51
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
52
|
Chehimi SN, Crist RC, Reiner BC. Unraveling Psychiatric Disorders through Neural Single-Cell Transcriptomics Approaches. Genes (Basel) 2023; 14:771. [PMID: 36981041 PMCID: PMC10047992 DOI: 10.3390/genes14030771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The development of single-cell and single-nucleus transcriptome technologies is enabling the unraveling of the molecular and cellular heterogeneity of psychiatric disorders. The complexity of the brain and the relationships between different brain regions can be better understood through the classification of individual cell populations based on their molecular markers and transcriptomic features. Analysis of these unique cell types can explain their involvement in the pathology of psychiatric disorders. Recent studies in both human and animal models have emphasized the importance of transcriptome analysis of neuronal cells in psychiatric disorders but also revealed critical roles for non-neuronal cells, such as oligodendrocytes and microglia. In this review, we update current findings on the brain transcriptome and explore molecular studies addressing transcriptomic alterations identified in human and animal models in depression and stress, neurodegenerative disorders (Parkinson's and Alzheimer's disease), schizophrenia, opioid use disorder, and alcohol and psychostimulant abuse. We also comment on potential future directions in single-cell and single-nucleus studies.
Collapse
Affiliation(s)
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
53
|
Zhang S, Wu L, Zhang J, Wang X, Yang X, Xin Y, Chen L, Li J, Niu P. Multi-omics analysis reveals Mn exposure affects ferroptosis pathway in zebrafish brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114616. [PMID: 36796209 DOI: 10.1016/j.ecoenv.2023.114616] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Manganese (Mn) accumulates in the central nervous system and can cause neurotoxicity, but the mechanisms of Mn-induced neurotoxicity remain unclear. We performed single-cell RNA sequencing (scRNA-seq) of zebrafish brain after Mn exposure and identified 10 cell types by marker genes: cholinergic neurons, dopaminergic (DA) neurons, glutaminergic neurons, GABAergic neurons, neuronal precursors, other neurons, microglia, oligodendrocyte, radial glia, and undefined cells. Each cell type has its distinct transcriptome profile. Pseudotime analysis revealed that DA neurons had a critical role in Mn-induced neurological damage. Combined with metabolomic data, chronic Mn exposure significantly impaired amino acid and lipid metabolic processes in the brain. Furthermore, we found that Mn exposure disrupted the ferroptosis signaling pathway in the DA neurons in zebrafish. Overall, our study employed joint analysis of multi-omics and revealed ferroptosis signaling pathway is a novel potential mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Shixuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
54
|
Ji X, Cai J, Liang L, Shi T, Liu J. Gene expression variability across cells and species shapes the relationship between renal resident macrophages and infiltrated macrophages. BMC Bioinformatics 2023; 24:72. [PMID: 36858955 PMCID: PMC9976410 DOI: 10.1186/s12859-023-05198-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Two main subclasses of macrophages are found in almost all solid tissues: embryo-derived resident tissue macrophages and bone marrow-derived infiltrated macrophages. These macrophage subtypes show transcriptional and functional divergence, and the programs that have shaped the evolution of renal macrophages and related signaling pathways remain poorly understood. To clarify these processes, we performed data analysis based on single-cell transcriptional profiling of renal tissue-resident and infiltrated macrophages in human, mouse and rat. RESULTS In this study, we (i) characterized the transcriptional divergence among species and (ii) illustrated variability in expression among cells of each subtype and (iii) compared the gene regulation network and (iv) ligand-receptor pairs in human and mouse. Using single-cell transcriptomics, we mapped the promoter architecture during homeostasis. CONCLUSIONS Transcriptionally divergent genes, such as the differentially TF-encoding genes expressed in resident and infiltrated macrophages across the three species, vary among cells and include distinct promoter structures. The gene regulatory network in infiltrated macrophages shows comparatively better species-wide consistency than resident macrophages. The conserved transcriptional gene regulatory network in infiltrated macrophages among species is uniquely enriched in pathways related to kinases, and TFs associated with largely conserved regulons among species are uniquely enriched in kinase-related pathways.
Collapse
Affiliation(s)
- Xiangjun Ji
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Junwei Cai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Lixin Liang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,Beijing Advanced Innovation Center, for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, 100083, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
55
|
Kasemeier-Kulesa JC, Morrison JA, McKinney S, Li H, Gogol M, Hall K, Chen S, Wang Y, Perera A, McLennan R, Kulesa PM. Cell-type profiling of the sympathetic nervous system using spatial transcriptomics and spatial mapping of mRNA. Dev Dyn 2023. [PMID: 36840366 DOI: 10.1002/dvdy.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.
Collapse
Affiliation(s)
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
56
|
Lecca S, Congiu M, Royon L, Restivo L, Girard B, Mazaré N, Bellone C, Telley L, Mameli M. A neural substrate for negative affect dictates female parental behavior. Neuron 2023; 111:1094-1103.e8. [PMID: 36731469 DOI: 10.1016/j.neuron.2023.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Parental behaviors secure the well-being of newborns and concomitantly limit negative affective states in adults, which emerge when coping with neonatal distress becomes challenging. Whether negative-affect-related neuronal circuits orchestrate parental actions is unknown. Here, we identify parental signatures in lateral habenula neurons receiving bed nucleus of stria terminalis innervation (BNSTLHb). We find that LHb neurons of virgin female mice increase their activity following pup distress vocalization and are necessary for pup-call-driven aversive behaviors. LHb activity rises during pup retrieval, a behavior worsened by LHb inactivation. Intersectional cell identification and transcriptional profiling associate BNSTLHb cells to parenting and outline a gene expression in female virgins similar to that in mothers but different from that in non-parental virgin male mice. Finally, tracking and manipulating BNSTLHb cell activity demonstrates their specificity for encoding negative affect and pup retrieval. Thus, a negative affect neural circuit processes newborn distress signals and may limit them by guiding female parenting.
