embryonic stem cell-derived neural stem cells encapsulated in hyaluronic acid promotes regeneration in a contusion spinal cord injured rat. Int J Biol Macromol 2020; 148:1118-1129. [PMID: 31982534 DOI: 10.1016/j.ijbiomac.2020.01.219] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/21/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
Abstract
spinal cord injury (SCI) is a traumatic damage that can causes a loss of neurons around the lesion site and resulting in locomotor and sensory deficits. Currently, there is widely attempts in improvement of treatment strategy and cell delivering to the central nervous system (CNS). The usage of hyaluronic acid (HA), the main components of the ECM in CNS tissue and neural stem cells (NSCs) niche, is a good selection that can increase of viability and differentiation of NSCs. Importantly, we demonstrate that encapsulation of human embryonic stem cell derived-neural stem cells (hESC-NS) in HA-based hydrogel can increased differentiation these cells into oligodendrocytes and improved locomotor function.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Sadrosadat
- Department of Physiology, Tarbiat Modarres University, Tehran, Iran
| | - Atiyeh Mohammadshirazi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Razieh Jaberi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Khayyatan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
56
|
Mitlöhner J, Kaushik R, Niekisch H, Blondiaux A, Gee CE, Happel MFK, Gundelfinger E, Dityatev A, Frischknecht R, Seidenbecher C. Dopamine Receptor Activation Modulates the Integrity of the Perisynaptic Extracellular Matrix at Excitatory Synapses. Cells 2020; 9:cells9020260. [PMID: 31972963 PMCID: PMC7073179 DOI: 10.3390/cells9020260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
In the brain, Hebbian-type and homeostatic forms of plasticity are affected by neuromodulators like dopamine (DA). Modifications of the perisynaptic extracellular matrix (ECM), which control the functions and mobility of synaptic receptors as well as the diffusion of transmitters and neuromodulators in the extracellular space, are crucial for the manifestation of plasticity. Mechanistic links between synaptic activation and ECM modifications are largely unknown. Here, we report that neuromodulation via D1-type DA receptors can induce targeted ECM proteolysis specifically at excitatory synapses of rat cortical neurons via proteases ADAMTS-4 and -5. We showed that receptor activation induces increased proteolysis of brevican (BC) and aggrecan, two major constituents of the adult ECM both in vivo and in vitro. ADAMTS immunoreactivity was detected near synapses, and shRNA-mediated knockdown reduced BC cleavage. We have outlined a molecular scenario of how synaptic activity and neuromodulation are linked to ECM rearrangements via increased cAMP levels, NMDA receptor activation, and intracellular calcium signaling.
Collapse
Affiliation(s)
- Jessica Mitlöhner
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Hartmut Niekisch
- Leibniz Institute for Neurobiology (LIN), Department of Systems Physiology of Learning, 39118 Magdeburg, Germany; (H.N.); (M.F.K.H.)
| | - Armand Blondiaux
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
| | - Christine E. Gee
- Center for Molecular Neurobiology Hamburg (ZMNH), Institute for Synaptic Physiology, 20251 Hamburg, Germany;
| | - Max F. K. Happel
- Leibniz Institute for Neurobiology (LIN), Department of Systems Physiology of Learning, 39118 Magdeburg, Germany; (H.N.); (M.F.K.H.)
| | - Eckart Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Otto-von-Guericke University, Medical Faculty, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Otto-von-Guericke University, Medical Faculty, 39120 Magdeburg, Germany
- Correspondence: (A.D.); (R.F.); (C.S.); Tel.: +49-391 67-24526 (A.D.); +49-9131 85-28051 (R.F.); +49-391-6263-92401 (C.S.)
| | - Renato Frischknecht
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Correspondence: (A.D.); (R.F.); (C.S.); Tel.: +49-391 67-24526 (A.D.); +49-9131 85-28051 (R.F.); +49-391-6263-92401 (C.S.)
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Otto-von-Guericke University, Medical Faculty, 39120 Magdeburg, Germany
- Correspondence: (A.D.); (R.F.); (C.S.); Tel.: +49-391 67-24526 (A.D.); +49-9131 85-28051 (R.F.); +49-391-6263-92401 (C.S.)
| |
Collapse
|
57
|
Murase S, Winkowski D, Liu J, Kanold PO, Quinlan EM. Homeostatic regulation of perisynaptic matrix metalloproteinase 9 (MMP9) activity in the amblyopic visual cortex. eLife 2019; 8:52503. [PMID: 31868167 PMCID: PMC6961978 DOI: 10.7554/elife.52503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Dark exposure (DE) followed by light reintroduction (LRx) reactivates robust synaptic plasticity in adult mouse primary visual cortex (V1), which allows subsequent recovery from amblyopia. Previously we showed that perisynaptic proteolysis by MMP9 mediates the enhancement of plasticity by LRx in binocular adult mice (Murase et al., 2017). However, it was unknown if a visual system compromised by amblyopia could engage this pathway. Here we show that LRx to adult amblyopic mice induces perisynaptic MMP2/9 activity and extracellular matrix (ECM) degradation in deprived and non-deprived V1. Indeed, LRx restricted to the amblyopic eye is sufficient to induce robust MMP2/9 activity at thalamo-cortical synapses and ECM degradation in deprived V1. Two-photon live imaging demonstrates that the history of visual experience regulates MMP2/9 activity in V1, and that DE lowers the threshold for the proteinase activation. The homeostatic reduction of the MMP2/9 activation threshold by DE enables visual input from the amblyopic pathway to trigger robust perisynaptic proteolysis.
Collapse
Affiliation(s)
- Sachiko Murase
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Dan Winkowski
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Elizabeth M Quinlan
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| |
Collapse
|
58
|
Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 2019; 20:282-297. [PMID: 30792501 DOI: 10.1038/s41583-019-0126-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is a neurological disorder afflicting ~65 million people worldwide. It is caused by aberrant synchronized firing of populations of neurons primarily due to imbalance between excitatory and inhibitory neurotransmission. Hence, the historical focus of epilepsy research has been neurocentric. However, the past two decades have enjoyed an explosion of research into the role of glia in supporting and modulating neuronal activity, providing compelling evidence of glial involvement in the pathophysiology of epilepsy. The mechanisms by which glia, particularly astrocytes and microglia, may contribute to epilepsy and consequently could be harnessed therapeutically are discussed in this Review.
