51
|
The extraordinary AFD thermosensor of C. elegans. Pflugers Arch 2017; 470:839-849. [PMID: 29218454 DOI: 10.1007/s00424-017-2089-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
The nematode C. elegans exhibits complex thermal experience-dependent navigation behaviors in response to environmental temperature changes of as little as 0.01°C over a > 10°C temperature range. The remarkable thermosensory abilities of this animal are mediated primarily via the single pair of AFD sensory neurons in its head. In this review, we describe the contributions of AFD to thermosensory behaviors and temperature-dependent regulation of organismal physiology. We also discuss the mechanisms that enable this neuron type to adapt to recent temperature experience and to exhibit extraordinary thermosensitivity over a wide dynamic range.
Collapse
|
52
|
Lin CT, He CW, Huang TT, Pan CL. Longevity control by the nervous system: Sensory perception, stress response and beyond. TRANSLATIONAL MEDICINE OF AGING 2017. [DOI: 10.1016/j.tma.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
53
|
A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells. Mol Cell Biol 2017; 37:MCB.00192-17. [PMID: 28716951 DOI: 10.1128/mcb.00192-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Ca2+- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2-/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322, disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.
Collapse
|
54
|
Abstract
Diverse animals ranging from worms and insects to birds and turtles perform impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode Caenorhabditis elegans. We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for underutilized and novel approaches to identify the elusive magnetoreceptors in animals.
Collapse
Affiliation(s)
- Benjamin L Clites
- Institute for Cell and Molecular Biology, Center for Brain, Behavior and Evolution, Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, and Department of Neuroscience, University of Texas, Austin, Texas 78712; ,
| | - Jonathan T Pierce
- Institute for Cell and Molecular Biology, Center for Brain, Behavior and Evolution, Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, and Department of Neuroscience, University of Texas, Austin, Texas 78712; ,
| |
Collapse
|
55
|
Stroehlein AJ, Young ND, Korhonen PK, Chang BCH, Nejsum P, Pozio E, La Rosa G, Sternberg PW, Gasser RB. Whipworm kinomes reflect a unique biology and adaptation to the host animal. Int J Parasitol 2017; 47:857-866. [PMID: 28606697 DOI: 10.1016/j.ijpara.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 01/19/2023]
Abstract
Roundworms belong to a diverse phylum (Nematoda) which is comprised of many parasitic species including whipworms (genus Trichuris). These worms have adapted to a biological niche within the host and exhibit unique morphological characteristics compared with other nematodes. Although these adaptations are known, the underlying molecular mechanisms remain elusive. The availability of genomes and transcriptomes of some whipworms now enables detailed studies of their molecular biology. Here, we defined and curated the full complement of an important class of enzymes, the protein kinases (kinomes) of two species of Trichuris, using an advanced and integrated bioinformatic pipeline. We investigated the transcription of Trichuris suis kinase genes across developmental stages, sexes and tissues, and reveal that selectively transcribed genes can be linked to central roles in developmental and reproductive processes. We also classified and functionally annotated the curated kinomes by integrating evidence from structural modelling and pathway analyses, and compared them with other curated kinomes of phylogenetically diverse nematode species. Our findings suggest unique adaptations in signalling processes governing worm morphology and biology, and provide an important resource that should facilitate experimental investigations of kinases and the biology of signalling pathways in nematodes.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; Yourgene Bioscience, New Taipei City, Taiwan
| | - Peter Nejsum
- Department of Clinical Medicine, Department of Infectious Diseases, Aarhus University, Aarhus, Denmark
| | | | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
56
|
Ujisawa T, Ohta A, Uda-Yagi M, Kuhara A. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans. PLoS One 2016; 11:e0165518. [PMID: 27788246 PMCID: PMC5082853 DOI: 10.1371/journal.pone.0165518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron.