Collapse
Affiliation(s)
- Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Léa Royon
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Leonardo Restivo
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Benoit Girard
- The Department of Basic Neuroscience, The University of Geneva, 1205 Geneva, Switzerland
| | - Noemie Mazaré
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Camilla Bellone
- The Department of Basic Neuroscience, The University of Geneva, 1205 Geneva, Switzerland
| | - Ludovic Telley
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
57
|
Green MV, Gallegos DA, Boua JV, Bartelt LC, Narayanan A, West AE. Single-nucleus transcriptional profiling of GAD2-positive neurons from mouse lateral habenula reveals distinct expression of neurotransmission- and depression-related genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523312. [PMID: 36711842 PMCID: PMC9882053 DOI: 10.1101/2023.01.09.523312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glutamatergic projection neurons of the lateral habenula (LHb) drive behavioral state modulation by regulating the activity of midbrain monoaminergic neurons. Identifying circuit mechanisms that modulate LHb output is of interest for understanding control of motivated behaviors. A small population of neurons within the medial subnucleus of the mouse LHb express the GABAergic synthesizing enzyme GAD2, and they can inhibit nearby LHb projection neurons; however, these neurons lack markers of classic inhibitory interneurons and they co-express the vesicular glutamate transporter VGLUT2. To determine the molecular phenotype of these neurons, we genetically tagged the nuclei of GAD2-positive cells and used fluorescence-activated nuclear sorting to isolate and enrich these nuclei for single nuclear RNA sequencing (FANS-snRNAseq). Our data confirm that GAD2+/VGLUT2+ neurons intrinsic to the LHb co-express markers of both glutamatergic and GABAergic transmission and that they are transcriptionally distinct from either GABAergic interneurons or habenular glutamatergic neurons. We identify gene expression programs within these cells that show sex-specific differences in expression and that are implicated in major depressive disorder (MDD), which has been linked to LHb hyperactivity. Finally, we identify the Ntng2 gene encoding the cell adhesion protein Netrin-G2 as a marker of LHb GAD2+/VGLUT+ neurons and a gene product that may contribute to their target projections. These data show the value of using genetic enrichment of rare cell types for transcriptome studies, and they advance understanding of the molecular composition of a functionally important class of GAD2+ neurons in the LHb.
Collapse
Affiliation(s)
- Matthew V Green
- Department of Neurobiology, Duke University, Durham NC 27710
| | | | | | - Luke C Bartelt
- Department of Neurobiology, Duke University, Durham NC 27710
| | - Arthy Narayanan
- Department of Neurobiology, Duke University, Durham NC 27710
| | - Anne E West
- Department of Neurobiology, Duke University, Durham NC 27710
| |
Collapse
|
58
|
Swanson JL, Ortiz-Guzman J, Srivastava S, Chin PS, Dooling SW, Hanson Moss E, Kochukov MY, Hunt PJ, Patel JM, Pekarek BT, Tong Q, Arenkiel BR. Activation of basal forebrain-to-lateral habenula circuitry drives reflexive aversion and suppresses feeding behavior. Sci Rep 2022; 12:22044. [PMID: 36543829 PMCID: PMC9772215 DOI: 10.1038/s41598-022-26306-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Environmental cues and internal states such as mood, reward, or aversion directly influence feeding behaviors beyond homeostatic necessity. The hypothalamus has been extensively investigated for its role in homeostatic feeding. However, many of the neural circuits that drive more complex, non-homeostatic feeding that integrate valence and sensory cues (such as taste and smell) remain unknown. Here, we describe a basal forebrain (BF)-to-lateral habenula (LHb) circuit that directly modulates non-homeostatic feeding behavior. Using viral-mediated circuit mapping, we identified a population of glutamatergic neurons within the BF that project to the LHb, which responds to diverse sensory cues, including aversive and food-related odors. Optogenetic activation of BF-to-LHb circuitry drives robust, reflexive-like aversion. Furthermore, activation of this circuitry suppresses the drive to eat in a fasted state. Together, these data reveal a role of basal forebrain glutamatergic neurons in modulating LHb-associated aversion and feeding behaviors by sensing environmental cues.
Collapse
Affiliation(s)
- Jessica L Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Pey-Shyuan Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Sean W Dooling
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth Hanson Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mikhail Y Kochukov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Jay M Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brandon T Pekarek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Disease, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
59
|
Govek KW, Chen S, Sgourdou P, Yao Y, Woodhouse S, Chen T, Fuccillo MV, Epstein DJ, Camara PG. Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome profiling and Shh perturbation. Cell Rep 2022; 41:111768. [PMID: 36476860 PMCID: PMC9880597 DOI: 10.1016/j.celrep.2022.111768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.
Collapse
Affiliation(s)
- Kiya W. Govek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Sixing Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA 30602, USA
| | - Steven Woodhouse
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Correspondence: (D.J.E.), (P.G.C.)
| | - Pablo G. Camara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Lead contact,Correspondence: (D.J.E.), (P.G.C.)
| |
Collapse
|
60
|
Huang D, Zhang R, Gasparini S, McDonough MC, Paradee WJ, Geerling JC. Neuropeptide S (NPS) neurons: Parabrachial identity and novel distributions. J Comp Neurol 2022; 530:3157-3178. [PMID: 36036349 PMCID: PMC9588594 DOI: 10.1002/cne.25400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023]
Abstract
Neuropeptide S (NPS) increases wakefulness. A small number of neurons in the brainstem express Nps. These neurons are located in or near the parabrachial nucleus (PB), but we know very little about their ontogeny, connectivity, and function. To identify Nps-expressing neurons within the molecular framework of the PB region, we used in situ hybridization, immunofluorescence, and Cre-reporter labeling in mice. The primary concentration of Nps-expressing neurons borders the lateral lemniscus at far-rostral levels of the lateral PB. Caudal to this main cluster, Nps-expressing neurons scatter through the PB and form a secondary concentration medial to the locus coeruleus (LC). Most Nps-expressing neurons in the PB region are Atoh1-derived, Foxp2-expressing, and mutually exclusive with neurons expressing Calca or Lmx1b. Among Foxp2-expressing PB neurons, those expressing Nps are distinct from intermingled subsets expressing Cck or Pdyn. Examining Nps Cre-reporter expression throughout the brain identified novel populations of neurons in the nucleus incertus, anterior hypothalamus, and lateral habenula. This information will help focus experimental questions about the connectivity and function of NPS neurons.
Collapse
Affiliation(s)
- Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowa
| | - Richie Zhang
- Department of NeurologyUniversity of IowaIowa CityIowa
| | | | | | | | | |
Collapse
|
61
|
Girven KS, Mangieri L, Bruchas MR. Emerging approaches for decoding neuropeptide transmission. Trends Neurosci 2022; 45:899-912. [PMID: 36257845 PMCID: PMC9671847 DOI: 10.1016/j.tins.2022.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Neuropeptides produce robust effects on behavior across species, and recent research has benefited from advances in high-resolution techniques to investigate peptidergic transmission and expression throughout the brain in model systems. Neuropeptides exhibit distinct characteristics which includes their post-translational processing, release from dense core vesicles, and ability to activate G-protein-coupled receptors (GPCRs). These complex properties have driven the need for development of specialized tools that can sense neuropeptide expression, cell activity, and release. Current research has focused on isolating when and how neuropeptide transmission occurs, as well as the conditions in which neuropeptides directly mediate physiological and adaptive behavioral states. Here we describe the current technological landscape in which the field is operating to decode key questions regarding these dynamic neuromodulators.