Collapse
Affiliation(s)
- Dipan C Patel
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Bhanu P Tewari
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Lata Chaunsali
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Harald Sontheimer
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA. .,School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
59
|
Cingolani LA, Vitale C, Dityatev A. Intra- and Extracellular Pillars of a Unifying Framework for Homeostatic Plasticity: A Crosstalk Between Metabotropic Receptors and Extracellular Matrix. Front Cell Neurosci 2019; 13:513. [PMID: 31803023 PMCID: PMC6877475 DOI: 10.3389/fncel.2019.00513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022] Open
Abstract
In the face of chronic changes in incoming sensory inputs, neuronal networks are capable of maintaining stable conditions of electrical activity over prolonged periods of time by adjusting synaptic strength, to amplify or dampen incoming inputs [homeostatic synaptic plasticity (HSP)], or by altering the intrinsic excitability of individual neurons [homeostatic intrinsic plasticity (HIP)]. Emerging evidence suggests a synergistic interplay between extracellular matrix (ECM) and metabotropic receptors in both forms of homeostatic plasticity. Activation of dopaminergic, serotonergic, or glutamate metabotropic receptors stimulates intracellular signaling through calmodulin-dependent protein kinase II, protein kinase A, protein kinase C, and inositol trisphosphate receptors, and induces changes in expression of ECM molecules and proteolysis of both ECM molecules (lecticans) and ECM receptors (NPR, CD44). The resulting remodeling of perisynaptic and synaptic ECM provides permissive conditions for HSP and plays an instructive role by recruiting additional signaling cascades, such as those through metabotropic glutamate receptors and integrins. The superimposition of all these signaling events determines intracellular and diffusional trafficking of ionotropic glutamate receptors, resulting in HSP and modulation of conditions for inducing Hebbian synaptic plasticity (i.e., metaplasticity). It also controls cell-surface delivery and activity of voltage- and Ca2+-gated ion channels, resulting in HIP. These mechanisms may modify epileptogenesis and become a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Carmela Vitale
- Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
60
|
Zhu L, Liu X, Nemeth DP, DiSabato DJ, Witcher KG, Mckim DB, Oliver B, Le X, Gorantla G, Berdysz O, Li J, Ramani AD, Chen Z, Wu D, Godbout JP, Quan N. Interleukin-1 causes CNS inflammatory cytokine expression via endothelia-microglia bi-cellular signaling. Brain Behav Immun 2019; 81:292-304. [PMID: 31228609 PMCID: PMC6754782 DOI: 10.1016/j.bbi.2019.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/26/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
As a major producer of the inflammatory cytokine interleukin-1 (IL-1), peripheral macrophages can augment IL-1 expression via type 1 IL-1 receptor (IL-1R1) mediated autocrine self-amplification. In the CNS, microglial cells are the major producers of inflammatory cytokines, but express negligible levels of IL-1R1. In the present study, we showed CNS IL-1 induced microglial proinflammatory cytokine expression was mediated by endothelial, not microglial, IL-1R1. This paracrine mechanism was further dissected in vitro. IL-1 was unable to stimulate inflammatory cytokine expression directly from the microglial cell line BV-2, but it stimulated the brain endothelial cell line bEnd.3 to produce a factor(s) in the culture supernatant, which was capable of inducing inflammatory cytokine expression in BV-2. We termed this factor IL-1-induced microglial activation factors (IMAF). BV-2 cytokine expression was inducible by extracellular ATP, but IL-1 did not stimulate the release of ATP from bEnd.3 cells. Filtration of IMAF by size-exclusion membranes showed IMAF activity resided in molecules larger than 50 kd and incubation of IMAF at 95 °C for 5 min did not alter its activity. Microglial inhibitor minocycline was unable to block IMAF activity, even though it blocked LPS induced cytokine expression in BV-2 cells. Adding NF-κB inhibitor to the bEnd.3 cells abolished IL-1 induced cytokine expression in this bi-cellular system, but adding NF-κB inhibitor after IMAF is already produced failed to abrogate IMAF induced cytokine expression in BV-2 cells. RNA sequencing of IL-1 stimulated endothelial cells revealed increased expression of genes involved in the production and processing of hyaluronic acid (HA), suggesting HA as a candidate of IMAF. Inhibition of hyaluronidase by ascorbyl palmitate (AP) abolished IMAF-induced cytokine expression in BV-2 cells. AP administration in vivo also inhibited ICV IL-1-induced IL-1 expression in the hippocampus and hypothalamus. In vitro, either TLR2 or TLR4 inhibitors blocked IMAF induced BV-2 cytokine expression. In vivo, however, IL-1 induced cytokine expression persisted in either TLR2 or TLR4 knockouts. These results demonstrate IL-1 induced inflammatory cytokine expression in the CNS requires a bi-cellular system and HA could be a candidate for IMAF.
Collapse
Affiliation(s)
- Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R.China
| | - Xiaoyu Liu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Daniel P. Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Damon J. DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G. Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B. Mckim
- Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xi Le
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R.China, Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, Hubei 430075, P.R.China
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jiaoni Li
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Aishwarya D. Ramani
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R.China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R.China, Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, Hubei 430075, P.R.China
| | - Jonathan P. Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
61
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
62
|
Hayashi MK, Nishioka T, Shimizu H, Takahashi K, Kakegawa W, Mikami T, Hirayama Y, Koizumi S, Yoshida S, Yuzaki M, Tammi M, Sekino Y, Kaibuchi K, Shigemoto-Mogami Y, Yasui M, Sato K. Hyaluronan synthesis supports glutamate transporter activity. J Neurochem 2019; 150:249-263. [PMID: 31188471 DOI: 10.1111/jnc.14791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.
Collapse
Affiliation(s)
- Mariko Kato Hayashi
- Medical School, International University of Health and Welfare, Narita, Chiba, Japan.,Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideo Shimizu
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kanako Takahashi
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuri Mikami
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sachiko Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Yuko Sekino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
63
|
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20:451-465. [PMID: 31263252 DOI: 10.1038/s41583-019-0196-3] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/09/2023]
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) chondroitin sulfate proteoglycan (CSPG)-containing structures that surround the soma and dendrites of various mammalian neuronal cell types. PNNs appear during development around the time that the critical periods for developmental plasticity end and are important for both their onset and closure. A similar structure - the perinodal ECM - surrounds the axonal nodes of Ranvier and appears as myelination is completed, acting as an ion-diffusion barrier that affects axonal conduction speed. Recent work has revealed the importance of PNNs in controlling plasticity in the CNS. Digestion, blocking or removal of PNNs influences functional recovery after a variety of CNS lesions. PNNs have further been shown to be involved in the regulation of memory and have been implicated in a number of psychiatric disorders.
Collapse
|
64
|
Le QV, Suh J, Oh YK. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy. AAPS JOURNAL 2019; 21:64. [PMID: 31102154 DOI: 10.1208/s12248-019-0333-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) has drawn considerable research attention as an alternative target for nanomedicine-based cancer therapy. Various nanomaterials that carry active substances have been designed to alter the features or composition of the TME and thereby improve the delivery and efficacy of anticancer chemotherapeutics. These alterations include disruption of the extracellular matrix and tumor vascular systems to promote perfusion or modulate hypoxia. Nanomaterials have also been used to modulate the immunological microenvironment of tumors. In this context, nanomaterials have been shown to alter populations of cancer-associated fibroblasts, tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells. Despite considerable progress, nanomaterial-based TME modulation must overcome several limitations before this strategy can be translated to clinical trials, including issues related to limited tumor tissue penetration, tumor heterogeneity, and immune toxicity. In this review, we summarize recent progress and challenges of nanomaterials used to modulate the TME to enhance the efficacy of anticancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Juhan Suh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
65
|
Nagy V, Hollstein R, Pai TP, Herde MK, Buphamalai P, Moeseneder P, Lenartowicz E, Kavirayani A, Korenke GC, Kozieradzki I, Nitsch R, Cicvaric A, Monje Quiroga FJ, Deardorff MA, Bedoukian EC, Li Y, Yigit G, Menche J, Perçin EF, Wollnik B, Henneberger C, Kaiser FJ, Penninger JM. HACE1 deficiency leads to structural and functional neurodevelopmental defects. NEUROLOGY-GENETICS 2019; 5:e330. [PMID: 31321300 PMCID: PMC6561753 DOI: 10.1212/nxg.0000000000000330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/05/2019] [Indexed: 11/15/2022]
Abstract
Objective We aim to characterize the causality and molecular and functional underpinnings of HACE1 deficiency in a mouse model of a recessive neurodevelopmental syndrome called spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Methods By exome sequencing, we identified 2 novel homozygous truncating mutations in HACE1 in 3 patients from 2 families, p.Q209* and p.R332*. Furthermore, we performed detailed molecular and phenotypic analyses of Hace1 knock-out (KO) mice and SPPRS patient fibroblasts. Results We show that Hace1 KO mice display many clinical features of SPPRS including enlarged ventricles, hypoplastic corpus callosum, as well as locomotion and learning deficiencies. Mechanistically, loss of HACE1 results in altered levels and activity of the small guanosine triphosphate (GTP)ase, RAC1. In addition, HACE1 deficiency results in reduction in synaptic puncta number and long-term potentiation in the hippocampus. Similarly, in SPPRS patient-derived fibroblasts, carrying a disruptive HACE1 mutation resembling loss of HACE1 in KO mice, we observed marked upregulation of the total and active, GTP-bound, form of RAC1, along with an induction of RAC1-regulated downstream pathways. Conclusions Our results provide a first animal model to dissect this complex human disease syndrome, establishing the first causal proof that a HACE1 deficiency results in decreased synapse number and structural and behavioral neuropathologic features that resemble SPPRS patients.