Collapse
Affiliation(s)
- Tomoyo Ujisawa
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
| | - Akane Ohta
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- * E-mail: ; (AK); (AO)
| | - Misato Uda-Yagi
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
| | - Atsushi Kuhara
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- * E-mail: ; (AK); (AO)
| |
Collapse
|
57
|
Chen YC, Chen HJ, Tseng WC, Hsu JM, Huang TT, Chen CH, Pan CL. A C. elegans Thermosensory Circuit Regulates Longevity through crh-1/CREB-Dependent flp-6 Neuropeptide Signaling. Dev Cell 2016; 39:209-223. [PMID: 27720609 DOI: 10.1016/j.devcel.2016.08.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Sensory perception, including thermosensation, shapes longevity in diverse organisms, but longevity-modulating signals from the sensory neurons are largely obscure. Here we show that CRH-1/CREB activation by CMK-1/CaMKI in the AFD thermosensory neuron is a key mechanism that maintains lifespan at warm temperatures in C. elegans. In response to temperature rise and crh-1 activation, the AFD neurons produce and secrete the FMRFamide neuropeptide FLP-6. Both CRH-1 and FLP-6 are necessary and sufficient for longevity at warm temperatures. Our data suggest that FLP-6 targets the AIY interneurons and engages DAF-9 sterol hormone signaling. Moreover, we show that FLP-6 signaling downregulates ins-7/insulin-like peptide and several insulin pathway genes, whose activity compromises lifespan. Our work illustrates how temperature experience is integrated by the thermosensory circuit to generate neuropeptide signals that remodel insulin and sterol hormone signaling and reveals a neuronal-endocrine circuit driven by thermosensation to promote temperature-specific longevity.
Collapse
Affiliation(s)
- Yen-Chih Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hung-Jhen Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Wei-Chin Tseng
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Jiun-Min Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Tzu-Ting Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Hao Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
58
|
Lockhead D, Schwarz EM, O'Hagan R, Bellotti S, Krieg M, Barr MM, Dunn AR, Sternberg PW, Goodman MB. The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth. Mol Biol Cell 2016; 27:mbc.E16-06-0473. [PMID: 27654945 PMCID: PMC5170555 DOI: 10.1091/mbc.e16-06-0473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Microtubules contribute to many cellular processes, including transport, signaling, and chromosome separation during cell division (Kapitein and Hoogenraad, 2015). They are comprised of αβ-tubulin heterodimers arranged into linear protofilaments and assembled into tubes. Eukaryotes express multiple tubulin isoforms (Gogonea et al., 1999), and there has been a longstanding debate as to whether the isoforms are redundant or perform specialized roles as part of a tubulin code (Fulton and Simpson, 1976). Here, we use the well-characterized touch receptor neurons (TRNs) of Caenorhabditis elegans to investigate this question, through genetic dissection of process outgrowth both in vivo and in vitro With single-cell RNA-seq, we compare transcription profiles for TRNs with those of two other sensory neurons, and present evidence that each sensory neuron expresses a distinct palette of tubulin genes. In the TRNs, we analyze process outgrowth and show that four tubulins (tba-1, tba-2, tbb-1, and tbb-2) function partially or fully redundantly, while two others (mec-7 and mec-12) perform specialized, context-dependent roles. Our findings support a model in which sensory neurons express overlapping subsets of tubulin genes whose functional redundancy varies between cell types and in vivo and in vitro contexts.
Collapse
Affiliation(s)
- Dean Lockhead
- *Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sebastian Bellotti
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Michael Krieg
- *Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Maureen M Barr
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Miriam B Goodman
- *Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
59
|
Glauser DA, Goodman MB. Molecules empowering animals to sense and respond to temperature in changing environments. Curr Opin Neurobiol 2016; 41:92-98. [PMID: 27657982 DOI: 10.1016/j.conb.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022]
Abstract
Adapting behavior to thermal cues is essential for animal growth and survival. Indeed, each and every biological and biochemical process is profoundly affected by temperature and its extremes can cause irreversible damage. Hence, animals have developed thermotransduction mechanisms to detect and encode thermal information in the nervous system and acclimation mechanisms to finely tune their response over different timescales. While temperature-gated TRP channels are the best described class of temperature sensors, recent studies highlight many new candidates, including ionotropic and metabotropic receptors. Here, we review recent findings in vertebrate and invertebrate models, which highlight and substantiate the role of new candidate molecular thermometers and reveal intracellular signaling mechanisms implicated in thermal acclimation at the behavioral and cellular levels.
Collapse
Affiliation(s)
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
60
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
61
|
Maruyama IN. Receptor Guanylyl Cyclases in Sensory Processing. Front Endocrinol (Lausanne) 2016; 7:173. [PMID: 28123378 PMCID: PMC5225109 DOI: 10.3389/fendo.2016.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3',5'-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review.
Collapse
Affiliation(s)
- Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|