Collapse
Affiliation(s)
- Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Leandra Mangieri
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
62
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
63
|
Michel L, Palma K, Cerda M, Lagadec R, Mayeur H, Fuentès M, Besseau L, Martin P, Magnanou E, Blader P, Concha ML, Mazan S. Diversification of habenular organization and asymmetries in teleosts: Insights from the Atlantic salmon and European eel. Front Cell Dev Biol 2022; 10:1015074. [DOI: 10.3389/fcell.2022.1015074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Habenulae asymmetries are widespread across vertebrates and analyses in zebrafish, the reference model organism for this process, have provided insight into their molecular nature, their mechanisms of formation and their important roles in the integration of environmental and internal cues with a variety of organismal adaptive responses. However, the generality of the characteristics identified in this species remains an open question, even on a relatively short evolutionary scale, in teleosts. To address this question, we have characterized the broad organization of habenulae in the Atlantic salmon and quantified the asymmetries in each of the identified subdomains. Our results show that a highly conserved partitioning into a dorsal and a ventral component is retained in the Atlantic salmon and that asymmetries are mainly observed in the former as in zebrafish. A remarkable difference is that a prominent left-restricted pax6 positive nucleus is observed in the Atlantic salmon, but undetectable in zebrafish. This nucleus is not observed outside teleosts, and harbors a complex presence/absence pattern in this group, retaining its location and cytoarchitectonic organization in an elopomorph, the European eel. These findings suggest an ancient origin and high evolvability of this trait in the taxon. Taken together, our data raise novel questions about the variability of asymmetries across teleosts and their biological significance depending on ecological contexts.
Collapse
|
64
|
Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, McKnight GS, Stuber GD, Palmiter RD. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 2022; 11:e81868. [PMID: 36317965 PMCID: PMC9668336 DOI: 10.7554/elife.81868] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Collapse
Affiliation(s)
- Jordan L Pauli
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Matthew E Carter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Elisenda Sanz
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - G Stanley McKnight
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
65
|
Ali Marandi Ghoddousi R, Magalong VM, Kamitakahara AK, Levitt P. SCAMPR, a single-cell automated multiplex pipeline for RNA quantification and spatial mapping. CELL REPORTS METHODS 2022; 2:100316. [PMID: 36313803 PMCID: PMC9606134 DOI: 10.1016/j.crmeth.2022.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topographic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue topography, yet there are challenges in efficient quantification and analysis of these high-dimensional datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR), facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in vagal neuron subtypes.
Collapse
Affiliation(s)
- Ramin Ali Marandi Ghoddousi
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90007, USA
| | | | - Anna K. Kamitakahara
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90007, USA
- Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Pat Levitt
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90007, USA
- Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
66
|
Sylwestrak EL, Jo Y, Vesuna S, Wang X, Holcomb B, Tien RH, Kim DK, Fenno L, Ramakrishnan C, Allen WE, Chen R, Shenoy KV, Sussillo D, Deisseroth K. Cell-type-specific population dynamics of diverse reward computations. Cell 2022; 185:3568-3587.e27. [PMID: 36113428 PMCID: PMC10387374 DOI: 10.1016/j.cell.2022.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH+ cells and Tac1+ cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1+ cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.
Collapse
Affiliation(s)
- Emily L Sylwestrak
- Department of Biology, University of Oregon, Eugene, OR 97403, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | - YoungJu Jo
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xiao Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Blake Holcomb
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Rebecca H Tien
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - William E Allen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94303, USA
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Krishna V Shenoy
- Department of Neurobiology, Stanford University, Stanford, CA 94303, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David Sussillo
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
67
|
Zeng H. What is a cell type and how to define it? Cell 2022; 185:2739-2755. [PMID: 35868277 DOI: 10.1016/j.cell.2022.06.031] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Cell types are the basic functional units of an organism. Cell types exhibit diverse phenotypic properties at multiple levels, making them challenging to define, categorize, and understand. This review provides an overview of the basic principles of cell types rooted in evolution and development and discusses approaches to characterize and classify cell types and investigate how they contribute to the organism's function, using the mammalian brain as a primary example. I propose a roadmap toward a conceptual framework and knowledge base of cell types that will enable a deeper understanding of the dynamic changes of cellular function under healthy and diseased conditions.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
68
|
van de Haar LL, Riga D, Boer JE, Garritsen O, Adolfs Y, Sieburgh TE, van Dijk RE, Watanabe K, van Kronenburg NCH, Broekhoven MH, Posthuma D, Meye FJ, Basak O, Pasterkamp RJ. Molecular signatures and cellular diversity during mouse habenula development. Cell Rep 2022; 40:111029. [PMID: 35793630 DOI: 10.1016/j.celrep.2022.111029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The habenula plays a key role in various motivated and pathological behaviors and is composed of molecularly distinct neuron subtypes. Despite progress in identifying mature habenula neuron subtypes, how these subtypes develop and organize into functional brain circuits remains largely unknown. Here, we performed single-cell transcriptional profiling of mouse habenular neurons at critical developmental stages, instructed by detailed three-dimensional anatomical data. Our data reveal cellular and molecular trajectories during embryonic and postnatal development, leading to different habenular subtypes. Further, based on this analysis, our work establishes the distinctive functional properties and projection target of a subtype of Cartpt+ habenula neurons. Finally, we show how comparison of single-cell transcriptional profiles and GWAS data links specific developing habenular subtypes to psychiatric disease. Together, our study begins to dissect the mechanisms underlying habenula neuron subtype-specific development and creates a framework for further interrogation of habenular development in normal and disease states.
Collapse
Affiliation(s)
- Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Danai Riga
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juliska E Boer
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Thomas E Sieburgh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
69
|
Stria medullaris innervation follows the transcriptomic division of the habenula. Sci Rep 2022; 12:10118. [PMID: 35710872 PMCID: PMC9203815 DOI: 10.1038/s41598-022-14328-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The habenula is a complex neuronal population integrated in a pivotal functional position into the vertebrate limbic system. Its main afference is the stria medullaris and its main efference the fasciculus retroflexus. This neuronal complex is composed by two main components, the medial and lateral habenula. Transcriptomic and single cell RNAseq studies have unveiled the morphological complexity of both components. The aim of our work was to analyze the relation between the origin of the axonal fibers and their final distribution in the habenula. We analyzed 754 tracing experiments from Mouse Brain Connectivity Atlas, Allen Brain Map databases, and selected 12 neuronal populations projecting into the habenular territory. Our analysis demonstrated that the projections into the medial habenula discriminate between the different subnuclei and are generally originated in the septal territory. The innervation of the lateral habenula displayed instead a less restricted distribution from preoptic, terminal hypothalamic and peduncular nuclei. Only the lateral oval subnucleus of the lateral habenula presented a specific innervation from the dorsal entopeduncular nucleus. Our results unveiled the necessity of novel sorts of behavioral experiments to dissect the different functions associated with the habenular complex and their correlation with the distinct neuronal populations that generate them.
