51
|
Sizemore TR, Dacks AM. Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster. Sci Rep 2016; 6:37119. [PMID: 27845422 PMCID: PMC5109230 DOI: 10.1038/srep37119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023] Open
Abstract
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, WV, 26505, United States of America
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV, 26505, United States of America
| |
Collapse
|
52
|
Ian E, Zhao XC, Lande A, Berg BG. Individual Neurons Confined to Distinct Antennal-Lobe Tracts in the Heliothine Moth: Morphological Characteristics and Global Projection Patterns. Front Neuroanat 2016; 10:101. [PMID: 27822181 PMCID: PMC5075568 DOI: 10.3389/fnana.2016.00101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum.
Collapse
Affiliation(s)
- Elena Ian
- Department of Psychology, Norwegian University of Science and Technology Trondheim, Norway
| | - Xin C Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University Zhengzhou, China
| | - Andreas Lande
- Department of Psychology, Norwegian University of Science and Technology Trondheim, Norway
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|
53
|
Golovin RM, Broadie K. Developmental experience-dependent plasticity in the first synapse of the Drosophila olfactory circuit. J Neurophysiol 2016; 116:2730-2738. [PMID: 27683892 DOI: 10.1152/jn.00616.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Evidence accumulating over the past 15 years soundly refutes the dogma that the Drosophila nervous system is hardwired. The preponderance of studies reveals activity-dependent neural circuit refinement driving optimization of behavioral outputs. We describe developmental, sensory input-dependent plasticity in the brain olfactory antennal lobe, which we term long-term central adaption (LTCA). LTCA is evoked by prolonged exposure to an odorant during the first week of posteclosion life, resulting in a persistently decreased response to aversive odors and an enhanced response to attractive odors. This limited window of early-use, experience-dependent plasticity represents a critical period of olfactory circuit refinement tuned by initial sensory input. Consequent behavioral adaptations have been associated with changes in the output of olfactory projection neurons to higher brain centers. Recent studies have indicated a central role for local interneuron signaling in LTCA presentation. Genetic and molecular analyses have implicated the mRNA-binding fragile X mental retardation protein and ataxin-2 regulators, Notch trans-synaptic signaling, and cAMP signal transduction as core regulatory steps driving LTCA. In this article, we discuss the structural, functional, and behavioral changes associated with LTCA and review our current understanding of the molecular pathways underlying these developmental, experience-dependent changes in the olfactory circuitry.
Collapse
Affiliation(s)
- Randall M Golovin
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; and
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; and .,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
54
|
Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 2016; 156:2479-2491. [PMID: 26262826 DOI: 10.1097/j.pain.0000000000000318] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Collapse
|
55
|
Sachse S, Beshel J. The good, the bad, and the hungry: how the central brain codes odor valence to facilitate food approach in Drosophila. Curr Opin Neurobiol 2016; 40:53-58. [PMID: 27393869 DOI: 10.1016/j.conb.2016.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/19/2016] [Accepted: 06/22/2016] [Indexed: 01/25/2023]
Abstract
All animals must eat in order to survive but first they must successfully locate and appraise food resources in a manner consonant with their needs. To accomplish this, external sensory information, in particular olfactory food cues, need to be detected and appropriately categorized. Recent advances in Drosophila point to the existence of parallel processing circuits within the central brain that encode odor valence, supporting approach and avoidance behaviors. Strikingly, many elements within these neural systems are subject to modification as a function of the fly's satiety state. In this review we describe those advances and their potential impact on the decision to feed.
Collapse
Affiliation(s)
- Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jennifer Beshel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| |
Collapse
|
56
|
Bell JS, Wilson RI. Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels. Neuron 2016; 91:425-38. [PMID: 27373835 DOI: 10.1016/j.neuron.2016.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
The olfactory system is divided into processing channels (glomeruli), each receiving input from a different type of olfactory receptor neuron (ORN). Here we investigated how glomeruli combine to control behavior in freely walking Drosophila. We found that optogenetically activating single ORN types typically produced attraction, although some ORN types produced repulsion. Attraction consisted largely of a behavioral program with the following rules: at fictive odor onset, flies walked upwind, and at fictive odor offset, they reversed. When certain pairs of attractive ORN types were co-activated, the level of the behavioral response resembled the sum of the component responses. However, other pairs of attractive ORN types produced a response resembling the larger component (max pooling). Although activation of different ORN combinations produced different levels of behavior, the rules of the behavioral program were consistent. Our results illustrate a general method for inferring how groups of neurons work together to modulate behavioral programs.
