51
|
Rezaei R, Nasoohi S, Haghparast A, Khodagholi F, Bigdeli MR, Nourshahi M. High intensity exercise preconditioning provides differential protection against brain injury following experimental stroke. Life Sci 2018. [PMID: 29522768 DOI: 10.1016/j.lfs.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Different modes of physical activity provide cerebrovascular protection against thromboembolic events. Based on recent reports high intensity exercise protocols appear to raise cerebral VEGF levels leading to efficient cerebral angiogenesis. The present study aims to address if moderate continuous training (MCT) and high intensity interval training (HIT) differ in preconditioning against ischemic stroke. METHODS Wistar rats were subjected to HIT or MCT for 8 weeks before transient middle cerebral artery occlusion (tMCAO) surgery. As indexes for improved angiogenic signals, VEGF-A and its pivotal receptor VEGF-R2 were immunoblotted just before occlusive stroke. KEY FINDINGS Both training protocols induced a remarkable protection against neurological deficit and tissue injury following stroke. Cerebral infarctions were better improved in HIT animals which explained the slightly but not significantly higher neurological function. HIT brains developed higher levels of cortical VEGF-A and striatal VEGF-R2. SIGNIFICANCE These data conclude preconditioning with high intensity protocols might excel continued moderate exercise to induce VEGF signaling and alleviate stroke outcomes. Further investigations may provide complementary mechanistic views.
Collapse
Affiliation(s)
- Rasoul Rezaei
- Department of Sport Sciences, Faculty of Educational Sciences and Psychology, Shiraz University, Shiraz, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nourshahi
- Department of Exercise Physiology, School of Physical Education and Sport Sciences, Shahid Beheshti University of Sciences, Tehran, Iran.
| |
Collapse
|
52
|
Rahmati-Ahmadabad S, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Azarbayjani M, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Nasehi M, Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran. The Effects of High-Intensity Interval Training with Supplementation of Flaxseed Oil on BDNF mRNA Expression and Pain Feeling in Male Rats. ANNALS OF APPLIED SPORT SCIENCE 2017; 5:1-12. [DOI: 10.29252/aassjournal.5.4.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
53
|
Sex differences in aerobic exercise efficacy to improve cognition: A systematic review and meta-analysis of studies in older rodents. Front Neuroendocrinol 2017; 46:86-105. [PMID: 28614695 DOI: 10.1016/j.yfrne.2017.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022]
Abstract
Research in humans indicates that women may show greater cognitive benefits from aerobic training (AT) than men. To determine whether this sex difference extends to rodents, we conducted a systematic review and meta-analysis of studies in healthy, older rodents. Results indicate that compared to controls, AT improved hippocampus-dependent and -independent learning and memory. A sex difference was found with males showing larger benefits from AT on conditioned-avoidance and non-spatial memory tasks. AT also increased brain-derived neurotrophic factor compared to controls, with larger effects in females. As an exploratory analysis, sex differences in voluntary AT were examined separately from forced AT. Voluntary AT enhanced non-spatial memory to a greater extent in males. Forced AT enhanced hippocampus-dependent learning and memory more so in females. These findings suggest that sex is an important factor to consider, and studies directly assessing sex differences in the ability of exercise to improve brain function are needed.
Collapse
|
54
|
Venezia AC, Quinlan E, Roth SM. A single bout of exercise increases hippocampal Bdnf: influence of chronic exercise and noradrenaline. GENES BRAIN AND BEHAVIOR 2017; 16:800-811. [PMID: 28556463 DOI: 10.1111/gbb.12394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Research in human subjects suggests that acute exercise can improve memory performance, but the qualities of the exercise necessary to promote improved memory, and the signaling pathways that mediate these effects are unknown. Brain-derived neurotrophic factor (Bdnf), noradrenergic signaling, and post-translational modifications to AMPA receptors have all been implicated in the enhancement of memory following emotional or physical arousal; however, it is not known if a single bout of exercise is sufficient to engage these pathways. Here we use a rodent model to investigate the effects of acute and chronic exercise on hippocampal transcript-specific Bdnf expression and phosphorylation of the GluR1 subunit of the AMPA-type glutamate receptor. A single bout of treadmill exercise was insufficient to mimic the increased expression of GluR1 protein and phosphorylation at Ser845 observed following 1 month of voluntary wheel running. However, acute exercise was sufficient to increase Bdnf transcript IV messenger RNA (mRNA) expression in sedentary subjects, but not subjects housed for 1 month with a running wheel. High-intensity acute exercise increased total Bdnf mRNA in sedentary mice, but not above levels observed following chronic access to the running wheel. Although depletion of central noradrenergic signaling with DSP-4 reduced Bdnf IV mRNA, the effect of acute exercise on Bdnf mRNA persisted. Our characterization of the effects of acute exercise on Bdnf expression and persistence in the absence of noradrenergic modulation may inform strategies to employ physical activity to combat cognitive aging and mental health disorders.