Collapse
|
70
|
Yoo H, Kim HJ, Yang SH, Son GH, Gim JA, Lee HW, Kim H. Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress. Mol Cells 2022; 45:306-316. [PMID: 35534192 PMCID: PMC9095505 DOI: 10.14348/molcells.2022.2257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.
Collapse
Affiliation(s)
- Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Biomedical Sciences, BrainKorea21 Four, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Gi Hoon Son
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Biomedical Sciences, BrainKorea21 Four, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Biomedical Sciences, BrainKorea21 Four, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
71
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
72
|
Kim HJ, Yoo H, Kim JY, Yang SH, Lee HW, Lee HJ, Son GH, Kim H. Postmortem gene expression profiles in the habenulae of suicides: implication of endothelial dysfunction in the neurovascular system. Mol Brain 2022; 15:48. [PMID: 35614468 PMCID: PMC9134578 DOI: 10.1186/s13041-022-00934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
The habenula (Hb) is an epithalamic structure that links multiple forebrain areas with the mid/hindbrain monoaminergic systems. As an anti-reward center, it has been implicated in the etiology of various neuropsychiatric disorders, particularly those associated with dysregulated reward circuitry. In this regard, Hb has been proposed as a therapeutic target for treatment-resistant depression associated with a higher risk of suicide. Therefore, we aimed to gain insight into the molecular signatures of the Hb in association with suicide in individuals with major depression. Postmortem gene expression analysis identified 251 differentially expressed genes (DEGs) in the Hb tissue of suicides in comparison with Hb tissues from neurotypical individuals. Subsequent bioinformatic analyses using single-cell transcriptome data from the mouse Hb showed that the levels of a subset of endothelial cell-enriched genes encoding cell–cell junctional complex and plasma membrane-associated proteins, as well as the levels of their putative upstream transcriptional regulators, were significantly affected in suicides. Although our findings are based on a limited number of samples, the present study suggests a potential association of endothelial dysfunction in the Hb with depression and suicidal behavior.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeijung Yoo
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Yeon Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Legal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Woo Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine and Anam Hospital, Seoul, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Legal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Hyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
73
|
Sachella TE, Ihidoype MR, Proulx CD, Pafundo DE, Medina JH, Mendez P, Piriz J. A novel role for the lateral habenula in fear learning. Neuropsychopharmacology 2022; 47:1210-1219. [PMID: 35217797 PMCID: PMC9018839 DOI: 10.1038/s41386-022-01294-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023]
Abstract
Fear is an extreme form of aversion that underlies pathological conditions such as panic or phobias. Fear conditioning (FC) is the best-understood model of fear learning. In FC the context and a cue are independently associated with a threatening unconditioned stimulus (US). The lateral habenula (LHb) is a general encoder of aversion. However, its role in fear learning remains poorly understood. Here we studied in rats the role of the LHb in FC using optogenetics and pharmacological tools. We found that inhibition or activation of the LHb during entire FC training impaired both cued and contextual FC. In contrast, optogenetic inhibition of the LHb restricted to cue and US presentation impaired cued but not contextual FC. In either case, simultaneous activation of contextual and cued components of FC, by the presentation of the cue in the training context, recovered the conditioned fear response. Our results support the notion that the LHb is required for the formation of independent contextual and cued fear memories, a previously uncharacterized function for this structure, that could be critical in fear generalization.
Collapse
Affiliation(s)
- Tomas E. Sachella
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marina R. Ihidoype
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christophe D. Proulx
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Quebec City, Quebec Canada
| | - Diego E. Pafundo
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge H. Medina
- grid.423606.50000 0001 1945 2152Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina ,grid.441574.70000000090137393Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Pablo Mendez
- grid.419043.b0000 0001 2177 5516Instituto Cajal, CSIC, Madrid, España
| | - Joaquin Piriz
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
74
|
Dai D, Li W, Chen A, Gao XF, Xiong L. Lateral Habenula and Its Potential Roles in Pain and Related Behaviors. ACS Chem Neurosci 2022; 13:1108-1118. [PMID: 35412792 DOI: 10.1021/acschemneuro.2c00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The lateral habenula (LHb) is a tiny structure that acts as a hub, relaying signals from the limbic forebrain structures and basal ganglia to the brainstem modulatory area. Facilitated by updated knowledge and more precise manipulation of circuits, the progress in figuring out the neural circuits and functions of the LHb has increased dramatically over the past decade. Importantly, LHb is found to play an integrative role and has profound effects on a variety of behaviors associated with pain, including depression-like and anxiety-like behaviors, antireward or aversion, aggression, defensive behavior, and substance use disorder. Thus, LHb is a potential target for improving pain management and related disorders. In this review, we focused on the functions, related circuits, and neurotransmissions of the LHb in pain processing and related behaviors. A comprehensive understanding of the relationship between the LHb and pain will help to find new pain treatments.
Collapse
Affiliation(s)
- Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Wanrong Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Xiao-Fei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| |
Collapse
|
75
|
Levinstein MR, Bergkamp DJ, Lewis ZK, Tsobanoudis A, Hashikawa K, Stuber GD, Neumaier JF. PACAP-expressing neurons in the lateral habenula diminish negative emotional valence. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12801. [PMID: 35304804 PMCID: PMC9444940 DOI: 10.1111/gbb.12801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
The lateral habenula (LHb) is a small, bilateral, epithalamic nucleus which processes aversive information. While primarily glutamatergic, LHb neurons express genes coding for many neuropeptides, such as Adcyap1 the gene encoding pituitary adenylate cyclase-activating polypeptide (PACAP), which itself has been associated with anxiety and stress disorders. Using Cre-dependent viral vectors, we targeted and characterized these neurons based on their anatomical projections and found that they projected to both the raphe and rostromedial tegmentum but only weakly to ventral tegmental area. Using RiboTag to capture ribosomal-associated mRNA from these neurons and reanalysis of existing single cell RNA sequencing data, we did not identify a unique molecular phenotype that characterized these PACAP-expressing neurons in LHb. In order to understand the function of these neurons, we conditionally expressed hM3 Dq DREADD selectively in LHb PACAP-expressing neurons and chemogenetically excited these neurons during behavioral testing in the open field test, contextual fear conditioning, sucrose preference, novelty suppressed feeding, and conditioned place preference. We found that Gq activation of these neurons produce behaviors opposite to what is expected from the LHb as a whole-they decreased anxiety-like and fear behavior and produced a conditioned place preference. In conclusion, PACAP-expressing neurons in LHb represents a molecularly diverse population of cells that oppose the actions of the remainder of LHb neurons by being rewarding or diminishing the negative consequences of aversive events.
