51
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
52
|
Anwar H, Caby S, Dura-Bernal S, D’Onofrio D, Hasegan D, Deible M, Grunblatt S, Chadderdon GL, Kerr CC, Lakatos P, Lytton WW, Hazan H, Neymotin SA. Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning. PLoS One 2022; 17:e0265808. [PMID: 35544518 PMCID: PMC9094569 DOI: 10.1371/journal.pone.0265808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Recent models of spiking neuronal networks have been trained to perform behaviors in static environments using a variety of learning rules, with varying degrees of biological realism. Most of these models have not been tested in dynamic visual environments where models must make predictions on future states and adjust their behavior accordingly. The models using these learning rules are often treated as black boxes, with little analysis on circuit architectures and learning mechanisms supporting optimal performance. Here we developed visual/motor spiking neuronal network models and trained them to play a virtual racket-ball game using several reinforcement learning algorithms inspired by the dopaminergic reward system. We systematically investigated how different architectures and circuit-motifs (feed-forward, recurrent, feedback) contributed to learning and performance. We also developed a new biologically-inspired learning rule that significantly enhanced performance, while reducing training time. Our models included visual areas encoding game inputs and relaying the information to motor areas, which used this information to learn to move the racket to hit the ball. Neurons in the early visual area relayed information encoding object location and motion direction across the network. Neuronal association areas encoded spatial relationships between objects in the visual scene. Motor populations received inputs from visual and association areas representing the dorsal pathway. Two populations of motor neurons generated commands to move the racket up or down. Model-generated actions updated the environment and triggered reward or punishment signals that adjusted synaptic weights so that the models could learn which actions led to reward. Here we demonstrate that our biologically-plausible learning rules were effective in training spiking neuronal network models to solve problems in dynamic environments. We used our models to dissect the circuit architectures and learning rules most effective for learning. Our model shows that learning mechanisms involving different neural circuits produce similar performance in sensory-motor tasks. In biological networks, all learning mechanisms may complement one another, accelerating the learning capabilities of animals. Furthermore, this also highlights the resilience and redundancy in biological systems.
Collapse
Affiliation(s)
- Haroon Anwar
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Simon Caby
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Salvador Dura-Bernal
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
- Dept. Physiology & Pharmacology, State University of New York Downstate, Brooklyn, New York, United States of America
| | - David D’Onofrio
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Daniel Hasegan
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Matt Deible
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sara Grunblatt
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - George L. Chadderdon
- Dept. Physiology & Pharmacology, State University of New York Downstate, Brooklyn, New York, United States of America
| | - Cliff C. Kerr
- Dept Physics, University of Sydney, Sydney, Australia
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Peter Lakatos
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
- Dept. Psychiatry, NYU Grossman School of Medicine, New York, New York, United States of America
| | - William W. Lytton
- Dept. Physiology & Pharmacology, State University of New York Downstate, Brooklyn, New York, United States of America
- Dept Neurology, Kings County Hospital Center, Brooklyn, New York, United States of America
| | - Hananel Hazan
- Dept of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Samuel A. Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
- Dept. Psychiatry, NYU Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
53
|
Siu PH, Müller E, Zerbi V, Aquino K, Fulcher BD. Extracting Dynamical Understanding From Neural-Mass Models of Mouse Cortex. Front Comput Neurosci 2022; 16:847336. [PMID: 35547660 PMCID: PMC9081874 DOI: 10.3389/fncom.2022.847336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.
Collapse
Affiliation(s)
- Pok Him Siu
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Eli Müller
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Valerio Zerbi
- Neural Control of Movement Lab, D-HEST, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
54
|
Mejías JF, Wang XJ. Mechanisms of distributed working memory in a large-scale network of macaque neocortex. eLife 2022; 11:e72136. [PMID: 35200137 PMCID: PMC8871396 DOI: 10.7554/elife.72136] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neural activity underlying working memory is not a local phenomenon but distributed across multiple brain regions. To elucidate the circuit mechanism of such distributed activity, we developed an anatomically constrained computational model of large-scale macaque cortex. We found that mnemonic internal states may emerge from inter-areal reverberation, even in a regime where none of the isolated areas is capable of generating self-sustained activity. The mnemonic activity pattern along the cortical hierarchy indicates a transition in space, separating areas engaged in working memory and those which do not. A host of spatially distinct attractor states is found, potentially subserving various internal processes. The model yields testable predictions, including the idea of counterstream inhibitory bias, the role of prefrontal areas in controlling distributed attractors, and the resilience of distributed activity to lesions or inactivation. This work provides a theoretical framework for identifying large-scale brain mechanisms and computational principles of distributed cognitive processes.
Collapse
Affiliation(s)
- Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
55
|
Enwright III JF, Arion D, MacDonald WA, Elbakri R, Pan Y, Vyas G, Berndt A, Lewis DA. Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cereb Cortex 2022; 32:5216-5229. [PMID: 35106549 PMCID: PMC9667185 DOI: 10.1093/cercor/bhac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Visual spatial working memory (vsWM) is mediated by a distributed cortical network composed of multiple nodes, including primary visual (V1), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. Feedforward and feedback information is transferred among these nodes via projections furnished by pyramidal neurons (PNs) located primarily in cortical layer 3. Morphological and electrophysiological differences among layer 3 PNs across these nodes have been reported; however, the transcriptional signatures underlying these differences have not been examined in the human brain. Here we interrogated the transcriptomes of layer 3 PNs from 39 neurotypical human subjects across 3 critical nodes of the vsWM network. Over 8,000 differentially expressed genes were detected, with more than 6,000 transcriptional differences present between layer 3 PNs in V1 and those in PPC and DLPFC. Additionally, over 600 other genes differed in expression along the rostral-to-caudal hierarchy formed by these 3 nodes. Moreover, pathway analysis revealed enrichment of genes in V1 related to circadian rhythms and in DLPFC of genes involved in synaptic plasticity. Overall, these results show robust regional differences in the transcriptome of layer 3 PNs, which likely contribute to regional specialization in their morphological and physiological features and thus in their functional contributions to vsWM.
