51
|
Giblin KA, Blumenfeld H. Is epilepsy a preventable disorder? New evidence from animal models. Neuroscientist 2010; 16:253-75. [PMID: 20479472 DOI: 10.1177/1073858409354385] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epilepsy accounts for 0.5% of the global burden of disease, and primary prevention of epilepsy represents one of the three 2007 NINDS Epilepsy Research Benchmarks. In the past decade, efforts to understand and intervene in the process of epileptogenesis have yielded fruitful preventative strategies in animal models.This article reviews the current understanding of epileptogenesis, introduces the concept of a "critical period" for epileptogenesis, and examines strategies for epilepsy prevention in animal models of both acquired and genetic epilepsies. We discuss specific animal models, which may yield important insights into epilepsy prevention including kindling, poststatus epilepticus, prolonged febrile seizures, traumatic brain injury, hypoxia, the tuberous sclerosis mouse model, and the WAG/Rij rat model of primary generalized epilepsy. Hopefully, further investigation of antiepileptogenesis in animal models will soon enable human therapeutic trials to be initiated, leading to long-term epilepsy prevention and improved patient quality of life.
Collapse
Affiliation(s)
- Kathryn A Giblin
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520-8018, USA
| | | |
Collapse
|
52
|
Ahishali B, Kaya M, Orhan N, Arican N, Ekizoglu O, Elmas I, Kucuk M, Kemikler G, Kalayci R, Gurses C. Effects of levetiracetam on blood-brain barrier disturbances following hyperthermia-induced seizures in rats with cortical dysplasia. Life Sci 2010; 87:609-19. [DOI: 10.1016/j.lfs.2010.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/12/2010] [Accepted: 09/18/2010] [Indexed: 02/02/2023]
|
53
|
Reddy DS, Gangisetty O, Briyal S. Disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Neuropharmacology 2010; 59:573-81. [PMID: 20804775 DOI: 10.1016/j.neuropharm.2010.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 11/26/2022]
Abstract
Progesterone (P) is an endogenous anticonvulsant hormone. P is being evaluated as a treatment for epilepsy, traumatic brain injury, and other complex neurological conditions. Preclinical and clinical studies suggest that P appears to interrupt epileptogenic events. However, the potential disease-modifying effect of P in epileptogenic models is not widely investigated. In this study, we examined the effects of P on the development of hippocampus kindling in female mice. In addition, we determined the role of progesterone receptors (PR) in the P's effect on the kindling epileptogenesis utilizing PR knockout (PRKO) mice. P, at 25 mg/kg, did not affect seizures and did not exert sedative/motor effects in fully-kindled mice. P treatment (25 mg/kg, twice daily for 2 weeks) significantly suppressed the rate of development of behavioral kindled seizure activity evoked by daily hippocampus stimulation in wild-type (WT) mice, indicating a disease-modifying effect of P on limbic epileptogenesis. There was a significant increase in the rate of 'rebound or withdrawal' kindling during drug-free stimulation sessions following abrupt discontinuation of P treatment. A washout period after termination of P treatment prevented such acceleration in kindling. PRKO mice were kindled significantly slower than WT mice, indicating a modulatory role of PRs in seizure susceptibility. P's effects on early kindling progression was partially decreased in PRKO mice, but the overall (˜2-fold) delay in the rate of kindling for the induction of stage 5 seizures was unchanged in PRKO mice. Moreover, the acute anticonvulsant effect of P was undiminished in fully-kindled PRKO mice. These studies suggest that P exerts disease-modifying effects in the hippocampus kindling model at doses that do not significantly affect seizure expression and motor performance, and the kindling-retarding effects of P may occur partly through a complex PR-dependent and PR-independent mechanism.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | | | | |
Collapse
|
54
|
Levetiracetam suppresses development of spontaneous EEG seizures and aberrant neurogenesis following kainate-induced status epilepticus. Brain Res 2010; 1352:187-99. [PMID: 20599805 DOI: 10.1016/j.brainres.2010.06.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 01/14/2023]
Abstract
Electroencephalographic (EEG) seizures and behavioral convulsions begin to appear spontaneously a few weeks after chemoconvulsant-induced status epilepticus (SE) and thereafter become more intense. This indicates the progressive development of a long-lasting epileptic focus. In addition, chemoconvulsant-induced SE increases neuronal proliferation in the dentate subgranular zone (SGZ) and ectopic migration of newborn neurons into the dentate hilus of adult animals. These seizure-induced newborn neurons, especially ectopic granule cells in the dentate hilus, are believed to facilitate the development of epileptic foci in animal models of temporal lobe epilepsy. In the present study, we examined the effects of a novel antiepileptic drug, levetiracetam, on the appearance of spontaneous EEG seizures and on the generation of newborn neurons, especially of ectopic granule cells in the dentate hilus, following kainate-induced SE. Levetiracetam treatment for 25 days, initiated 24 hours after induction of kainate-induced SE, significantly decreased the mean duration of spontaneous EEG seizures 58 days later. Levetiracetam treatment also prevented an SE-induced increase in the number of ectopic granule cells observed 58 days after kainate administration by suppressing neuronal proliferation in the dentate SGZ and abnormal migration of newborn neurons from the dentate SGZ to the hilus. These results are in accord with a previous report that an antimitotic agent that reduced the number of newborn neurons significantly decreased the frequency of spontaneous convulsions 1 month after pilocarpine-induced SE. This evidence from the kainate model of temporal lobe epilepsy suggests that levetiracetam may exert antiepileptogenic effects through the suppression of seizure-induced neurogenesis.