Collapse
Affiliation(s)
- Marjorie R. Levinstein
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA,Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA,Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research ProgramBaltimoreMarylandUSA
| | - David J. Bergkamp
- Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA,Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Zoë K. Lewis
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Alex Tsobanoudis
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Koichi Hashikawa
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA,Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA,Center for Neurobiology of Addiction, Pain, and EmotionUniversity of WashingtonSeattleWashingtonUSA
| | - Garret D. Stuber
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA,Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA,Center for Neurobiology of Addiction, Pain, and EmotionUniversity of WashingtonSeattleWashingtonUSA
| | - John F. Neumaier
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA,Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA,Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA,Center for Neurobiology of Addiction, Pain, and EmotionUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
76
|
Marks RB, Wee JY, Jacobson SV, Hashimoto K, O’Connell KL, Golden SA, Baker PM, Law KC. The Role of the Lateral Habenula in Suicide: A Call for Further Exploration. Front Behav Neurosci 2022; 16:812952. [PMID: 35359586 PMCID: PMC8964288 DOI: 10.3389/fnbeh.2022.812952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Despite decades of significant effort in research, policy, and prevention, suicide rates have continued to rise to the current peak of 14.6 per 100,000 deaths. This has resulted in a concerted effort to identify biomarkers associated with suicidal behavior in the brain, to provide predictions that are better than the chance of discerning who will die by suicide. We propose that the lateral habenula (LHb), and its dysfunction during a suicidal crisis, is a critical component of the transition from suicidal ideations to self-harm. Moreover, the LHb—a key functional node in brain reward circuitry—has not been ascribed a contributory role in suicidal behavior. We argue that the LHb anchors a “suicide circuit” and call for suicide researchers to directly examine the role of the LHb, and its long-term modulation, in response to the negative affect in suicidal behavior. Discerning the neural mechanisms of this contribution will require the collaboration of neuroscientists and psychologists. Consequently, we highlight and discuss research on LHb as it relates to suicidal ideation, suicidal behavior, or death by suicide. In so doing we hope to address the bench-to-bedside translational issues currently involved in suicide research and suggest a developmental framework that focuses on specific structures motivated by theoretical anchors as a way to incorporate neurobiological findings within the context of clinical theory.
Collapse
Affiliation(s)
- Rocky B. Marks
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
- Correspondence: Rocky B. Marks Keyne Catherine Law
| | - Janelle Y. Wee
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Samantha V. Jacobson
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Kimi Hashimoto
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Katherine L. O’Connell
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Sam Adler Golden
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | | | - Keyne Catherine Law
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
- Correspondence: Rocky B. Marks Keyne Catherine Law
| |
Collapse
|
77
|
Lalive AL, Congiu M, Lewis C, Groos D, Clerke JA, Tchenio A, Ge Y, Helmchen F, Mameli M. Synaptic inhibition in the lateral habenula shapes reward anticipation. Curr Biol 2022; 32:1829-1836.e4. [DOI: 10.1016/j.cub.2022.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/20/2022]
|
78
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
79
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
80
|
Reward and aversion encoding in the lateral habenula for innate and learned behaviours. Transl Psychiatry 2022; 12:3. [PMID: 35013094 PMCID: PMC8748902 DOI: 10.1038/s41398-021-01774-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Throughout life, individuals experience a vast array of positive and aversive events that trigger adaptive behavioural responses. These events are often unpredicted and engage actions that are likely anchored on innate behavioural programs expressed by each individual member of virtually all animal species. In a second step, environmental cues, that are initially neutral, acquire value through the association with external sensory stimuli, and become instrumental to predict upcoming positive or negative events. This process ultimately prompts learned goal-directed actions allowing the pursuit of rewarding experience or the avoidance of a danger. Both innate and learned behavioural programs are evolutionarily conserved and fundamental for survival. Among the brain structures participating in the encoding of positive/negative stimuli and contributing to innate and learned behaviours is the epithalamic lateral habenula (LHb). The LHb provides top-down control of monoaminergic systems, responds to unexpected appetitive/aversive stimuli as well as external cues that predict the upcoming rewards or punishments. Accordingly, the LHb controls a number of behaviours that are innate (originating from unpredicted stimuli), and learned (stemming from predictive cues). In this review, we will discuss the progresses that rodent's experimental work made in identifying how LHb activity governs these vital processes, and we will provide a view on how these findings integrate within a complex circuit connectivity.
Collapse
|
81
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
82
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
83
|
Rossi MA, Basiri ML, Liu Y, Hashikawa Y, Hashikawa K, Fenno LE, Kim YS, Ramakrishnan C, Deisseroth K, Stuber GD. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron 2021; 109:3823-3837.e6. [PMID: 34624220 PMCID: PMC8812999 DOI: 10.1016/j.neuron.2021.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023]
Abstract
The lateral hypothalamic area (LHA) regulates feeding- and reward-related behavior, but because of its molecular and anatomical heterogeneity, the functions of defined neuronal populations are largely unclear. Glutamatergic neurons within the LHA (LHAVglut2) negatively regulate feeding and appetitive behavior. However, this population comprises transcriptionally distinct and functionally diverse neurons that project to diverse brain regions, including the lateral habenula (LHb) and ventral tegmental area (VTA). To resolve the function of distinct LHAVglut2 populations, we systematically compared projections to the LHb and VTA using viral tracing, single-cell sequencing, electrophysiology, and in vivo calcium imaging. LHAVglut2 neurons projecting to the LHb or VTA are anatomically, transcriptionally, electrophysiologically, and functionally distinct. While both populations encode appetitive and aversive stimuli, LHb projecting neurons are especially sensitive to satiety state and feeding hormones. These data illuminate the functional heterogeneity of LHAVglut2 neurons, suggesting that reward and aversion are differentially processed in divergent efferent pathways.