Collapse
Affiliation(s)
- Joseph S Bell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
57
|
Decoding of Context-Dependent Olfactory Behavior in Drosophila. Neuron 2016; 91:155-67. [PMID: 27321924 DOI: 10.1016/j.neuron.2016.05.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
Abstract
Odor information is encoded in the activity of a population of glomeruli in the primary olfactory center. However, how this information is decoded in the brain remains elusive. Here, we address this question in Drosophila by combining neuronal imaging and tracking of innate behavioral responses. We find that the behavior is accurately predicted by a model summing normalized glomerular responses, in which each glomerulus contributes a specific, small amount to odor preference. This model is further supported by targeted manipulations of glomerular input, which biased the behavior. Additionally, we observe that relative odor preference changes and can even switch depending on the context, an effect correctly predicted by our normalization model. Our results indicate that olfactory information is decoded from the pooled activity of a glomerular repertoire and demonstrate the ability of the olfactory system to adapt to the statistics of its environment.
Collapse
|
58
|
Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel AD, Cardona A. The wiring diagram of a glomerular olfactory system. eLife 2016; 5. [PMID: 27177418 PMCID: PMC4930330 DOI: 10.7554/elife.14859] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI:http://dx.doi.org/10.7554/eLife.14859.001 Our sense of smell can tell us about bread being baked faraway in the kitchen, or whether a leftover piece finally went bad. Similarly to the eyes, the nose enables us to make up a mental image of what lies at a distance. In mammals, the surface of the nose hosts a huge number of olfactory sensory cells, each of which is tuned to respond to a small set of scent molecules. The olfactory sensory cells communicate with a region of the brain called the olfactory bulb. Olfactory sensory cells of the same type converge onto the same small pocket of the olfactory bulb, forming a structure called a glomerulus. Similarly to how the retina generates an image, the combined activity of multiple glomeruli defines an odor. A particular smell is the combination of many volatile compounds, the odorants. Therefore the interactions between different olfactory glomeruli are important for defining the nature of the perceived odor. Although the types of neurons involved in these interactions were known in insects, fish and mice, a precise wiring diagram of a complete set of glomeruli had not been described. In particular, the points of contact through which neurons communicate with each other – known as synapses – among all the neurons participating in an olfactory system were not known. Berck, Khandelwal et al. have now taken advantage of the small size of the olfactory system of the larvae of Drosophila fruit flies to fully describe, using high-resolution imaging, all its neurons and their synapses. The results define the complete wiring diagram of the neural circuit that processes the signals sent by olfactory sensory neurons in the larva’s olfactory circuits. In addition to the neurons that read out the activity of a single glomerulus and send it to higher areas of the brain for further processing, there are also numerous neurons that read out activity from multiple glomeruli. These neurons represent a system, encoded in the genome, for quickly extracting valuable olfactory information and then relaying it to other areas of the brain. An essential aspect of sensation is the ability to stop noticing a stimulus if it doesn't change. This allows an animal to, for example, find food by moving in a direction that increases the intensity of an odor. Inhibition mediates some aspects of this capability. The discovery of structure in the inhibitory connections among glomeruli, together with prior findings on the inner workings of the olfactory system, enabled Berck, Khandelwal et al. to hypothesize how the olfactory circuits enable odor gradients to be navigated. Further investigation revealed more about how the circuits could detect slight changes in odor concentration regardless of whether the overall odor intensity is strong or faint. And, crucially, it revealed how the worst odors – which can signal danger – can still be perceived in the presence of very strong pleasant odors. With the wiring diagram, theories about the sense of smell can now be tested using the genetic tools available for Drosophila, leading to an understanding of how neural circuits work. DOI:http://dx.doi.org/10.7554/eLife.14859.002
Collapse
Affiliation(s)
- Matthew E Berck
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Lindsey Claus
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rick D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthieu Louis
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
59
|
Abstract
How, why, and when consciousness evolved remain hotly debated topics. Addressing these issues requires considering the distribution of consciousness across the animal phylogenetic tree. Here we propose that at least one invertebrate clade, the insects, has a capacity for the most basic aspect of consciousness: subjective experience. In vertebrates the capacity for subjective experience is supported by integrated structures in the midbrain that create a neural simulation of the state of the mobile animal in space. This integrated and egocentric representation of the world from the animal's perspective is sufficient for subjective experience. Structures in the insect brain perform analogous functions. Therefore, we argue the insect brain also supports a capacity for subjective experience. In both vertebrates and insects this form of behavioral control system evolved as an efficient solution to basic problems of sensory reafference and true navigation. The brain structures that support subjective experience in vertebrates and insects are very different from each other, but in both cases they are basal to each clade. Hence we propose the origins of subjective experience can be traced to the Cambrian.