Collapse
Affiliation(s)
- Vanja Nagy
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Ronja Hollstein
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Tsung-Pin Pai
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Michel K Herde
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Pisanu Buphamalai
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Paul Moeseneder
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Ewelina Lenartowicz
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Anoop Kavirayani
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Georg Christoph Korenke
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Ivona Kozieradzki
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Roberto Nitsch
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Ana Cicvaric
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Francisco J Monje Quiroga
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Matthew A Deardorff
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Emma C Bedoukian
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Yun Li
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Gökhan Yigit
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Jörg Menche
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - E Ferda Perçin
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Bernd Wollnik
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Christian Henneberger
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Frank J Kaiser
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| | - Josef M Penninger
- IMBA (V.N., T.-P.P., P.M., A.K., I.K., R.N., J.M.P.), Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter Campus, Austria; Department of Medical Genetics (J.M.P.), Life Science Institute, University of British Columbia, Vancouver, Canada; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (V.N., E.L.), Vienna, Austria; Section for Functional Genetics at the Institute of Human Genetics (R.H., F.J.K.), University of Lübeck; German Center for Cardiovascular Research (DZHK e.V.) (F.J.K.), Partner Site Hamburg/Kiel/Lübeck, Lübeck; Institute of Cellular Neurosciences (M.K.H., C.H.), University of Bonn Medical School, Germany; Centre for Neuroendocrinology (M.K.H.), Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Neurophysiology and Neuropharmacology (A.C., F.J.M.Q.), Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Drug Safety and Metabolism (R.N.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Division of Genetics and the Roberts Individualized Medical Genetics Center (M.A.D., E.C.B.), Children's Hospital of Philadelphia, PA; Departments of Pediatrics (M.A.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Institute of Human Genetics (Y.L., G.Y., B.W.), University Medical Center Göttingen, Germany; Institute of Neurology (C.H.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) (C.H.), Bonn, Germany; Zentrum für Kinder- und Jugendmedizin (G.C.K.), Neuropädiatrie, Klinikum Oldenburg, Germany; Department of Medical Genetics (E.F.P.), Faculty of Medicine, Gazi University, Ankara, Turkey; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (P.B., J.M.), Vienna, Austria
| |
Collapse
|
66
|
Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:359-379. [DOI: 10.1016/j.nano.2019.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
67
|
Khoo GH, Lin YT, Tsai TC, Hsu KS. Perineuronal Nets Restrict the Induction of Long-Term Depression in the Mouse Hippocampal CA1 Region. Mol Neurobiol 2019; 56:6436-6450. [PMID: 30826967 DOI: 10.1007/s12035-019-1526-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Long-term depression (LTD) of synaptic efficacy is widely regarded as a cellular basis of learning and memory. The magnitude of hippocampal CA1 LTD induced by low-frequency stimulation (LFS) declines with age, but the mechanisms involved remain poorly understood. Perineuronal nets (PNNs) are specialized extracellular matrix structures that function in dampening synaptic plasticity during postnatal development, suggesting that PNN formation may restrict LTD induction in the adult hippocampus. Here, we show that PNNs tightly enwrap a subpopulation of parvalbumin (PV) interneurons in the hippocampal CA1 region and enzymatic removal of PNNs with the chondroitinase ABC alters the excitatory/inhibitory synaptic balance toward more excitation and restores the ability of LFS to induce an N-methyl-D-aspartate receptor-dependent LTD at Schaffer collateral-CA1 synapses in slices from male adult mice. Early interference with depolarizing GABA with Na+-K+-2Cl- cotransporter inhibitor bumetanide impairs the maturation of PNNs and enhances LTD induction. These results provide novel insights into a previously unrecognized role for PNNs around PV interneurons in restricting long-term synaptic plasticity at excitatory synapses on hippocampal CA1 neurons in adulthood.
Collapse
Affiliation(s)
- Guan Hock Khoo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City, 70101, Taiwan
| | - Yu-Ting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City, 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Chih Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
68
|
Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci 2019; 42:293-306. [PMID: 30795846 DOI: 10.1016/j.tins.2019.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Over a billion people worldwide are affected by vitamin D deficiency. Although vitamin D deficiency is associated with impaired cognition, the mechanisms mediating this link are poorly understood. The extracellular matrix (ECM) has now emerged as an important participant of synaptic plasticity and a new hypothesis is that vitamin D may interact with aggregates of the ECM, perineuronal nets (PNNs), to regulate brain plasticity. Dysregulation of PNNs caused by vitamin D deficiency may contribute to the presentation of cognitive deficits. Understanding the molecular mechanisms underpinning the role of vitamin D in brain plasticity and cognition could help identify ways to treat cognitive symptoms in schizophrenia and other neuropsychiatric conditions.
Collapse
|
69
|
Adult vitamin D deficiency disrupts hippocampal-dependent learning and structural brain connectivity in BALB/c mice. Brain Struct Funct 2019; 224:1315-1329. [PMID: 30712221 DOI: 10.1007/s00429-019-01840-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Converging evidence from human and animal studies support an association between vitamin D deficiency and cognitive impairment. Previous studies have shown that hippocampal volume is reduced in adults with vitamin D deficiency as well as in a range of disorders, such as schizophrenia. The aim of the current study was to examine the effect of adult vitamin D (AVD) deficiency on hippocampal-dependent spatial learning, and hippocampal volume and connectivity in healthy adult mice. Ten-week-old male BALB/c mice were fed a control (vitamin D 1500 IU/kg) or vitamin D-depleted (vitamin D 0 IU/kg) diet for a minimum of 10 weeks. The mice were then tested for hippocampal-dependent spatial learning using active place avoidance (APA) and on tests of muscle and motor coordination (rotarod and grip strength). The mice were perfused and brains collected to acquire ex vivo structural and diffusion-weighted images using a 16.4 T MRI scanner. We also performed immunohistochemistry to quantify perineuronal nets (PNNs) and parvalbumin (PV) interneurons in various brain regions. AVD-deficient mice had a lower latency to enter the shock zone on APA, compared to control mice, suggesting impaired hippocampal-dependent spatial learning. There were no differences in rotarod or grip strength, indicating that AVD deficiency did not have an impact on muscle or motor coordination. AVD deficiency did not have an impact on hippocampal volume. However, AVD-deficient mice displayed a disrupted network centred on the right hippocampus with abnormal connectomes among 29 nodes. We found a reduction in PNN positive cells, but no change in PV, centred on the hippocampus. Our results provide compelling evidence to show that AVD deficiency in otherwise healthy adult mice may play a key role in hippocampal-dependent learning and memory formation. We suggest that the spatial learning deficits could be due to the disruption of right hippocampal structural connectivity.