Collapse
|
55
|
Brandt C, Nozadze M, Heuchert N, Rattka M, Löscher W. Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J Neurosci 2010; 30:8602-12. [PMID: 20573906 PMCID: PMC6634618 DOI: 10.1523/jneurosci.0633-10.2010] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 01/20/2023] Open
Abstract
Accumulating evidence suggests that changes in neuronal chloride homeostasis may be involved in the mechanisms by which brain insults induce the development of epilepsy. A variety of brain insults, including status epilepticus (SE), lead to changes in the expression of the cation-chloride cotransporters KCC2 and NKCC1, resulting in intracellular chloride accumulation and reappearance of immature, depolarizing synaptic responses to GABA(A) receptor activation, which may critically contribute to the neuronal hyperexcitability underlying epileptogenesis. In the present study, it was evaluated whether prolonged administration of the selective NKCC1 inhibitor, bumetanide, after a pilocarpine-induced SE modifies the development of epilepsy in adult female rats. The antiepileptic drug phenobarbital, either alone or in combination, was used for comparison. Based on pharmacokinetic studies with bumetanide, which showed extremely rapid elimination and low brain penetration of this drug in rats, bumetanide was administered systemically with different dosing protocols, including continuous intravenous infusion. As shown by immunohistochemistry, neuronal NKCC1 expression was markedly upregulated shortly after SE. Prophylactic treatment with phenobarbital after SE reduced the number of rats developing spontaneous seizures and decreased seizure frequency, indicating a disease-modifying effect. Bumetanide did not exert any significant effects on development of spontaneous seizures nor did it enhance the effects of phenobarbital. However, combined treatment with both drugs counteracted several of the behavioral consequences of SE, which was not observed with single drug treatment. These data do not indicate that bumetanide can prevent epilepsy after SE, but the disease-modifying effect of this drug warrants further studies with more lipophilic prodrugs of bumetanide.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
56
|
Dudek FE, Bertram EH, Staley KJ. Antiepileptogenesis Therapy with Levetiracetam: Data from Kindling versus Status Epilepticus Models. Epilepsy Curr 2010; 8:28-30. [PMID: 18265888 DOI: 10.1111/j.1535-7511.2007.00226.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Prophylactic Treatment with Levetiracetam after Status Epilepticus: Lack of Effect on Epileptogenesis, Neuronal Damage, and Behavioral Alterations in Rats. Brandt C, Glien M, Gastens AM, Fedrowitz M, Bethmann K, Volk HA, Potschka H, Löscher W. Neuropharmacology 2007;53(2):207–221. Levetiracetam (LEV) is a structurally novel antiepileptic drug (AED) which has demonstrated a broad spectrum of anticonvulsant activities both in experimental and clinical studies. Previous experiments in the kindling model suggested that LEV, in addition to its seizure-suppressing activity, may possess antiepileptogenic or disease-modifying activity. In the present study, we evaluated this possibility by using a rat model in which epilepsy with spontaneous recurrent seizures (SRS), behavioral alterations, and hippocampal damages develop after a status epilepticus (SE) induced by sustained electrical stimulation of the basal amygdala. Two experimental protocols were used. In the first protocol, LEV treatment was started 24h after onset of electrical amygdala stimulation without prior termination of the SE. In the second protocol, the SE was interrupted after 4h by diazepam, immediately followed by onset of treatment with LEV. Treatment with LEV was continued for 8weeks (experiment #1) or 5weeks (experiment #2) after SE, using continuous drug administration via osmotic minipumps. The occurrence of SRS was recorded during and after treatment. In addition, the rats were tested in a battery of behavioral tests, including the elevated-plus maze and the Morris water maze. Finally, the brains of the animals were analyzed for histological lesions in the hippocampal formation. With the experimental protocols chosen for these experiments, LEV did not exert antiepileptogenic or neuroprotective activity. Furthermore, the behavioral alterations, e.g., behavioral hyperexcitability and learning deficits, in epileptic rats were not affected by treatment with LEV after SE. These data do not support the idea that administration of LEV after SE prevents or reduces the long-term alterations developing after such brain insult in rats.