Collapse
|
60
|
Abstract
Binary expression systems are flexible and versatile genetic tools in Drosophila. The Q-system is a recently developed repressible binary expression system that offers new possibilities for transgene expression and genetic manipulations. In this review chapter, we focus on current state-of-the-art Q-system tools and reagents. We also discuss in vivo applications of the Q-system, together with GAL4/UAS and LexA/LexAop systems, for simultaneous expression of multiple effectors, intersectional labeling, and clonal analysis.
Collapse
|
61
|
Kee T, Sanda P, Gupta N, Stopfer M, Bazhenov M. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit. PLoS Comput Biol 2015; 11:e1004531. [PMID: 26458212 PMCID: PMC4601731 DOI: 10.1371/journal.pcbi.1004531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022] Open
Abstract
Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs), provide feed-forward inhibition onto Kenyon cells (KCs) to maintain their sparse firing—a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN), is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB) loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks. Understanding how inhibitory neurons interact with excitatory neurons is critical for understanding the behaviors of neuronal networks. Here we address this question with simple but biologically relevant models based on the anatomy of the locust olfactory pathway. Two ubiquitous and basic inhibitory motifs were tested: feed-forward and feedback. Feed-forward inhibition typically occurs between different brain areas when excitatory neurons excite inhibitory cells, which then inhibit a group of postsynaptic excitatory neurons outside of the initializing excitatory neurons’ area. On the other hand, the feedback inhibitory motif requires a population of excitatory neurons to drive the inhibitory cells, which in turn inhibit the same population of excitatory cells. We found the type of the inhibitory motif determined the timing with which each group of cells fired action potentials in comparison to one another (relative timing). It also affected the range of inhibitory neurons’ activity, with the inhibitory neurons having a wider range in the feedback circuit than that in the feed-forward one. These results will allow predicting the type of the connectivity structure within unexplored biological circuits given only electrophysiological recordings.