Collapse
|
70
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Layer-specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices. IBRO Rep 2018; 6:1-17. [PMID: 30582064 PMCID: PMC6293036 DOI: 10.1016/j.ibror.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/24/2018] [Indexed: 02/04/2023] Open
Abstract
In the developing central nervous system (CNS), extracellular matrix (ECM) molecules have regulating roles such as in brain development, neural-circuit maturation, and synaptic-function control. However, excluding the perineuronal net (PNN) area, the distribution, constituent elements, and expression level of granular ECM molecules (diffuse ECM) present in the mature CNS remain unclear. Diffuse ECM molecules in the CNS share the components of PNNs and are likely functional. As cortical functions are greatly region-dependent, we hypothesized that ECM molecules would differ in distribution, expression level, and components in a region- and layer-dependent manner. We examined the layer-specific expression of several chondroitin sulfate proteoglycans (aggrecan, neurocan, and brevican), tenascin-R, Wisteria floribunda agglutinin (WFA)-positive molecules, hyaluronic acid, and link protein in the somatosensory and piriform cortices of mature mice. Furthermore, we investigated expression changes in WFA-positive molecules due to aging. In the somatosensory cortex, PNN density was particularly high at layer 4 (L4), but not all diffuse ECM molecules were highly expressed at L4 compared to the other layers. There was almost no change in tenascin-R and hyaluronic acid in any somatosensory-cortex layer. Neurocan showed high expression in L1 of the somatosensory cortex. In the piriform cortex, many ECM molecules showed higher expression in L1 than in the other layers. However, hyaluronic acid showed high expression in deep layers. Here, we clarified that ECM molecules differ in constituent elements and expression in a region- and layer-dependent manner. Region-specific expression of ECM molecules is possibly related to functions such as region-specific plasticity and vulnerability.
Collapse
Key Words
- CNS, central nervous system
- CSPG, chondroitin sulfate proteoglycans
- ChABC, chondroitinase ABC
- ECM, extracellular cellular matrix
- Extracellular matrix
- HA, hyaluronic acid
- HABP, hyaluronic acid binding protein
- Hapln1, hyaluronan and proteoglycan link protein 1
- PNN, perineuronal ntes
- Perineuronal nets
- Piriform cortex
- Proteoglycans
- Somatosensory cortex
- WFA, Wisteria floribunda agglutinin
- Wisteria floribunda
- a.u., arbitrary units
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
71
|
Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 2018; 89:125-135. [PMID: 30273653 DOI: 10.1016/j.semcdb.2018.09.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022]
Abstract
Perineuronal nets (PNNs) in the brain are condensed glycosaminoglycan-rich extracellular matrix structures with heterogeneous composition yet specific organization. They typically assemble around a subset of fast-spiking interneurons that are implicated in learning and memory. Owing to their unique structural organization, PNNs have neuroprotective capacities but also participate in signal transduction and in controlling neuronal activity and plasticity. In this review, we define PNN structure in detail and describe its various biochemical and physiological functions. We further discuss the role of PNNs in brain disorders such as schizophrenia, bipolar disorder, Alzheimer disease and addictions. Lastly, we describe therapeutic approaches that target PNNs to alter brain physiology and counter brain dysfunction.
Collapse
Affiliation(s)
- Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France.
| |
Collapse
|
72
|
Targeted deletion of HYBID (hyaluronan binding protein involved in hyaluronan depolymerization/ KIAA1199/CEMIP) decreases dendritic spine density in the dentate gyrus through hyaluronan accumulation. Biochem Biophys Res Commun 2018; 503:1934-1940. [DOI: 10.1016/j.bbrc.2018.07.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022]
|
73
|
Hyaluronic acid is present on specific perineuronal nets in the mouse cerebral cortex. Brain Res 2018; 1698:139-150. [PMID: 30099038 DOI: 10.1016/j.brainres.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022]
Abstract
In the central nervous system (CNS), extracellular matrix (ECM) molecules comprise more than 20% of the volume and are involved in neuronal plasticity, synaptic transmission, and differentiation. Perineuronal nets (PNNs) are ECM molecules that highly accumulate around the soma of neurons. The components of the ECM in the CNS include proteins, proteoglycans, and glycosaminoglycans. Although hyaluronic acid (HA) is considered a constituent element of PNNs, the distribution of HA in the cortex has not been clarified. To elucidate the cortical region-specific distribution of HA, we quantitatively analyzed HA binding protein (HABP)-positive PNNs in the mature mouse cerebral cortex. Our findings revealed that HABP-positive PNNs are present throughout the mouse cortex. The distribution of many HABP-positive PNNs differed from that of Wisteria floribunda agglutinin-positive PNNs. Furthermore, we observed granular-like HABP-positive PNNs in layer 1 of the cortex. These findings indicate that PNNs in the mouse cortex show region-dependent differences in composition. HABP-positive PNNs in layer 1 of the cortex may have different functions such as neuronal differentiation, proliferation, and migration unlike what has been reported for PNNs so far.
Collapse
|
74
|
The Impact of Perineuronal Net Digestion Using Chondroitinase ABC on the Intrinsic Physiology of Cortical Neurons. Neuroscience 2018; 388:23-35. [PMID: 30004010 DOI: 10.1016/j.neuroscience.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
Abstract
Perineuronal nets (PNNs) are a form of aggregate Extracellular Matrix (ECM) in the brain. Recent evidence suggests that the postnatal deposition of PNNs may play an active role in regulating neuroplasticity and, potentially, neurological disorders. Observations of high levels of PNN expression around somas, proximal dendrites, and axon initial segments of a subtype of neurons have also led to proposals that PNNs may modulate the intrinsic properties of the neurons they ensheathe. While high levels of PNNs are postnatally expressed throughout the neocortex, it is still unclear how they impact the neuronal physiology of the many classes and subtypes of neurons that exist. In this study, we demonstrate that Chondroitinase ABC digestion of PNNs from acute cortical slices from juvenile mice (P28-35) resulted in neuron-specific impacts on intrinsic physiology. Fast spiking (FS) interneurons showed decreased input resistance, resting membrane potential (RMP), reduced action potential (AP) peaks and altered spontaneous synaptic inputs. Low-Threshold Spiking interneurons showed altered rebound depolarizations and decreased frequency of spontaneous synaptic inputs. Putative excitatory neurons; regular spiking, bursting, and doublet phenotypes did not demonstrate any alterations. Our data indicate that chABC-sensitive PNNs may specifically regulate the intrinsic and synaptic physiology of inhibitory interneurons.