Collapse
Affiliation(s)
- John F Enwright III
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - William A MacDonald
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Rania Elbakri
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Yinghong Pan
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Gopi Vyas
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Annerose Berndt
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - David A Lewis
- Address correspondence to David A. Lewis, Department of Psychiatry, University of Pittsburgh, Biomedical Science Tower W1654, 3811 O’Hara Street, Pittsburgh, PA 15213-2593, United States.
| |
Collapse
|
56
|
Anteraper S, Guell X, Whitfield-Gabrieli S. Big contributions of the little brain for precision psychiatry. Front Psychiatry 2022; 13:1021873. [PMID: 36339842 PMCID: PMC9632752 DOI: 10.3389/fpsyt.2022.1021873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work using 3T functional Magnetic Resonance Imaging (fMRI) parcellated the human dentate nuclei (DN), the primary output of the cerebellum, to three distinct functional zones each contributing uniquely to default-mode, salience-motor, and visual brain networks. In this perspective piece, we highlight the possibility to target specific functional territories within the cerebellum using non-invasive brain stimulation, potentially leading to the refinement of cerebellar-based therapeutics for precision psychiatry. Significant knowledge gap exists in our functional understanding of cerebellar systems. Intervening early, gauging severity of illness, developing intervention strategies and assessing treatment response, are all dependent on our understanding of the cerebello-cerebral networks underlying the pathology of psychotic disorders. A promising yet under-examined avenue for biomarker discovery is disruptions in cerebellar output circuitry. This is primarily because most 3T MRI studies in the past had to exclude cerebellum from the field of view due to limitations in spatiotemporal resolutions. Using recent technological advances in 7T MRI (e.g., parallel transmit head coils) to identify functional territories of the DN, with a focus on dentato-cerebello-thalamo-cortical (CTC) circuitry can lead to better characterization of brain-behavioral correlations and assessments of co-morbidities. Such an improved mechanistic understanding of psychiatric illnesses can reveal aspects of CTC circuitry that can aid in neuroprognosis, identification of subtypes, and generate testable hypothesis for future studies.
Collapse
Affiliation(s)
- Sheeba Anteraper
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States.,Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
57
|
Roussy M, Mendoza-Halliday D, Martinez-Trujillo JC. Neural Substrates of Visual Perception and Working Memory: Two Sides of the Same Coin or Two Different Coins? Front Neural Circuits 2021; 15:764177. [PMID: 34899197 PMCID: PMC8662382 DOI: 10.3389/fncir.2021.764177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.
Collapse
Affiliation(s)
- Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julio C. Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
58
|
Wang XJ. 50 years of mnemonic persistent activity: quo vadis? Trends Neurosci 2021; 44:888-902. [PMID: 34654556 PMCID: PMC9087306 DOI: 10.1016/j.tins.2021.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Half a century ago persistent spiking activity in the neocortex was discovered to be a neural substrate of working memory. Since then scientists have sought to understand this core cognitive function across biological and computational levels. Studies are reviewed here that cumulatively lend support to a synaptic theory of recurrent circuits for mnemonic persistent activity that depends on various cellular and network substrates and is mathematically described by a multiple-attractor network model. Crucially, a mnemonic attractor state of the brain is consistent with temporal variations and heterogeneity across neurons in a subspace of population activity. Persistent activity should be broadly understood as a contrast to decaying transients. Mechanisms in the absence of neural firing ('activity-silent state') are suitable for passive short-term memory but not for working memory - which is characterized by executive control for filtering out distractors, limited capacity, and internal manipulation of information.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 20003, USA.
| |
Collapse
|
59
|
Barbosa J, Babushkin V, Temudo A, Sreenivasan KK, Compte A. Across-Area Synchronization Supports Feature Integration in a Biophysical Network Model of Working Memory. Front Neural Circuits 2021; 15:716965. [PMID: 34616279 PMCID: PMC8489684 DOI: 10.3389/fncir.2021.716965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Working memory function is severely limited. One key limitation that constrains the ability to maintain multiple items in working memory simultaneously is so-called swap errors. These errors occur when an inaccurate response is in fact accurate relative to a non-target stimulus, reflecting the failure to maintain the appropriate association or "binding" between the features that define one object (e.g., color and location). The mechanisms underlying feature binding in working memory remain unknown. Here, we tested the hypothesis that features are bound in memory through synchrony across feature-specific neural assemblies. We built a biophysical neural network model composed of two one-dimensional attractor networks - one for color and one for location - simulating feature storage in different cortical areas. Within each area, gamma oscillations were induced during bump attractor activity through the interplay of fast recurrent excitation and slower feedback inhibition. As a result, different memorized items were held at different phases of the network's oscillation. These two areas were then reciprocally connected via weak cortico-cortical excitation, accomplishing binding between color and location through the synchronization of pairs of bumps across the two areas. Encoding and decoding of color-location associations was accomplished through rate coding, overcoming a long-standing limitation of binding through synchrony. In some simulations, swap errors arose: "color bumps" abruptly changed their phase relationship with "location bumps." This model, which leverages the explanatory power of similar attractor models, specifies a plausible mechanism for feature binding and makes specific predictions about swap errors that are testable at behavioral and neurophysiological levels.
Collapse
Affiliation(s)
- Joao Barbosa
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Supérieure – PSL Research University, Paris, France
| | - Vahan Babushkin
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ainsley Temudo
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Albert Compte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|