Collapse
Affiliation(s)
- Tiffany Kee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Pavel Sanda
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Mark Stopfer
- US National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
Barron AB, Gurney KN, Meah LFS, Vasilaki E, Marshall JAR. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front Behav Neurosci 2015; 9:216. [PMID: 26347627 PMCID: PMC4539514 DOI: 10.3389/fnbeh.2015.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Effective decision-making, one of the most crucial functions of the brain, entails the analysis of sensory information and the selection of appropriate behavior in response to stimuli. Here, we consider the current state of knowledge on the mechanisms of decision-making and action selection in the insect brain, with emphasis on the olfactory processing system. Theoretical and computational models of decision-making emphasize the importance of using inhibitory connections to couple evidence-accumulating pathways; this coupling allows for effective discrimination between competing alternatives and thus enables a decision maker to reach a stable unitary decision. Theory also shows that the coupling of pathways can be implemented using a variety of different mechanisms and vastly improves the performance of decision-making systems. The vertebrate basal ganglia appear to resolve stable action selection by being a point of convergence for multiple excitatory and inhibitory inputs such that only one possible response is selected and all other alternatives are suppressed. Similar principles appear to operate within the insect brain. The insect lateral protocerebrum (LP) serves as a point of convergence for multiple excitatory and inhibitory channels of olfactory information to effect stable decision and action selection, at least for olfactory information. The LP is a rather understudied region of the insect brain, yet this premotor region may be key to effective resolution of action section. We argue that it may be beneficial to use models developed to explore the operation of the vertebrate brain as inspiration when considering action selection in the invertebrate domain. Such an approach may facilitate the proposal of new hypotheses and furthermore frame experimental studies for how decision-making and action selection might be achieved in insects.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biological Sciences, Macquarie University North Ryde, NSW, Australia
| | - Kevin N Gurney
- Department of Psychology, The University of Sheffield Sheffield, UK
| | - Lianne F S Meah
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - Eleni Vasilaki
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - James A R Marshall
- Department of Computer Science, The University of Sheffield Sheffield, UK
| |
Collapse
|
63
|
Kohl J, Huoviala P, Jefferis GS. Pheromone processing in Drosophila. Curr Opin Neurobiol 2015; 34:149-57. [PMID: 26143522 DOI: 10.1016/j.conb.2015.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/12/2015] [Accepted: 06/14/2015] [Indexed: 11/30/2022]
Abstract
Understanding how sensory stimuli are processed in the brain to instruct appropriate behavior is a fundamental question in neuroscience. Drosophila has become a powerful model system to address this problem. Recent advances in characterizing the circuits underlying pheromone processing have put the field in a position to follow the transformation of these chemical signals all the way from the sensory periphery to decision making and motor output. Here we describe the latest advances, outline emerging principles of pheromone processing and discuss future questions.
Collapse
Affiliation(s)
- Johannes Kohl
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Paavo Huoviala
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory Sxe Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
64
|
Nehrkorn J, Tanimoto H, Herz AVM, Yarali A. A model for non-monotonic intensity coding. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150120. [PMID: 26064666 PMCID: PMC4453257 DOI: 10.1098/rsos.150120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 05/12/2023]
Abstract
Peripheral neurons of most sensory systems increase their response with increasing stimulus intensity. Behavioural responses, however, can be specific to some intermediate intensity level whose particular value might be innate or associatively learned. Learning such a preference requires an adjustable trans- formation from a monotonic stimulus representation at the sensory periphery to a non-monotonic representation for the motor command. How do neural systems accomplish this task? We tackle this general question focusing on odour-intensity learning in the fruit fly, whose first- and second-order olfactory neurons show monotonic stimulus-response curves. Nevertheless, flies form associative memories specific to particular trained odour intensities. Thus, downstream of the first two olfactory processing layers, odour intensity must be re-coded to enable intensity-specific associative learning. We present a minimal, feed-forward, three-layer circuit, which implements the required transformation by combining excitation, inhibition, and, as a decisive third element, homeostatic plasticity. Key features of this circuit motif are consistent with the known architecture and physiology of the fly olfactory system, whereas alternative mechanisms are either not composed of simple, scalable building blocks or not compatible with physiological observations. The simplicity of the circuit and the robustness of its function under parameter changes make this computational motif an attractive candidate for tuneable non-monotonic intensity coding.
Collapse
Affiliation(s)
- Johannes Nehrkorn
- Department of Biology II, Bernstein Center for Computational Neuroscience Munich and Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried 82152, Germany
- Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Hiromu Tanimoto
- Max Planck Institute of Neurobiology, Martinsried 82152, Germany
- Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Andreas V. M. Herz
- Department of Biology II, Bernstein Center for Computational Neuroscience Munich and Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried 82152, Germany
- Authors for correspondence: Andreas V. M. Herz e-mail:
| | - Ayse Yarali
- Max Planck Institute of Neurobiology, Martinsried 82152, Germany
- Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, Magdeburg 39118, Germany
- Center for Brain and Behavioural Sciences, Magdeburg, Germany
- Authors for correspondence: Ayse Yarali e-mail:
| |
Collapse
|
65
|
Gao XJ, Clandinin TR, Luo L. Extremely sparse olfactory inputs are sufficient to mediate innate aversion in Drosophila. PLoS One 2015; 10:e0125986. [PMID: 25927233 PMCID: PMC4416024 DOI: 10.1371/journal.pone.0125986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/27/2015] [Indexed: 11/29/2022] Open
Abstract
Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs) each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs). To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN) representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction.