Collapse
|
75
|
Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning. J Neurosci 2018; 38:6130-6144. [PMID: 29858484 DOI: 10.1523/jneurosci.3238-17.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/28/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
Perineuronal nets (PNNs), composed mainly of chondroitin sulfate proteoglycans, are the extracellular matrix that surrounds cell bodies, proximal dendrites, and axon initial segments of adult CNS neurons. PNNs are known to regulate neuronal plasticity, although their physiological roles in cerebellar functions have yet to be elucidated. Here, we investigated the contribution of PNNs to GABAergic transmission from cerebellar Purkinje cells (PCs) to large glutamatergic neurons in the deep cerebellar nuclei (DCN) in male mice by recording IPSCs from cerebellar slices, in which PNNs were depleted with chondroitinase ABC (ChABC). We found that PNN depletion increased the amplitude of evoked IPSCs and enhanced the paired-pulse depression. ChABC treatment also facilitated spontaneous IPSCs and increased the miniature IPSC frequency without changing not only the amplitude but also the density of PC terminals, suggesting that PNN depletion enhances presynaptic GABA release. We also demonstrated that the enhanced GABAergic transmission facilitated rebound firing in large glutamatergic DCN neurons, which is expected to result in the efficient induction of synaptic plasticity at synapses onto DCN neurons. Furthermore, we tested whether PNN depletion affects cerebellar motor learning. Mice having received the enzyme into the interpositus nuclei, which are responsible for delay eyeblink conditioning, exhibited the conditioned response at a significantly higher rate than control mice. Therefore, our results suggest that PNNs of the DCN suppress GABAergic transmission between PCs and large glutamatergic DCN neurons and restrict synaptic plasticity associated with motor learning in the adult cerebellum.SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are one of the extracellular matrices of adult CNS neurons and implicated in regulating various brain functions. Here we found that enzymatic PNN depletion in the mouse deep cerebellar nuclei (DCN) reduced the paired-pulse ratio of IPSCs and increased the miniature IPSC frequency without changing the amplitude, suggesting that PNN depletion enhances GABA release from the presynaptic Purkinje cell (PC) terminals. Mice having received the enzyme in the interpositus nuclei exhibited a higher conditioned response rate in delay eyeblink conditioning than control mice. These results suggest that PNNs regulate presynaptic functions of PC terminals in the DCN and functional plasticity of synapses on DCN neurons, which influences the flexibility of adult cerebellar functions.
Collapse
|
76
|
Hayani H, Song I, Dityatev A. Increased Excitability and Reduced Excitatory Synaptic Input Into Fast-Spiking CA2 Interneurons After Enzymatic Attenuation of Extracellular Matrix. Front Cell Neurosci 2018; 12:149. [PMID: 29899690 PMCID: PMC5988902 DOI: 10.3389/fncel.2018.00149] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
The neural extracellular matrix (ECM) is enriched with hyaluronic acid, chondroitin sulfate proteoglycans (CSPGs) and the glycoprotein tenascin-R, which play important roles in synaptic plasticity, as shown by studies of the CA1 region of the hippocampus. However, ECM molecules are strongly expressed in the CA2 region, which harbors a high number of fast-spiking interneurons (FSIs) surrounded by a particularly condensed form of ECM, perineuronal nets. Despite this intriguing peculiarity, the functional role of ECM in the CA2 region is mostly unknown. Here, we investigate the acute and delayed effects of chondroitinase ABC (ChABC), an enzyme that digests chondroitin sulfate side chains of CSPGs and greatly attenuates neural ECM, on neuronal excitability and excitatory transmission in the CA2 region. Whole-cell patch clamp recordings of CA2 pyramidal cells (PCs) and FSIs in hippocampal slices revealed that 7 days after injection of ChABC into the CA2 region in vivo, there are alterations in excitability of FSIs and PCs. FSIs generated action potentials with larger amplitudes and longer durations in response to less depolarizing currents compared to controls. PCs were excited at less depolarized membrane potentials, resulted in lower latency of spike generation. The frequency of excitatory postsynaptic currents in FSIs was selectively reduced, while the frequency of inhibitory postsynaptic currents was selectively increased. Acute treatment of hippocampal slices with ChABC did not result in any of these effects. This increase in excitability and changes in synaptic inputs to FSIs after attenuation of ECM suggests a crucial role for perineuronal nets associated with FSIs in regulation of synaptic and electrical properties of these cells.
Collapse
Affiliation(s)
- Hussam Hayani
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Inseon Song
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
77
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
78
|
Bijata M, Labus J, Guseva D, Stawarski M, Butzlaff M, Dzwonek J, Schneeberg J, Böhm K, Michaluk P, Rusakov DA, Dityatev A, Wilczyński G, Wlodarczyk J, Ponimaskin E. Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Rep 2018; 19:1767-1782. [PMID: 28564597 DOI: 10.1016/j.celrep.2017.05.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 02/04/2023] Open
Abstract
Rewiring of synaptic circuitry pertinent to memory formation has been associated with morphological changes in dendritic spines and with extracellular matrix (ECM) remodeling. Here, we mechanistically link these processes by uncovering a signaling pathway involving the serotonin 5-HT7 receptor (5-HT7R), matrix metalloproteinase 9 (MMP-9), the hyaluronan receptor CD44, and the small GTPase Cdc42. We highlight a physical interaction between 5-HT7R and CD44 (identified as an MMP-9 substrate in neurons) and find that 5-HT7R stimulation increases local MMP-9 activity, triggering dendritic spine remodeling, synaptic pruning, and impairment of long-term potentiation (LTP). The underlying molecular machinery involves 5-HT7R-mediated activation of MMP-9, which leads to CD44 cleavage followed by Cdc42 activation. One important physiological consequence of this interaction includes an increase in neuronal outgrowth and elongation of dendritic spines, which might have a positive effect on complex neuronal processes (e.g., reversal learning and neuronal regeneration).
Collapse
Affiliation(s)
- Monika Bijata
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daria Guseva
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michał Stawarski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Malte Butzlaff
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joanna Dzwonek
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Jenny Schneeberg
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katrin Böhm
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Piotr Michaluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland; UCL Institute of Neurology, University College of London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College of London, Queen Square, London WC1N 3BG, UK
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Grzegorz Wilczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Jakub Wlodarczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland.
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
79
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
80
|
Beals N, Model MA, Worden M, Hegmann T, Basu S. Intermolecular G-Quadruplex Induces Hyaluronic Acid-DNA Superpolymers Causing Cancer Cell Swelling, Blebbing, and Death. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6869-6878. [PMID: 29400433 DOI: 10.1021/acsami.7b16983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the past decade, nanomedicine has gained considerable attraction through its relevance, for example, in "smart" delivery, thus creating platforms for novel treatments. Here, we report a natural polymer-DNA conjugate that undergoes self-assembly in a K+-dependent fashion to form a G-quadruplex (GQ) and generate superpolymeric structures. We derivatized a thiolated conjugate of the naturally occurring glycosaminoglycan polymer hyaluronic acid (HASH) with short G-rich DNA (HASH-DNA) that can form an intermolecular noncanonical GQ structure. Gel mobility shift assay and circular dichroism measurements confirmed HASH conjugation to DNA and K+-dependent GQ formation, respectively. Transmission electron microscopy and scanning electron microscopy results indicated that the addition of K+ to the HASH-DNA conjugate led to the formation of micron-range structures, whereas control samples remained unordered and as a nebulous globular form. Confocal microscopy of a fluorescently labeled form of the superpolymer verified increased cellular uptake. The HASH-DNA conjugates showed toxicity in HeLa cells, whereas a scrambled DNA (Mut) conjugate HASH-Mut showed no cytotoxicity, presumably because of nonformation of the superpolymeric structure. To understand the mechanism of cell death and if the superpolymeric structure is responsible for it, we monitored the cell size and observed an average of 23% increase in size compared to 4.5% in control cells at 4.5 h. We believe that cellular stress is generated presumably by the intracellular assembly of this large superpolymeric nanostructure causing cell blebbing with no exit option. This approach provides a new strategy of cellular delivery of a targeted naturally occurring polymer and a novel way to induce superpolymeric structure formation that acts as a therapeutic.