Collapse
|
57
|
The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2010; 224:219-33. [PMID: 20353773 DOI: 10.1016/j.expneurol.2010.03.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/17/2010] [Accepted: 03/20/2010] [Indexed: 11/23/2022]
Abstract
The enzyme cyclooxygenase-2 (COX-2), which catalyzes the production of pro-inflammatory prostaglandins, is induced in the brain after various insults, thus contributing to brain inflammatory processes involved in the long-term consequences of such insults. Mounting evidence supports that inflammation may contribute to epileptogenesis and neuronal injury developing after brain insults. Anti-inflammatory treatments, such as selective COX-2 inhibitors, may thus constitute a novel approach for anti-epileptogenesis or disease-modification after brain injuries such as head trauma, cerebral ischemia or status epilepticus (SE). However, recent rat experiments with prophylactic administration of two different COX-2 inhibitors after SE resulted in conflicting results. In the present study, we evaluated whether treatment with parecoxib, a pro-drug of the highly potent and selective COX-2 inhibitor valdecoxib, alters the long-term consequences of a pilocarpine-induced SE in rats. Parecoxib was administered twice daily at 10 mg/kg for 18 days following SE. Five weeks after termination of treatment, spontaneous recurrent seizures were recorded by continuous video/EEG monitoring. Prophylactic treatment with parecoxib prevented the SE-induced increase in prostaglandin E(2) and reduced neuronal damage in the hippocampus and piriform cortex. However, the incidence, frequency or duration of spontaneous seizures developing after SE or the behavioral and cognitive alterations associated with epilepsy were not affected by parecoxib. Only the severity of spontaneous seizures was reduced, indicating a disease-modifying effect. These results substantiate that COX-2 contributes to neuronal injury developing after SE, but inhibition of COX-2 is no effective means to modify epileptogenesis.
Collapse
|
58
|
Antiepileptogenic and anticonvulsive actions of levetiracetam in a pentylenetetrazole kindling model. Epilepsy Res 2010; 89:360-4. [PMID: 20138737 DOI: 10.1016/j.eplepsyres.2010.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/06/2010] [Accepted: 01/16/2010] [Indexed: 11/22/2022]
Abstract
Levetiracetam (LEV) is a unique antiepileptic drug that preferentially interacts with synaptic vesicle protein 2A (SV2A). To evaluate the antiepileptogenic action of LEV, we studied its effects on the development and acquisition of pentylenetetrazole (PTZ) kindling and compared them to those of sodium valproate (VPA). Anticonvulsive actions of LEV in PTZ-kindled animals were also determined. LEV did not affect PTZ seizures in naïve animals even at high doses (approximately 300 mg/kg, i.p.). However, combined treatment of LEV (30 and 100 mg/kg, i.p.) with PTZ significantly suppressed the development and acquisition of PTZ kindling. In addition, LEV at relatively low doses (3-30 mg/kg, i.p.) inhibited PTZ-evoked seizures in fully kindled animals. In contrast to LEV, VPA at sub-anticonvulsive doses (30 and 100 mg/kg, i.p.) failed to prevent the development of PTZ kindling and its anticonvulsive potency was similar in PTZ-kindled and naïve mice. The present study shows that LEV contrasts VPA by preventing the development of PTZ kindling and inhibiting seizures selectively in kindled animals.