Collapse
Affiliation(s)
- Xiaojing J. Gao
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Thomas R. Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
66
|
Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 2015; 86:417-27. [PMID: 25864636 PMCID: PMC4416108 DOI: 10.1016/j.neuron.2015.03.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 01/24/2023]
Abstract
During olfactory learning in fruit flies, dopaminergic neurons assign value to odor representations in the mushroom body Kenyon cells. Here we identify a class of downstream glutamatergic mushroom body output neurons (MBONs) called M4/6, or MBON-β2β′2a, MBON-β′2mp, and MBON-γ5β′2a, whose dendritic fields overlap with dopaminergic neuron projections in the tips of the β, β′, and γ lobes. This anatomy and their odor tuning suggests that M4/6 neurons pool odor-driven Kenyon cell synaptic outputs. Like that of mushroom body neurons, M4/6 output is required for expression of appetitive and aversive memory performance. Moreover, appetitive and aversive olfactory conditioning bidirectionally alters the relative odor-drive of M4β′ neurons (MBON-β′2mp). Direct block of M4/6 neurons in naive flies mimics appetitive conditioning, being sufficient to convert odor-driven avoidance into approach, while optogenetically activating these neurons induces avoidance behavior. We therefore propose that drive to the M4/6 neurons reflects odor-directed behavioral choice. Glutamatergic mushroom body output neurons are required for memory expression Training bidirectionally alters relative odor drive to output neurons Blocking glutamatergic mushroom body output neurons mimics appetitive conditioning Optogenetic activation drives avoidance behavior
Collapse
|
67
|
Faghihi F, Moustafa AA. Impaired homeostatic regulation of feedback inhibition associated with system deficiency to detect fluctuation in stimulus intensity: a simulation study. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
68
|
Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S. Decoding odor quality and intensity in the Drosophila brain. eLife 2014; 3:e04147. [PMID: 25512254 PMCID: PMC4270039 DOI: 10.7554/elife.04147] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022] Open
Abstract
To internally reflect the sensory environment, animals create neural maps encoding the external stimulus space. From that primary neural code relevant information has to be extracted for accurate navigation. We analyzed how different odor features such as hedonic valence and intensity are functionally integrated in the lateral horn (LH) of the vinegar fly, Drosophila melanogaster. We characterized an olfactory-processing pathway, comprised of inhibitory projection neurons (iPNs) that target the LH exclusively, at morphological, functional and behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups encoding positive hedonic valence or intensity information and conveying these features into separate domains in the LH. Silencing iPNs severely diminished flies' attraction behavior. Moreover, functional imaging disclosed a LH region tuned to repulsive odors comprised exclusively of third-order neurons. We provide evidence for a feature-based map in the LH, and elucidate its role as the center for integrating behaviorally relevant olfactory information. DOI:http://dx.doi.org/10.7554/eLife.04147.001 Organisms need to sense and adapt to their environment in order to survive. Senses such as vision and smell allow an organism to absorb information about the external environment and translate it into a meaningful internal image. This internal image helps the organism to remember incidents and act accordingly when they encounter similar situations again. A typical example is when organisms are repeatedly attracted to odors that are essential for survival, such as food and pheromones, and are repulsed by odors that threaten survival. Strutz et al. addressed how attractiveness or repulsiveness of a smell, and also the strength of a smell, are processed by a part of the olfactory system called the lateral horn in fruit flies. This involved mapping the neuronal patterns that were generated in the lateral horn when a fly was exposed to particular odors. Strutz et al. found that a subset of neurons called inhibitory projection neurons processes information about whether the odor is attractive or repulsive, and that a second subset of these neurons process information about the intensity of the odor. Other insects, such as honey bees and hawk moths, have olfactory systems with a similar architecture and might also employ a similar spatial approach to encode information regarding the intensity and identity of odors. Locusts, on the other hand, employ a temporal approach to encoding information about odors. The work of Strutz et al. shows that certain qualities of odors are contained in a spatial map in a specific brain region of the fly. This opens up the question of how the information in this spatial map influences decisions made by the fly. DOI:http://dx.doi.org/10.7554/eLife.04147.002
Collapse
Affiliation(s)
- Antonia Strutz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jan Soelter
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Schmuker
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
69
|
Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S. Digitalin vivo3D atlas of the antennal lobe ofDrosophila melanogaster. J Comp Neurol 2014; 523:530-44. [DOI: 10.1002/cne.23697] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Veit Grabe
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Antonia Strutz
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| |
Collapse
|
70
|
Mosca TJ, Luo L. Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 2014; 3:e03726. [PMID: 25310239 PMCID: PMC4194450 DOI: 10.7554/elife.03726] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
Understanding information flow through neuronal circuits requires knowledge of their synaptic organization. In this study, we utilized fluorescent pre- and postsynaptic markers to map synaptic organization in the Drosophila antennal lobe, the first olfactory processing center. Olfactory receptor neurons (ORNs) produce a constant synaptic density across different glomeruli. Each ORN within a class contributes nearly identical active zone number. Active zones from ORNs, projection neurons (PNs), and local interneurons have distinct subglomerular and subcellular distributions. The correct number of ORN active zones and PN acetylcholine receptor clusters requires the Teneurins, conserved transmembrane proteins involved in neuromuscular synapse organization and synaptic partner matching. Ten-a acts in ORNs to organize presynaptic active zones via the spectrin cytoskeleton. Ten-m acts in PNs autonomously to regulate acetylcholine receptor cluster number and transsynaptically to regulate ORN active zone number. These studies advanced our ability to assess synaptic architecture in complex CNS circuits and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
71
|
Schinaman JM, Giesey RL, Mizutani CM, Lukacsovich T, Sousa-Neves R. The KRÜPPEL-like transcription factor DATILÓGRAFO is required in specific cholinergic neurons for sexual receptivity in Drosophila females. PLoS Biol 2014; 12:e1001964. [PMID: 25291190 PMCID: PMC4188565 DOI: 10.1371/journal.pbio.1001964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/28/2014] [Indexed: 01/22/2023] Open
Abstract
Courtship is a widespread behavior in which one gender conveys to the other a series of cues about their species identity, gender, and suitability as mates. In many species, females decode these male displays and either accept or reject them. Despite the fact that courtship has been investigated for a long time, the genes and circuits that allow females to generate these mutually exclusive responses remain largely unknown. Here, we provide evidence that the Krüppel-like transcription factor datilógrafo (dati) is required for proper locomotion and courtship acceptance in adult Drosophila females. dati mutant females are completely unable to decode male courtship and almost invariably reject males. Molecular analyses reveal that dati is broadly expressed in the brain and its specific removal in excitatory cholinergic neurons recapitulates the female courtship behavioral phenotype but not the locomotor deficits, indicating that these are two separable functions. Clonal analyses in female brains identified three discrete foci where dati is required to generate acceptance. These include neurons around the antennal lobe, the lateral horn, and the posterior superior lateral protocerebrum. Together, these results show that dati is required to organize and maintain a relatively simple excitatory circuit in the brain that allows females to either accept or reject courting males.
Collapse
Affiliation(s)
- Joseph Moeller Schinaman
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rachel Lynn Giesey
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Claudia Mieko Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tamas Lukacsovich
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, California, United States of America
| | - Rui Sousa-Neves
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
72
|
Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci U S A 2014; 111:13972-7. [PMID: 25201989 DOI: 10.1073/pnas.1408269111] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) has provided a breakthrough for the optogenetic control of neuronal activity. In adult Drosophila melanogaster, however, its applications are severely constrained. This limitation in a powerful model system has curtailed unfolding the full potential of ChR2 for behavioral neuroscience. Here, we describe the D156C mutant, termed ChR2-XXL (extra high expression and long open state), which displays increased expression, improved subcellular localization, elevated retinal affinity, an extended open-state lifetime, and photocurrent amplitudes greatly exceeding those of all heretofore published ChR variants. As a result, neuronal activity could be efficiently evoked with ambient light and even without retinal supplementation. We validated the benefits of the variant in intact flies by eliciting simple and complex behaviors. We demonstrate efficient and prolonged photostimulation of monosynaptic transmission at the neuromuscular junction and reliable activation of a gustatory reflex pathway. Innate male courtship was triggered in male and female flies, and olfactory memories were written through light-induced associative training.