Collapse
Affiliation(s)
- Mark A Rossi
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Neuroscience Curriculum, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuejia Liu
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yoshiko Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Lief E Fenno
- Departments of Psychiatry and Behavioral Sciences and Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Departments of Psychiatry and Behavioral Sciences and Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Departments of Psychiatry and Behavioral Sciences and Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Psychiatry and Behavioral Sciences and Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
84
|
Company V, Moreno-Cerdá A, Andreu-Cervera A, Murcia-Ramón R, Almagro-García F, Echevarría D, Martínez S, Puelles E. Wnt1 Role in the Development of the Habenula and the Fasciculus Retroflexus. Front Cell Dev Biol 2021; 9:755729. [PMID: 34722541 PMCID: PMC8551717 DOI: 10.3389/fcell.2021.755729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Wnt1 is one of the morphogenes that controls the specification and differentiation of neuronal populations in the developing central nervous system. The habenula is a diencephalic neuronal complex located in the most dorsal aspect of the thalamic prosomere. This diencephalic neuronal population is involved in the limbic system and its malfunction is related with several psychiatric disorders. Our aim is to elucidate the Wnt1 role in the habenula and its main efferent tract, the fasciculus retroflexus, development. In order to achieve these objectives, we analyzed these structures development in a Wnt1 lack of function mouse model. The habenula was generated in our model, but it presented an enlarged volume. This alteration was due to an increment in habenular neuroblasts proliferation rate. The fasciculus retroflexus also presented a wider and disorganized distribution and a disturbed final trajectory toward its target. The mid-hindbrain territories that the tract must cross were miss-differentiated in our model. The specification of the habenula is Wnt1 independent. Nevertheless, it controls its precursors proliferation rate. Wnt1 expressed in the isthmic organizer is vital to induce the midbrain and rostral hindbrain territories. The alteration of these areas is responsible for the fasciculus retroflexus axons misroute.
Collapse
Affiliation(s)
- Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Ana Moreno-Cerdá
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Raquel Murcia-Ramón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| |
Collapse
|
85
|
Lee BR, Budzillo A, Hadley K, Miller JA, Jarsky T, Baker K, Hill D, Kim L, Mann R, Ng L, Oldre A, Rajanbabu R, Trinh J, Vargas S, Braun T, Dalley RA, Gouwens NW, Kalmbach BE, Kim TK, Smith KA, Soler-Llavina G, Sorensen S, Tasic B, Ting JT, Lein E, Zeng H, Murphy GJ, Berg J. Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization. eLife 2021; 10:e65482. [PMID: 34387544 PMCID: PMC8428855 DOI: 10.7554/elife.65482] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized the importance of extracting the nucleus for transcriptomic success and maximizing membrane integrity during nucleus extraction for morphology success. The protocol is generalizable to different species and brain regions, as demonstrated by capturing multimodal data from human and macaque brain slices. The protocol, analysis and acquisition software are compiled at https://githubcom/AllenInstitute/patchseqtools. This resource can be used by individual labs to generate data across diverse mammalian species and that is compatible with large publicly available Patch-seq datasets.
Collapse
Affiliation(s)
- Brian R Lee
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Tim Jarsky
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - DiJon Hill
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lisa Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | - Rusty Mann
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lindsay Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Aaron Oldre
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ram Rajanbabu
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jessica Trinh
- Allen Institute for Brain ScienceSeattleUnited States
| | - Sara Vargas
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Brian E Kalmbach
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Tae Kyung Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | | - Jonathan T Ting
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Gabe J Murphy
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Jim Berg
- Allen Institute for Brain ScienceSeattleUnited States
| |
Collapse
|
86
|
Gordon-Fennell A, Stuber GD. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology 2021; 198:108725. [PMID: 34375625 DOI: 10.1016/j.neuropharm.2021.108725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Reinforcement, reward, and aversion are fundamental processes for guiding appropriate behaviors. Longstanding theories have pointed to dopaminergic neurons of the ventral tegmental area (VTA) and the limbic systems' descending pathways as crucial systems for modulating these behaviors. The application of optogenetic techniques in neurotransmitter- and projection-specific circuits has supported and enhanced many preexisting theories but has also revealed many unexpected results. Here, we review the past decade of optogenetic experiments to study the neural circuitry of reinforcement and reward/aversion with a focus on the mesolimbic dopamine system and brain areas along the medial forebrain bundle (MFB). The cumulation of these studies to date has revealed generalizable findings across molecularly defined cell types in areas of the basal forebrain and anterior hypothalamus. Optogenetic stimulation of GABAergic neurons in these brain regions drives reward and can support positive reinforcement and optogenetic stimulation of glutamatergic neurons in these regions drives aversion. We also review studies of the activity dynamics of neurotransmitter defined populations in these areas which have revealed varied response patterns associated with motivated behaviors.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA.
| |
Collapse
|
87
|
Squair JW, Skinnider MA, Gautier M, Foster LJ, Courtine G. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nat Protoc 2021; 16:3836-3873. [PMID: 34172974 DOI: 10.1038/s41596-021-00561-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Advances in single-cell genomics now enable large-scale comparisons of cell states across two or more experimental conditions. Numerous statistical tools are available to identify individual genes, proteins or chromatin regions that differ between conditions, but many experiments require inferences at the level of cell types, as opposed to individual analytes. We developed Augur to prioritize the cell types within a complex tissue that are most responsive to an experimental perturbation. In this protocol, we outline the application of Augur to single-cell RNA-seq data, proceeding from a genes-by-cells count matrix to a list of cell types ranked on the basis of their separability following a perturbation. We provide detailed instructions to enable investigators with limited experience in computational biology to perform cell-type prioritization within their own datasets and visualize the results. Moreover, we demonstrate the application of Augur in several more specialized workflows, including the use of RNA velocity for acute perturbations, experimental designs with multiple conditions, differential prioritization between two comparisons, and single-cell transcriptome imaging data. For a dataset containing on the order of 20,000 genes and 20 cell types, this protocol typically takes 1-4 h to complete.
Collapse
Affiliation(s)
- Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
| | - Michael A Skinnider
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Matthieu Gautier
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
88
|
Nuno-Perez A, Mondoloni S, Tchenio A, Lecca S, Mameli M. Biophysical and synaptic properties of NMDA receptors in the lateral habenula. Neuropharmacology 2021; 196:108718. [PMID: 34273390 DOI: 10.1016/j.neuropharm.2021.108718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Excitatory synaptic transmission in the lateral habenula (LHb), an evolutionarily ancient subcortical structure, encodes aversive stimuli and affective states. Habenular glutamatergic synapses contribute to these processes partly through the activation of AMPA receptors. Yet, N-methyl-d-aspartate receptors (NMDARs) are also expressed in the LHb and support the emergence of depressive symptoms. Indeed, local NMDAR blockade in the LHb rescues anhedonia and behavioral despair in rodent models of depression. However, the subunit composition and biophysical properties of habenular NMDARs remain unknown, thereby hindering their study in the context of mental health. Here, we performed electrophysiological recordings and optogenetic-assisted circuit mapping in mice, to study pharmacologically-isolated NMDAR currents in LHb neurons that receive innervation from different brain regions (entopeduncular nucleus, lateral hypothalamic area, bed nucleus of the stria terminalis, or ventral tegmental area). This systematic approach revealed that habenular NMDAR currents are sensitive to TCN and ifenprodil - drugs that specifically inhibit GluN2A- and GluN2B-containing NMDARs, respectively. Whilst these pharmacological effects were consistently observed across inputs, we detected region-specific differences in the current-voltage relationship and decay time of NMDAR currents. Finally, inspired by the firing of LHb neurons in vivo, we designed a burst protocol capable of eliciting calcium-dependent long-term potentiation of habenular NMDAR transmission ex vivo. Altogether, we define basic biophysical and synaptic properties of NMDARs in LHb neurons, opening new avenues for studying their plasticity processes in physiological as well as pathological contexts.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.