Collapse
|
59
|
The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29:6964-72. [PMID: 19474323 DOI: 10.1523/jneurosci.0066-09.2009] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Understanding molecular mechanisms mediating epileptogenesis is critical for developing more effective therapies for epilepsy. We recently found that the mammalian target of rapamycin (mTOR) signaling pathway is involved in epileptogenesis, and mTOR inhibitors prevent epilepsy in a mouse model of tuberous sclerosis complex. Here, we investigated the potential role of mTOR in a rat model of temporal lobe epilepsy initiated by status epilepticus. Acute kainate-induced seizures resulted in biphasic activation of the mTOR pathway, as evident by an increase in phospho-S6 (P-S6) expression. An initial rise in P-S6 expression started approximately 1 h after seizure onset, peaked at 3-6 h, and returned to baseline by 24 h in both hippocampus and neocortex, reflecting widespread stimulation of mTOR signaling by acute seizure activity. After resolution of status epilepticus, a second increase in P-S6 was observed in hippocampus only, which started at 3 d, peaked 5-10 d, and persisted for several weeks after kainate injection, correlating with the development of chronic epileptogenesis within hippocampus. The mTOR inhibitor rapamycin, administered before kainate, blocked both the acute and chronic phases of seizure-induced mTOR activation and decreased kainate-induced neuronal cell death, neurogenesis, mossy fiber sprouting, and the development of spontaneous epilepsy. Late rapamycin treatment, after termination of status epilepticus, blocked the chronic phase of mTOR activation and reduced mossy fiber sprouting and epilepsy but not neurogenesis or neuronal death. These findings indicate that mTOR signaling mediates mechanisms of epileptogenesis in the kainate rat model and that mTOR inhibitors have potential antiepileptogenic effects in this model.
Collapse
|
60
|
Gurses C, Ekizoglu O, Orhan N, Ustek D, Arican N, Ahishali B, Elmas I, Kucuk M, Bilgic B, Kemikler G, Kalayci R, Karadeniz A, Kaya M. Levetiracetam decreases the seizure activity and blood-brain barrier permeability in pentylenetetrazole-kindled rats with cortical dysplasia. Brain Res 2009; 1281:71-83. [PMID: 19464270 DOI: 10.1016/j.brainres.2009.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
This study investigates the effects of levetiracetam (LEV) on the functional and structural properties of blood-brain barrier (BBB) in pentylenetetrazole (PTZ)-kindled rats with cortical dysplasia (CD). Pregnant rats were exposed to 145 cGy of gamma-irradiation on embryonic day 17. In offsprings, kindling was induced by giving subconvulsive doses of PTZ three times per week for 45 days. While all kindled rats with CD died during epileptic seizures evoked by the administration of a convulsive dose of PTZ in 15 to 25 min, one week LEV (80 mg/kg) pretreatment decreased the mortality to 38% in the same setting. LEV caused a remarkable decrease (p<0.01) in extravasation of sodium fluorescein dye into the brain tissue of kindled animals with CD treated with convulsive dose of PTZ. Occludin immunoreactivity and expression remained essentially unchanged in all groups. Immunoreactivity for glial fibrillary acidic protein (GFAP) was observed to be slightly increased by acute convulsive challenge in kindled rats with CD while LEV pretreatment led to GFAP immunoreactivity comparable to that of controls. An increased c-fos immunoreactivity in kindled rats with CD exposed to convulsive PTZ challenge was also observed with LEV pretreatment. Tight junctions were ultrastructurally intact, whereas LEV decreased the increased pinocytotic activity in brain endothelium of kindled rats with CD treated with convulsive dose of PTZ. The present study showed that LEV decreased the increased BBB permeability considerably by diminishing vesicular transport in epileptic seizures induced by convulsive PTZ challenge in kindled animals with CD.
Collapse
Affiliation(s)
- Candan Gurses
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Trinka E, Dobesberger J. New treatment options in status epilepticus: a critical review on intravenous levetiracetam. Ther Adv Neurol Disord 2009; 2:79-91. [PMID: 21180643 PMCID: PMC3002622 DOI: 10.1177/1756285608100460] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effectiveness of Levetiracetam (LEV) in the treatment of focal and generalised epilepsies is well established. LEV has a wide spectrum of action, good tolerability and a favourable pharmacokinetic profile. An injectable formulation has been released as an intravenous (IV) infusion in 2006 for patients with epilepsy when oral administration is temporarily not feasible. Bioequivalence to the oral preparation has been demonstrated with good tolerability and safety enabling a smooth transition from oral to parenteral formulation and vice versa. Although IV LEV is not licensed for treatment of status epilepticus (SE), open-label experience in retrospective case series is accumulating. Until now (August 2008) 156 patients who were treated with IV LEV for various forms of SE have been reported with an overall success rate of 65.4%. The most often used initial dose was 2000-3000 mg over 15 minutes. Adverse events were reported in 7.1%, and were mild and transient. Although IV LEV is an interesting alternative for the treatment of SE due to the lack of centrally depressive effects and low potential of drug interactions, one has to be aware of the nonrandomised retrospective study design, the heterogenous patient population and treatment protocols, and the publication bias inherent in these type of studies. Only a large randomised controlled trial with an adequate comparator will reveal the efficacy and effectiveness of this promising new IV formulation.