Collapse
|
73
|
Su CY, Wang JW. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila. Curr Opin Neurobiol 2014; 29:9-16. [PMID: 24801064 DOI: 10.1016/j.conb.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022]
Abstract
Remarkable advances have been made in recent years in our understanding of innate behavior and the underlying neural circuits. In particular, a wealth of neuromodulatory mechanisms have been uncovered that can alter the input-output relationship of a hereditary neural circuit. It is now clear that this inbuilt flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands and physiological states. Here, we discuss recent insights into how modulation of neural circuits impacts innate behavior, with a special focus on how environmental cues and internal physiological states shape different aspects of feeding behavior in Drosophila.
Collapse
Affiliation(s)
- Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
74
|
Galizia CG. Olfactory coding in the insect brain: data and conjectures. Eur J Neurosci 2014; 39:1784-95. [PMID: 24698302 PMCID: PMC4237541 DOI: 10.1111/ejn.12558] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Much progress has been made recently in understanding how olfactory coding works in insect brains. Here, I propose a wiring diagram for the major steps from the first processing network (the antennal lobe) to behavioral readout. I argue that the sequence of lateral inhibition in the antennal lobe, non-linear synapses, threshold-regulating gated spring network, selective lateral inhibitory networks across glomeruli, and feedforward inhibition to the lateral protocerebrum cover most of the experimental results from different research groups and model species. I propose that the main difference between mushroom bodies and the lateral protocerebrum is not about learned vs. innate behavior. Rather, mushroom bodies perform odor identification, whereas the lateral protocerebrum performs odor evaluation (both learned and innate). I discuss the concepts of labeled line and combinatorial coding and postulate that, under restrictive experimental conditions, these networks lead to an apparent existence of 'labeled line' coding for special odors. Modulatory networks are proposed as switches between different evaluating systems in the lateral protocerebrum. A review of experimental data and theoretical conjectures both contribute to this synthesis, creating new hypotheses for future research.
Collapse
|
75
|
Olfactory coding in the honeybee lateral horn. Curr Biol 2014; 24:561-7. [PMID: 24560579 DOI: 10.1016/j.cub.2014.01.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 11/22/2013] [Accepted: 01/29/2014] [Indexed: 11/20/2022]
Abstract
Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.
Collapse
|
76
|
Parallel pathways convey olfactory information with opposite polarities in Drosophila. Proc Natl Acad Sci U S A 2014; 111:3164-9. [PMID: 24516124 DOI: 10.1073/pnas.1317911111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In insects, olfactory information received by peripheral olfactory receptor neurons (ORNs) is conveyed from the antennal lobes (ALs) to higher brain regions by olfactory projection neurons (PNs). Despite the knowledge that multiple types of PNs exist, little is known about how these different neuronal pathways work cooperatively. Here we studied the Drosophila GABAergic mediolateral antennocerebral tract PNs (mlPNs), which link ipsilateral AL and lateral horn (LH), in comparison with the cholinergic medial tract PNs (mPNs). We examined the connectivity of mlPNs in ALs and found that most mlPNs received inputs from both ORNs and mPNs and participated in AL network function by forming gap junctions with other AL neurons. Meanwhile, mlPNs might innervate LH neurons downstream of mPNs, exerting a feedforward inhibition. Using dual-color calcium imaging, which enables a simultaneous monitoring of neural activities in two groups of PNs, we found that mlPNs exhibited robust odor responses overlapping with, but broader than, those of mPNs. Moreover, preferentially down-regulation of GABA in most mlPNs caused abnormal courtship and aggressive behaviors in male flies. These findings demonstrate that in Drosophila, olfactory information in opposite polarities are carried coordinately by two parallel and interacted pathways, which could be essential for appropriate behaviors.