Collapse
Affiliation(s)
- Nathan Beals
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Michael A Model
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Matt Worden
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Torsten Hegmann
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| |
Collapse
|
81
|
Li Y, Li ZX, Jin T, Wang ZY, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis 2018; 57:395-409. [PMID: 28234253 PMCID: PMC5366250 DOI: 10.3233/jad-160804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) is the backbone of the extracellular matrix (ECM) and provides biochemical and physical support to aggrecan-based perineuronal nets (PNNs), which are associated with the selective vulnerability of neurons in Alzheimer's disease (AD). Here, we showed that HA synthases (HASs), including Has1, Has2, and Has3, were widely expressed in murine central nervous system. All types of HASs were localized to cell bodies of neurons; only Has1 existed in the membranes of neural axons. By using TauP301S transgenic (Tg) mouse model, we found that the axonal-localization of Has1 was abolished in TauP301S overexpressed mouse brain, and the redistribution of Has1 was also observed in human AD brains, suggesting that the localization of Has1 is dependent on intact microtubules which are regulated partially by the phosphorylation and dephosphorylation cycles of tau proteins. Furthermore, Has1 was reduced and Has3 was increased in TauP301S Tg mouse brain, resulting in the upregulation of shorter-chain HA in the ECM. These findings suggest that by abolishing the axonal-localization of Has1 and promoting the expression of Has3 and the synthesis of shorter-chain HA, the tau pathology breaks the balance of ECM components, promotes the reorganization of the ECM, and inhibits the formation of PNNs in the hippocampus, and then regulates neuronal plasticity during the progression of AD.
Collapse
Affiliation(s)
| | | | | | - Zhan-You Wang
- Correspondence to: Zhan-You Wang and Pu Zhao, M.D., Ph.D., College of Life and Health Sciences, Northeastern University, 3-11 Wen Hua Road, Shenyang 110819, China. Tel.: +86 13352453082; E-mails: (P. Zhao); (Z.-Y Wang)
| | - Pu Zhao
- Correspondence to: Zhan-You Wang and Pu Zhao, M.D., Ph.D., College of Life and Health Sciences, Northeastern University, 3-11 Wen Hua Road, Shenyang 110819, China. Tel.: +86 13352453082; E-mails: (P. Zhao); (Z.-Y Wang)
| |
Collapse
|
82
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
83
|
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol 2018; 78-79:272-283. [PMID: 29408010 DOI: 10.1016/j.matbio.2018.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and differentiate into new neurons that form new circuits or integrate into old circuits involved in episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the intriguing possibility that perturbations in this matrix, including HA accumulation with aging, could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could be beneficial following insults to the central nervous system that impact hippocampal functions.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Integrative Biosciences Department, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
84
|
Lasek AW, Chen H, Chen WY. Releasing Addiction Memories Trapped in Perineuronal Nets. Trends Genet 2017; 34:197-208. [PMID: 29289347 DOI: 10.1016/j.tig.2017.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Drug addiction can be conceptualized at a basic level as maladaptive learning and memory. Addictive substances elicit changes in brain circuitry involved in reward, cognition, and emotional state, leading to the formation and persistence of strong drug-associated memories that lead to craving and relapse. Recently, perineuronal nets (PNNs), extracellular matrix (ECM) structures surrounding neurons, have emerged as regulators of learning, memory, and addiction behaviors. PNNs do not merely provide structural support to neurons but are dynamically remodeled in an experience-dependent manner by metalloproteinases. They function in various brain regions through constituent proteins such as brevican that are implicated in neural plasticity. Understanding the function of PNN components in memory processes may lead to new therapeutic approaches to treating addiction.
Collapse
Affiliation(s)
- Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Hu Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wei-Yang Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
85
|
van 't Spijker HM, Kwok JCF. A Sweet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication. Front Integr Neurosci 2017; 11:33. [PMID: 29249944 PMCID: PMC5717013 DOI: 10.3389/fnint.2017.00033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are mesh-like structures, composed of a hierarchical assembly of extracellular matrix molecules in the central nervous system (CNS), ensheathing neurons and regulating plasticity. The mechanism of interactions between PNNs and neurons remain uncharacterized. In this review, we pose the question: how do PNNs regulate communication to and from neurons? We provide an overview of the current knowledge on PNNs with a focus on the cellular interactions. PNNs ensheath a subset of the neuronal population with distinct molecular aspects in different areas of the CNS. PNNs control neuronal communication through molecular interactions involving specific components of the PNNs. This review proposes that the PNNs are an integral part of neurons, crucial for the regulation of plasticity in the CNS.
Collapse
Affiliation(s)
- Heleen M van 't Spijker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C F Kwok
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.,Czech Academy of Sciences, Institute of Experimental Medicine, Centre of Reconstructive Neurosciences, Prague, Czechia
| |
Collapse
|
86
|
Perkins KL, Arranz AM, Yamaguchi Y, Hrabetova S. Brain extracellular space, hyaluronan, and the prevention of epileptic seizures. Rev Neurosci 2017; 28:869-892. [PMID: 28779572 PMCID: PMC5705429 DOI: 10.1515/revneuro-2017-0017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/03/2017] [Indexed: 01/08/2023]
Abstract
Mutant mice deficient in hyaluronan (HA) have an epileptic phenotype. HA is one of the major constituents of the brain extracellular matrix. HA has a remarkable hydration capacity, and a lack of HA causes reduced extracellular space (ECS) volume in the brain. Reducing ECS volume can initiate or exacerbate epileptiform activity in many in vitro models of epilepsy. There is both in vitro and in vivo evidence of a positive feedback loop between reduced ECS volume and synchronous neuronal activity. Reduced ECS volume promotes epileptiform activity primarily via enhanced ephaptic interactions and increased extracellular potassium concentration; however, the epileptiform activity in many models, including the brain slices from HA synthase-3 knockout mice, may still require glutamate-mediated synaptic activity. In brain slice epilepsy models, hyperosmotic solution can effectively shrink cells and thus increase ECS volume and block epileptiform activity. However, in vivo, the intravenous administration of hyperosmotic solution shrinks both brain cells and brain ECS volume. Instead, manipulations that increase the synthesis of high-molecular-weight HA or decrease its breakdown may be used in the future to increase brain ECS volume and prevent seizures in patients with epilepsy. The prevention of epileptogenesis is also a future target of HA manipulation. Head trauma, ischemic stroke, and other brain insults that initiate epileptogenesis are known to be associated with an early decrease in high-molecular-weight HA, and preventing that decrease in HA may prevent the epileptogenesis.
Collapse
Affiliation(s)
- Katherine L. Perkins
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Amaia M. Arranz
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; and KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Sabina Hrabetova
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
87
|
Recent advances in discovery and development of natural products as source for anti-Parkinson's disease lead compounds. Eur J Med Chem 2017; 141:257-272. [PMID: 29031072 DOI: 10.1016/j.ejmech.2017.09.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a common chronic degenerative disease of the central nervous system. Although the cause remains unknown, several pathological processes and central factors such as oxidative stress, mitochondrial injury, inflammatory reactions, abnormal deposition of α-synuclein, and cell apoptosis have been reported. Currently, anti-PD drugs are classified into two major groups: drugs that affect dopaminergic neurons and anti-cholinergic drugs. Unfortunately, the existing conventional strategies against PD are with numerous side effects, and cannot fundamentally improve the degenerative process of dopaminergic neurons. Therefore, novel therapeutic approaches which have a novel structure, high efficiency, and fewer side effects are needed. For many years, natural products have provided an efficient resource for the discovery of potential therapeutic agents. Among them, many natural products possess anti-PD properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding protein misfolding and the regulatory effects of PD related pathways. Indeed, with the steady improvement in the technologies for the isolation and purification of natural products and the in-depth studies on the pathogenic mechanisms of PD, many monomer components of natural products that have anti-PD effects have been gradually discovered. In this article, we reviewed the research status of 37 natural products that have been discovered to have significant anti-PD effects as well as their mode of action. Overall, this review may guide the design of novel therapeutic drugs in PD.