Collapse
Affiliation(s)
- Eugen Trinka
- Medical University Innsbruck, Department of Neurology, Innsbruck, Austria
| | | |
Collapse
|
62
|
Gastens AM, Brandt C, Bankstahl JP, Löscher W. Predictors of pharmacoresistant epilepsy: Pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia 2008; 49:1759-76. [DOI: 10.1111/j.1528-1167.2008.01659.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Margineanu DG, Matagne A, Kaminski RM, Klitgaard H. Effects of chronic treatment with levetiracetam on hippocampal field responses after pilocarpine-induced status epilepticus in rats. Brain Res Bull 2008; 77:282-5. [PMID: 18722515 DOI: 10.1016/j.brainresbull.2008.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/08/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
Levetiracetam (Keppra) is a new generation antiepileptic drug characterized by a unique profile of activity in experimental models of epilepsy. It also has a distinct binding site in the brain, i.e. the synaptic vesicle protein type 2 (SV2A). Levetiracetam has been reported to have antiepileptogenic and disease-modifying properties. In the present study the effects of chronic treatment with levetiracetam were assessed in rats that sustained pilocarpine-induced status epilepticus (SE). Hippocampal field potentials were recorded in vivo in anesthetized animals after 3-day washout period that followed 21-day treatment with different doses of levetiracetam (50, 150 or 300 mg/kg/day) administered via ALZET osmotic mini-pumps. Vehicle treated rats together with naive animals (not subjected to SE) were used as control groups. Chronic treatment with levetiracetam yielded clinically relevant plasma concentrations throughout the experiment with complete washout of the drug 3 days after treatment cessation. At this point in time post-SE rats chronically treated with vehicle developed clear signs of hippocampal hyperexcitability, i.e. increased amplitude of population spike (PS) recorded in the dentate gyrus and reduced paired-pulse inhibition in the CA1 area. Levetiracetam treatment dose-dependently counteracted these long-term effects of pilocarpine-induced SE. Furthermore, at the dose of 300 mg/kg/day levetiracetam restored these parameters back to control level. The present results indicate that chronic treatment with levetiracetam completely inhibits the development of hippocampal hyperexcitability following pilocarpine-induced SE.
Collapse
|
64
|
Vinogradova LV, van Rijn CM. Anticonvulsive and antiepileptogenic effects of levetiracetam in the audiogenic kindling model. Epilepsia 2008; 49:1160-8. [DOI: 10.1111/j.1528-1167.2008.01594.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT. Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes. Epilepsia 2008; 49:1749-58. [PMID: 18513349 DOI: 10.1111/j.1528-1167.2008.01687.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Understanding the molecular mechanisms underlying epilepsy is crucial to designing novel therapeutic regimens. This report focuses on alterations in the secretory machinery responsible for neurotransmitter (NT) release. Soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor (SNARE) complexes mediate the fusion of synaptic vesicle and active zone membranes, thus mediating NT secretion. SNARE regulators control where and when SNARE complexes are formed. Previous studies showed an asymmetric accumulation of 7S SNARE complexes (7SC) in the ipsilateral hippocampus of kindled animals. The present studies probe the persistence of 7SC accumulation and the effect of the anticonvulsant, levetiracetam (LEV), on 7SC and SNARE regulators. METHOD Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators in hippocampal synaptosomes from kindled animals both before and after LEV treatment. RESULTS The asymmetric accumulation of 7SC is present 1-year postamygdalar kindling. The synaptic vesicle protein, synaptic vesicle protein 2 (SV2), a primary LEV-binding protein, and the SNARE regulator Tomosyn increase, whereas NSF decreases in association with this accumulation. Treatment with LEV prevented kindling-induced accumulation of SV2, but did not affect the transient increase of Tomosyn or the long-term decrease NSF. LEV treatment retarded the electrical and behavioral concomitants of amygdalar kindling coincident with a decrease in accumulation of 7SC. CONCLUSIONS The ipsilateral hippocampal accumulation of SNARE complexes is an altered molecular process associated with kindling that appears permanent. Kindling epileptogenesis alters synaptosomal levels of the SNARE regulators: NSF, SV2, and Tomosyn. Concomitant treatment with LEV reverses the kindling-induced 7SC accumulation and increase of SV2.
Collapse
Affiliation(s)
- Elena A Matveeva
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Medical Center, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|