Collapse
|
77
|
Twick I, Lee JA, Ramaswami M. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. PROGRESS IN BRAIN RESEARCH 2014; 208:3-38. [PMID: 24767477 DOI: 10.1016/b978-0-444-63350-7.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.
Collapse
Affiliation(s)
- Isabell Twick
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - John Anthony Lee
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; National Centre for Biological Science, Bangalore, India
| |
Collapse
|
78
|
Stefanik MT, Kalivas PW. Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci 2013; 7:213. [PMID: 24399945 PMCID: PMC3871970 DOI: 10.3389/fnbeh.2013.00213] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/11/2013] [Indexed: 01/21/2023] Open
Abstract
Stimuli previously associated with drugs of abuse can become triggers that elicit craving and lead to drug-seeking behavior. The basolateral amygdala (BLA) is a key neural structure involved in cue-induced reinstatement of cocaine seeking. Previous studies have also implicated projections from the BLA directly to the nucleus accumbens (NAc) in these behaviors. However, other structures critically involved in cocaine seeking are targets of BLA innervation, including the prelimbic prefrontal cortex (PL). It has been shown that BLA or PL innervation direct to the NAc can modulate reward-related behaviors but the BLA also projects to the PL, and given the importance of the PL projection to the NAc for reinstated drug seeking, we hypothesized the BLA to PL projection may indirectly influence behavior via PL innervation to the NAc. We delivered a virus expressing the inhibitory optogenetic construct ArchT into the BLA and implanted fiber optics above the injection site or axon terminal fields in either the NAc or PL. Rats then went through 12 days of cocaine self-administration followed by extinction training. Following extinction, animals underwent cue-induced reinstatement sessions in the presence or absence of optical inhibition. Inactivation of the BLA and either the BLA core subcompartment of the NAc (BLA-to-NAcore) BLA-to-PL projections inhibited cue-induced reinstatement. These data demonstrate that the BLA projection either directly into the NAc, or indirectly via the PL, is a necessary regulator of drug-seeking behavior.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
79
|
Stereotyped connectivity and computations in higher-order olfactory neurons. Nat Neurosci 2013; 17:280-8. [PMID: 24362761 DOI: 10.1038/nn.3613] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Abstract
In the first brain relay of the olfactory system, odors are encoded by combinations of glomeruli, but it is not known how glomerular signals are ultimately integrated. In Drosophila melanogaster, the majority of glomerular projections target the lateral horn. Here we show that lateral horn neurons (LHNs) receive input from sparse and stereotyped combinations of glomeruli that are coactivated by odors, and certain combinations of glomeruli are over-represented. One morphological LHN type is broadly tuned and sums input from multiple glomeruli. These neurons have a broader dynamic range than their individual glomerular inputs do. By contrast, a second morphological type is narrowly tuned and receives prominent odor-selective inhibition through both direct and indirect pathways. We show that this wiring scheme confers increased selectivity. The biased stereotyped connectivity of the lateral horn contrasts with the probabilistic wiring of the mushroom body, reflecting the distinct roles of these regions in innate as compared to learned behaviors.
Collapse
|
80
|
Parnas M, Lin AC, Huetteroth W, Miesenböck G. Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 2013; 79:932-44. [PMID: 24012006 PMCID: PMC3765961 DOI: 10.1016/j.neuron.2013.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. Distances between excitatory PN (ePN) signals predict innate odor discrimination Silencing ePN subsets has distance-specific behavioral consequences Inhibitory PNs (iPNs) increase the contrast between similar odor representations iPNs act by high-pass filtering transmitter release from ePNs
Collapse
Affiliation(s)
- Moshe Parnas
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | |
Collapse
|
81
|
High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity. Proc Natl Acad Sci U S A 2013; 110:18374-9. [PMID: 24167298 DOI: 10.1073/pnas.1216287110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-µm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca(2+) signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5-20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation.
Collapse
|