Collapse
|
88
|
Abstract
The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.
Collapse
|
89
|
Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors. Sci Rep 2017; 7:10991. [PMID: 28887453 PMCID: PMC5591221 DOI: 10.1038/s41598-017-07003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cortical areas of the juvenile rodent brain display a high degree of structural and functional plasticity, which disappears later in development. Coincident with the decline of plasticity 1) the hyaluronic acid-based extracellular matrix (ECM) of the brain, which stabilizes synapses and neuronal circuit is formed and 2) N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDARs) implied in synaptic plasticity switch from mainly GluN2B to GluN2A subunit-containing receptors. Here we tested the hypothesis that ECM influences the NMDAR subunit composition in dissociated neuronal cultures. Experimental removal of ECM using hyaluronidase induced an increase in surface expression of GluN2B. This was due to decreased endocytosis of surface GluNB-containing receptors. We further found a reduction in phosphorylation at Tyr1472, which negatively regulates their binding to the endocytotic AP2 complex. We propose that maturation of ECM could induce switch in NMDAR composition necessary for normal adult synaptic plasticity and that increased expression of GluN2B contributes to rejuvenation of plasticity after ECM removal in vivo.
Collapse
|
90
|
Murase S, Lantz CL, Quinlan EM. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9. eLife 2017; 6:27345. [PMID: 28875930 PMCID: PMC5630258 DOI: 10.7554/elife.27345] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex.
Collapse
Affiliation(s)
- Sachiko Murase
- Neuroscience and Cognitive Sciences Program, Department of Biology, University of Maryland, Maryland, United States
| | - Crystal L Lantz
- Neuroscience and Cognitive Sciences Program, Department of Biology, University of Maryland, Maryland, United States
| | - Elizabeth M Quinlan
- Neuroscience and Cognitive Sciences Program, Department of Biology, University of Maryland, Maryland, United States
| |
Collapse
|
91
|
Hari A, Cruz SA, Qin Z, Couture P, Vilmundarson RO, Huang H, Stewart AFR, Chen HH. IRF2BP2-deficient microglia block the anxiolytic effect of enhanced postnatal care. Sci Rep 2017; 7:9836. [PMID: 28852125 PMCID: PMC5575313 DOI: 10.1038/s41598-017-10349-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Enhanced postnatal care (EPC) increases resilience to adversity in adulthood. Since microglia participate in shaping neural circuits, we asked how ablation of an inflammation-suppressing factor IRF2BP2 (Interferon Regulatory Factor 2 Binding Protein 2) in microglia would affect the responses to EPC. Mice lacking IRF2BP2 in microglia (KO) and littermate controls (WT) were subjected to EPC during the first 3 weeks after birth. EPC reduced anxiety in WT but not KO mice. This was associated with reduced inflammatory cytokine expression in the hypothalamus. Whole genome RNAseq profiling of the hypothalamus identified 101 genes whose expression was altered by EPC: 95 in WT, 11 in KO, with 5 in common that changed in opposite directions. Proteoglycan 4 (Prg4), prostaglandin D2 synthase (Ptgds) and extracellular matrix protease inhibitor Itih2 were suppressed by EPC in WT but elevated in KO mice. On the other hand, the glutamate transporter VGLUT1 (Slc17a7) was increased by EPC in WT but not KO mice. Prostaglandin D2 (PGD2) is known to enhance microglial inflammation and promote Gfap expression. ELISA confirmed reduced PGD2 in the hypothalamus of WT mice after EPC, associated with reduced Gfap expression. Our study suggests that the anxiety-reducing effect of EPC operates by suppressing microglial inflammation, likely by reducing neuronal prostaglandin D2 production.
Collapse
Affiliation(s)
- Aswin Hari
- Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa Heart Institute, Ottawa, Canada
| | | | - Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | - Hua Huang
- Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa Heart Institute, Ottawa, Canada
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, Canada.,Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.,Medicine, University of Ottawa, Ottawa, Canada.,University of Ottawa, Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, Canada. .,University of Ottawa, Brain and Mind Institute, Ottawa, Canada. .,Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada. .,Medicine, University of Ottawa, Ottawa, Canada. .,Canadian Partnership for Stroke Recovery, Ottawa, Canada. .,University of Ottawa, Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada.
| |
Collapse
|
92
|
Morellini F, Malyshev A, Volgushev M, Chistiakova M, Papashvili G, Fellini L, Kleene R, Schachner M, Dityatev A. Impaired Fear Extinction Due to a Deficit in Ca 2+ Influx Through L-Type Voltage-Gated Ca 2+ Channels in Mice Deficient for Tenascin-C. Front Integr Neurosci 2017; 11:16. [PMID: 28824389 PMCID: PMC5539374 DOI: 10.3389/fnint.2017.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/18/2017] [Indexed: 12/02/2022] Open
Abstract
Mice deficient in the extracellular matrix glycoprotein tenascin-C (TNC−/−) express a deficit in specific forms of hippocampal synaptic plasticity, which involve the L-type voltage-gated Ca2+ channels (L-VGCCs). The mechanisms underlying this deficit and its functional implications for learning and memory have not been investigated. In line with previous findings, we report on impairment in theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in TNC−/− mice in the CA1 hippocampal region and its rescue by the L-VGCC activator Bay K-8644. We further found that the overall pattern of L-VGCC expression in the hippocampus in TNC−/− mice was normal, but Western blot analysis results uncovered upregulated expression of the Cav1.2 and Cav1.3 α-subunits of L-VGCCs. However, these L-VGCCs were not fully functional in TNC−/− mice, as demonstrated by Ca2+ imaging, which revealed a reduction of nifedipine-sensitive Ca2+ transients in CA1 pyramidal neurons. TNC−/− mice showed normal learning and memory in the contextual fear conditioning paradigm but impaired extinction of conditioned fear responses. Systemic injection of the L-VGCC blockers nifedipine and diltiazem into wild-type mice mimicked the impairment of fear extinction observed in TNC−/− mice. The deficiency in TNC−/− mice substantially occluded the effects of these drugs. Our results suggest that TNC-mediated modulation of L-VGCC activity is essential for fear extinction.
Collapse
Affiliation(s)
- Fabio Morellini
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany.,Research Group Behavioral Biology, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Aleksey Malyshev
- Department of Neurophysiology, Ruhr-University BochumBochum, Germany.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia
| | - Maxim Volgushev
- Department of Neurophysiology, Ruhr-University BochumBochum, Germany.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia.,Department of Psychological Sciences, University of ConnecticutStorrs, CT, United States
| | - Marina Chistiakova
- Department of Neurophysiology, Ruhr-University BochumBochum, Germany.,Department of Psychological Sciences, University of ConnecticutStorrs, CT, United States
| | - Giorgi Papashvili
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Laetitia Fellini
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Ralf Kleene
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical CollegeShantou, China.,Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers UniversityPiscataway, NJ, United States
| | - Alexander Dityatev
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany.,Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE)Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke UniversityMagdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS)Magdeburg, Germany
| |
Collapse
|
93
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 09/29/2023] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
94
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
95
|
Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sánchez-Aguilera A, Mantoan L, Maeso P, Fernandes C, Ewers H, Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron 2017; 95:639-655.e10. [PMID: 28712654 DOI: 10.1016/j.neuron.2017.06.028] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/02/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022]
Abstract
Activity-dependent neuronal plasticity is a fundamental mechanism through which the nervous system adapts to sensory experience. Several lines of evidence suggest that parvalbumin (PV+) interneurons are essential in this process, but the molecular mechanisms underlying the influence of experience on interneuron plasticity remain poorly understood. Perineuronal nets (PNNs) enwrapping PV+ cells are long-standing candidates for playing such a role, yet their precise contribution has remained elusive. We show that the PNN protein Brevican is a critical regulator of interneuron plasticity. We find that Brevican simultaneously controls cellular and synaptic forms of plasticity in PV+ cells by regulating the localization of potassium channels and AMPA receptors, respectively. By modulating Brevican levels, experience introduces precise molecular and cellular modifications in PV+ cells that are required for learning and memory. These findings uncover a molecular program through which a PNN protein facilitates appropriate behavioral responses to experience by dynamically gating PV+ interneuron function.