| | - Sarah Mondoloni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Anna Tchenio
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland; Inserm, UMR-S 839, 75005, Paris, France.
| |
Collapse
|
89
|
Triana S, Stanifer ML, Metz‐Zumaran C, Shahraz M, Mukenhirn M, Kee C, Serger C, Koschny R, Ordoñez‐Rueda D, Paulsen M, Benes V, Boulant S, Alexandrov T. Single-cell transcriptomics reveals immune response of intestinal cell types to viral infection. Mol Syst Biol 2021; 17:e9833. [PMID: 34309190 PMCID: PMC8311733 DOI: 10.15252/msb.20209833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Human intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a framework combining single-cell RNA-Seq and highly multiplex RNA FISH and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages and induces expression of the cell proliferation marker MKI67. Intriguingly, each intestinal epithelial cell lineage exhibits a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our framework is applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Markus Mukenhirn
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Carmon Kee
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Clara Serger
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Ronald Koschny
- Department of Internal Medicine IVInterdisciplinary Endoscopy CenterUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ordoñez‐Rueda
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Malte Paulsen
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
90
|
Cardona-Alberich A, Tourbez M, Pearce SF, Sibley CR. Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biol 2021; 18:1063-1084. [PMID: 33499699 PMCID: PMC8216183 DOI: 10.1080/15476286.2020.1870362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) has emerged in recent years as a breakthrough technology to understand RNA metabolism at cellular resolution. In addition to allowing new cell types and states to be identified, scRNA-seq can permit cell-type specific differential gene expression changes, pre-mRNA processing events, gene regulatory networks and single-cell developmental trajectories to be uncovered. More recently, a new wave of multi-omic adaptations and complementary spatial transcriptomics workflows have been developed that facilitate the collection of even more holistic information from individual cells. These developments have unprecedented potential to provide penetrating new insights into the basic neural cell dynamics and molecular mechanisms relevant to the nervous system in both health and disease. In this review we discuss this maturation of single-cell RNA-sequencing over the past decade, and review the different adaptations of the technology that can now be applied both at different scales and for different purposes. We conclude by highlighting how these methods have already led to many exciting discoveries across neuroscience that have furthered our cellular understanding of the neurological disease.
Collapse
Affiliation(s)
- Aida Cardona-Alberich
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, Edinburgh University, Edinburgh, UK
| | - Manon Tourbez
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sarah F. Pearce
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Christopher R. Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, Edinburgh University, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
91
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
92
|
Nuno-Perez A, Trusel M, Lalive AL, Congiu M, Gastaldo D, Tchenio A, Lecca S, Soiza-Reilly M, Bagni C, Mameli M. Stress undermines reward-guided cognitive performance through synaptic depression in the lateral habenula. Neuron 2021; 109:947-956.e5. [PMID: 33535028 PMCID: PMC7980092 DOI: 10.1016/j.neuron.2021.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
Weighing alternatives during reward pursuit is a vital cognitive computation that, when disrupted by stress, yields aspects of neuropsychiatric disorders. To examine the neural mechanisms underlying these phenomena, we employed a behavioral task in which mice were confronted by a reward and its omission (i.e., error). The experience of error outcomes engaged neuronal dynamics within the lateral habenula (LHb), a subcortical structure that supports appetitive behaviors and is susceptible to stress. A high incidence of errors predicted low strength of habenular excitatory synapses. Accordingly, stressful experiences increased error choices while decreasing glutamatergic neurotransmission onto LHb neurons. This synaptic adaptation required a reduction in postsynaptic AMPA receptors (AMPARs), irrespective of the anatomical source of glutamate. Bidirectional control of habenular AMPAR transmission recapitulated and averted stress-driven cognitive deficits. Thus, a subcortical synaptic mechanism vulnerable to stress underlies behavioral efficiency during cognitive performance.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Massimo Trusel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Arnaud L Lalive
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Anna Tchenio
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Claudia Bagni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
93
|
Wang D, Li A, Dong K, Li H, Guo Y, Zhang X, Cai M, Li H, Zhao G, Yang Q. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress. Neurobiol Stress 2021; 14:100298. [PMID: 33569507 PMCID: PMC7859368 DOI: 10.1016/j.ynstr.2021.100298] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Social stress, a common stressor, causes multiple forms of physical and mental dysfunction. Prolonged exposure to social stress is associated with a higher risk of psychological disorders, including anxiety disorders and major depressive disorder (MDD). The orexinergic system is involved in the regulation of multiple motivated behaviors. The current study examined the regulatory effect of orexinergic projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) in depression- and anxiety-like behaviors after chronic social defeat stress. When mice were defeated during social interaction, both orexinergic neurons in the LHA and glutamatergic neurons in the LHb were strongly activated, as indicated by the FosTRAP strategy. Infusion of orexin in the LHb significantly alleviated social avoidance and depression-like behaviors induced by chronic social defeat stress. Administration of an orexin receptor 2 antagonist in the LHb further aggravated the depressive phenotype. Photoactivation of orexinergic cell bodies in the LHA or terminals in the LHb relieved anxiety-like behaviors induced by chronic social defeat stress. Collectively, we identified the antidepressant and anxiolytic effects of the circuit from LHA orexinergic neurons to the LHb in response to chronic social stress, providing new evidence of the antidepressant properties of LHA orexin circuits.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Keyi Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Huihui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Yongxin Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Xi'an, Shaanxi, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
94
|
Okamoto H, Cherng BW, Nakajo H, Chou MY, Kinoshita M. Habenula as the experience-dependent controlling switchboard of behavior and attention in social conflict and learning. Curr Opin Neurobiol 2021; 68:36-43. [PMID: 33421772 DOI: 10.1016/j.conb.2020.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
The habenula is among the evolutionarily most conserved parts of the brain and has been known for its role in the control of behavior to cope with aversive stimuli. Recent studies in zebrafish have revealed the novel roles of the two parallel neural pathways from the dorsal habenula to its target, the interpeduncular nucleus, in the control of behavioral choice whether to behave dominantly or submissively in the social conflict. They are modifiable depending on the internal state of the fish such as hunger and play another important role in orientation of attention whether to direct it internally to oneself or externally to others. These studies, therefore, are revealing a novel role for the habenula as the integrated switchboard for concertedly controlling behavior either as a winner with self-centered (idiothetic) attention or a loser with others-oriented (allothetic) attention.