Collapse
Affiliation(s)
- Emilia Favuzzi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - André Marques-Smith
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Rubén Deogracias
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Christian M Winterflood
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Alberto Sánchez-Aguilera
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Laura Mantoan
- Clinical Neurosciences Department, King's College, NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Cathy Fernandes
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Helge Ewers
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK; Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
96
|
Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J Neurosci 2017; 36:6312-20. [PMID: 27277807 DOI: 10.1523/jneurosci.0245-16.2016] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Long-term potentiation of excitatory synapses on pyramidal neurons in the stratum radiatum rarely occurs in hippocampal area CA2. Here, we present evidence that perineuronal nets (PNNs), a specialized extracellular matrix typically localized around inhibitory neurons, also surround mouse CA2 pyramidal neurons and envelop their excitatory synapses. CA2 pyramidal neurons express mRNA transcripts for the major PNN component aggrecan, identifying these neurons as a novel source for PNNs in the hippocampus. We also found that disruption of PNNs allows synaptic potentiation of normally plasticity-resistant excitatory CA2 synapses; thus, PNNs play a role in restricting synaptic plasticity in area CA2. Finally, we found that postnatal development of PNNs on CA2 pyramidal neurons is modified by early-life enrichment, suggesting that the development of circuits containing CA2 excitatory synapses are sensitive to manipulations of the rearing environment. SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are thought to play a major role in restricting synaptic plasticity during postnatal development, and are altered in several models of neurodevelopmental disorders, such as schizophrenia and Rett syndrome. Although PNNs have been predominantly studied in association with inhibitory neurons throughout the brain, we describe a dense expression of PNNs around excitatory pyramidal neurons in hippocampal area CA2. We also provide insight into a previously unrecognized role for PNNs in restricting plasticity at excitatory synapses and raise the possibility of an early critical period of hippocampal plasticity that may ultimately reveal a key mechanism underlying learning and memory impairments of PNN-associated neurodevelopmental disorders.
Collapse
|
97
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
98
|
Intersectin 1 is a component of the Reelin pathway to regulate neuronal migration and synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 2017; 114:5533-5538. [PMID: 28484035 DOI: 10.1073/pnas.1704447114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Brain development and function depend on the directed and coordinated migration of neurons from proliferative zones to their final position. The secreted glycoprotein Reelin is an important factor directing neuronal migration. Loss of Reelin function results in the severe developmental disorder lissencephaly and is associated with neurological diseases in humans. Reelin signals via the lipoprotein receptors very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), but the exact mechanism by which these receptors control cellular function is poorly understood. We report that loss of the signaling scaffold intersectin 1 (ITSN1) in mice leads to defective neuronal migration and ablates Reelin stimulation of hippocampal long-term potentiation (LTP). Knockout (KO) mice lacking ITSN1 suffer from dispersion of pyramidal neurons and malformation of the radial glial scaffold, akin to the hippocampal lamination defects observed in VLDLR or ApoER2 mutants. ITSN1 genetically interacts with Reelin receptors, as evidenced by the prominent neuronal migration and radial glial defects in hippocampus and cortex seen in double-KO mice lacking ITSN1 and ApoER2. These defects were similar to, albeit less severe than, those observed in Reelin-deficient or VLDLR/ ApoER2 double-KO mice. Molecularly, ITSN1 associates with the VLDLR and its downstream signaling adaptor Dab1 to facilitate Reelin signaling. Collectively, these data identify ITSN1 as a component of Reelin signaling that acts predominantly by facilitating the VLDLR-Dab1 axis to direct neuronal migration in the cortex and hippocampus and to augment synaptic plasticity.
Collapse
|
99
|
Fowke TM, Karunasinghe RN, Bai JZ, Jordan S, Gunn AJ, Dean JM. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep 2017; 7:44135. [PMID: 28287145 PMCID: PMC5347017 DOI: 10.1038/srep44135] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan is a linear glycosaminoglycan that forms the backbone of perineuronal nets around neurons in the cerebral cortex. However, it remains controversial whether neurons are capable of independent hyaluronan synthesis. Herein, we examined the expression of hyaluronan and hyaluronan synthases (HASs) throughout cortical neuron development in vitro. Enriched cultures of cortical neurons were established from E16 rats. Neurons were collected at days in vitro (DIV) 0 (4 h), 1, 3, 7, 14, and 21 for qPCR or immunocytochemistry. In the relative absence of glia, neurons exhibited HAS1–3 mRNA at all time-points. By immunocytochemistry, puncta of HAS2–3 protein and hyaluronan were located on neuronal cell bodies, neurites, and lamellipodia/growth cones from as early as 4 h in culture. As neurons matured, hyaluronan was also detected on dendrites, filopodia, and axons, and around synapses. Percentages of hyaluronan-positive neurons increased with culture time to ~93% by DIV21, while only half of neurons at DIV21 expressed the perineuronal net marker Wisteria floribunda agglutinin. These data clearly demonstrate that neurons in vitro can independently synthesise hyaluronan throughout all maturational stages, and that hyaluronan production is not limited to neurons expressing perineuronal nets. The specific structural localisation of hyaluronan suggests potential roles in neuronal development and function.
Collapse
Affiliation(s)
- Tania M Fowke
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Rashika N Karunasinghe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Shawn Jordan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
100
|
Song I, Dityatev A. Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull 2017; 136:101-108. [PMID: 28284900 DOI: 10.1016/j.brainresbull.2017.03.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) molecules in the central nervous system form highly organized ECM structures around cell somata, axon initial segments, and synapses and play prominent roles in early development by guiding cell migration, neurite outgrowth and synaptogenesis, and by regulating closure of the critical period of development, synaptic plasticity and stability, cognitive flexibility, and axonal regeneration in adults. Major components of neural ECM, including chondroitin sulfate proteoglycans (CSPGs), tenascin-R and hyaluronic acid, are synthesized by both neurons and glial cells. The expression of these molecules is dynamically regulated during brain development in physiological conditions, shaping both neuronal and glial functions through multitude of molecular mechanisms. Upregulation of particular CSPGs and other ECM molecules, in particular by reactive astrocytes, after CNS injuries, during aging, neuroinflammation, and neurodegeneration on the one hand results in formation of growth-impermissive environment and impaired synaptic plasticity. On the other hand, ECM appeared to have a neuroprotective effect, at least in the form of perineuronal nets. CSPGs-degrading matrix metalloproteinases (MMPs) and several members of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases are secreted by neurons and glia and may drive neural ECM remodeling in physiological conditions as well as after brain injury and other brain disorders. Thus, targeting expression of specific ECM molecules, associated glycans and degrading enzymes may lead to development of new therapeutic strategies promoting regeneration and synaptic plasticity.
Collapse
Affiliation(s)
- Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|