Collapse
Affiliation(s)
- Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan; RIKEN CBS-Kao Collaboration Center, Saitama, 351-0198, Japan.
| | - Bor-Wei Cherng
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Haruna Nakajo
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| |
Collapse
|
95
|
Raj B, Farrell JA, Liu J, El Kholtei J, Carte AN, Navajas Acedo J, Du LY, McKenna A, Relić Đ, Leslie JM, Schier AF. Emergence of Neuronal Diversity during Vertebrate Brain Development. Neuron 2020; 108:1058-1074.e6. [PMID: 33068532 PMCID: PMC8286448 DOI: 10.1016/j.neuron.2020.09.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/05/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023]
Abstract
Neurogenesis comprises many highly regulated processes including proliferation, differentiation, and maturation. However, the transcriptional landscapes underlying brain development are poorly characterized. We describe a developmental single-cell catalog of ∼220,000 zebrafish brain cells encompassing 12 stages from embryo to larva. We characterize known and novel gene markers for ∼800 clusters and provide an overview of the diversification of neurons and progenitors across these time points. We also introduce an optimized GESTALT lineage recorder that enables higher expression and recovery of Cas9-edited barcodes to query lineage segregation. Cell type characterization indicates that most embryonic neural progenitor states are transitory and transcriptionally distinct from neural progenitors of post-embryonic stages. Reconstruction of cell specification trajectories reveals that late-stage retinal neural progenitors transcriptionally overlap cell states observed in the embryo. The zebrafish brain development atlas provides a resource to define and manipulate specific subsets of neurons and to uncover the molecular mechanisms underlying vertebrate neurogenesis.
Collapse
Affiliation(s)
- Bushra Raj
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Unit on Cell Specification and Differentiation, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Jialin Liu
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jakob El Kholtei
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Adam N Carte
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland; Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA 02138, USA
| | - Joaquin Navajas Acedo
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Y Du
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Aaron McKenna
- Department of Molecular and Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Đorđe Relić
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), 4056 Basel, Switzerland
| | - Jessica M Leslie
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
96
|
Levinstein MR, Coffey KR, Marx RG, Lesiak AJ, Neumaier JF. Stress induces divergent gene expression among lateral habenula efferent pathways. Neurobiol Stress 2020; 13:100268. [PMID: 33344721 PMCID: PMC7739173 DOI: 10.1016/j.ynstr.2020.100268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
The lateral habenula (LHb) integrates critical information regarding aversive stimuli that shapes decision making and behavioral responses. The three major LHb outputs innervate dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). LHb neurons that project to these targets are segregated and nonoverlapping, and this led us to consider whether they have distinct molecular phenotypes and adaptations to stress exposure. In order to capture a time-locked profile of gene expression after repeated forced swim stress, we used intersectional expression of RiboTag in rat LHb neurons and next-gen RNA sequencing to interrogate the RNAs actively undergoing translation from each of these pathways. The “translatome” in the neurons comprising these pathways was similar at baseline, but diverged after stress, especially in the neurons projecting to the RMTg. Using weighted gene co-expression network analysis, we found one module, which had an overrepresentation of genes associated with phosphoinositide 3 kinase (PI3K) signaling, comprising genes downregulated after stress in the RMTg-projecting LHb neurons. Reduced PI3K signaling in RMTg-projecting LHb neurons may be a compensatory adaptation that alters the functional balance of LHb outputs to GABAergic vs. monoaminergic neurons following repeated stress exposure.
Collapse
Affiliation(s)
- Marjorie R Levinstein
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kevin R Coffey
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Russell G Marx
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Atom J Lesiak
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John F Neumaier
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
97
|
Midbrain circuits of novelty processing. Neurobiol Learn Mem 2020; 176:107323. [PMID: 33053429 DOI: 10.1016/j.nlm.2020.107323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.
Collapse
|
98
|
Fore S, Acuña-Hinrichsen F, Mutlu KA, Bartoszek EM, Serneels B, Faturos NG, Chau KTP, Cosacak MI, Verdugo CD, Palumbo F, Ringers C, Jurisch-Yaksi N, Kizil C, Yaksi E. Functional properties of habenular neurons are determined by developmental stage and sequential neurogenesis. SCIENCE ADVANCES 2020; 6:6/36/eaaz3173. [PMID: 32917624 PMCID: PMC7473745 DOI: 10.1126/sciadv.aaz3173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/17/2020] [Indexed: 05/17/2023]
Abstract
The developing brain undergoes drastic alterations. Here, we investigated developmental changes in the habenula, a brain region that mediates behavioral flexibility during learning, social interactions, and aversive experiences. We showed that developing habenular circuits exhibit multiple alterations that lead to an increase in the structural and functional diversity of cell types, inputs, and functional modules. As the habenula develops, it sequentially transforms into a multisensory brain region that can process visual, olfactory, mechanosensory, and aversive stimuli. Moreover, we observed that the habenular neurons display spatiotemporally structured spontaneous activity that shows prominent alterations and refinement with age. These alterations in habenular activity are accompanied by sequential neurogenesis and the integration of distinct neural clusters across development. Last, we revealed that habenular neurons with distinct functional properties are born sequentially at distinct developmental time windows. Our results highlight a strong link between the functional properties of habenular neurons and their precise birthdate.
Collapse
Affiliation(s)
- Stephanie Fore
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Francisca Acuña-Hinrichsen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Kadir Aytac Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nicholas Guy Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Carmen Diaz Verdugo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway.
| |
Collapse
|
99
|
Ko HG. The lateral habenula is critically involved in histamine-induced itch sensation. Mol Brain 2020; 13:117. [PMID: 32854744 PMCID: PMC7457247 DOI: 10.1186/s13041-020-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 12/02/2022] Open
Abstract
Lateral habenula (LHb) is a brain region acting as a hub mediating aversive response against noxious, stressful stimuli. Growing evidences indicated that LHb modulates aminergic activities to induce avoidance behavior against nociceptive stimuli. Given overlapped neural circuitry transmitting pain and itch information, it is likely that LHb have a role in processing itch information. Here, we examined whether LHb is involved in itchy response induced by histamine. We found that histamine injection enhances Fos (+) cells in posterior portion within parvocellular and central subnuclei of the medial division (LHbM) of the LHb. Moreover, chemogenetic suppression of LHbM reduced scratching behavior induced by histamine injection. These results suggest that LHb is required for processing itch information to induce histaminergic itchy response.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, 41940, South Korea.
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
100
|
Abstract
A recent study has shown that local inhibitory GAD2-positive neurons regulate the activity of lateral habenula neurons, thereby governing aggressive behavior in male mice.
Collapse
Affiliation(s)
- Jack F Webster
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christian Wozny
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|