Collapse
Affiliation(s)
- A C Venezia
- Department of Exercise Science and Sport, The University of Scranton, Scranton, PA, USA.,Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - E Quinlan
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Department of Biology, University of Maryland, College Park, MD, USA
| | - S M Roth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
55
|
Diederich K, Bastl A, Wersching H, Teuber A, Strecker JK, Schmidt A, Minnerup J, Schäbitz WR. Effects of Different Exercise Strategies and Intensities on Memory Performance and Neurogenesis. Front Behav Neurosci 2017; 11:47. [PMID: 28360847 PMCID: PMC5352691 DOI: 10.3389/fnbeh.2017.00047] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
It is well established that physical exercise affects both hippocampal neurogenesis and memory functions. Until now, distinctive effects of controlled and voluntary training (VT) on behavior and neurogenesis as well as interactions between exercise intensity, neurogenesis and memory performance are still elusive. The present study tested the impact of moderate controlled and VT on memory formation and hippocampal neurogenesis and evaluated interactions between exercise performance, learning efficiency and proliferation of progenitor cells in the hippocampus. Our data show that both controlled and VT augmented spatial learning and promoted hippocampal neurogenesis. Regression analysis revealed a significant linear increase of the amount of new hippocampal neurons with increased exercise intensity. Regression analysis of exercise performance on retention memory performance revealed a quadratic, inverted u-shaped relationship between exercise performance and retention of spatial memory. No association was found between the amount of newborn neurons and memory performance. Our results demonstrate that controlled training (CT), if performed with an appropriate combination of speed and duration, improves memory performance and neurogenesis. Voluntary exercise elevates neurogenesis dose dependently to high levels. Best cognitive improvement was achieved with moderate exercise performance.
Collapse
Affiliation(s)
- Kai Diederich
- Department of Neurology, University of Münster Münster, Germany
| | - Anna Bastl
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster Münster, Germany
| | - Heike Wersching
- Institute of Epidemiology and Social Medicine, University of Münster Münster, Germany
| | - Anja Teuber
- Institute of Epidemiology and Social Medicine, University of Münster Münster, Germany
| | | | - Antje Schmidt
- Department of Neurology, University of Münster Münster, Germany
| | - Jens Minnerup
- Department of Neurology, University of Münster Münster, Germany
| | | |
Collapse
|
56
|
Wogensen E, Marschner L, Gram MG, Mehlsen S, Uhre VHB, Bülow P, Mogensen J, Malá H. Effects of different delayed exercise regimens on cognitive performance in fimbria-fornix transected rats. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
57
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 PMCID: PMC11482112 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
58
|
Sølvsten CAE, de Paoli F, Christensen JH, Nielsen AL. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus. Mol Neurobiol 2016; 55:567-582. [DOI: 10.1007/s12035-016-0344-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
|
59
|
Nakajima S. Running induces nausea in rats: Kaolin intake generated by voluntary and forced wheel running. Appetite 2016; 105:85-94. [DOI: 10.1016/j.appet.2016.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
|
60
|
Gram MG, Wogensen E, Moseholm K, Mogensen J, Malá H. Exercise-induced improvement in cognitive performance after fimbria-fornix transection depends on the timing of exercise administration. Brain Res Bull 2016; 125:117-26. [DOI: 10.1016/j.brainresbull.2016.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 01/29/2023]
|
61
|
Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol 2016; 141:45-60. [PMID: 27090751 PMCID: PMC5677601 DOI: 10.1016/j.pneurobio.2016.04.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Dandan Hong
- Department of Bioengineering, University of Pittsburgh School of Engineering, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China.
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
62
|
The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 2016; 41:23-43. [PMID: 26989000 DOI: 10.1016/j.yfrne.2016.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration.
Collapse
|
63
|
Ahn JH, Choi JH, Park JH, Kim IH, Cho JH, Lee JC, Koo HM, Hwangbo G, Yoo KY, Lee CH, Hwang IK, Cho JH, Choi SY, Kwon YG, Kim YM, Kang IJ, Won MH. Long-Term Exercise Improves Memory Deficits via Restoration of Myelin and Microvessel Damage, and Enhancement of Neurogenesis in the Aged Gerbil Hippocampus After Ischemic Stroke. Neurorehabil Neural Repair 2016; 30:894-905. [PMID: 27026692 DOI: 10.1177/1545968316638444] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The positive correlation between therapeutic exercise and memory recovery in cases of ischemia has been extensively studied; however, long-term exercise begun after ischemic neuronal death as a chronic neurorestorative strategy has not yet been thoroughly examined. OBJECTIVE The purpose of this study is to investigate possible mechanisms by which exercise ameliorates ischemia-induced memory impairment in the aged gerbil hippocampus after transient cerebral ischemia. METHODS Treadmill exercise was begun 5 days after ischemia-reperfusion (I-R) and lasted for 1 or 4 weeks. The animals were sacrificed 31 days after the induction of ischemia. Changes in short-term memory, as well as the hippocampal expression of markers of cell proliferation, neuroblast differentiation, neurogenesis, myelin and microvessel repair, and growth factors were examined by immunohistochemistry and/or western blots. RESULTS Four weeks of exercise facilitated memory recovery despite neuronal damage in the stratum pyramidale (SP) of the hippocampal CA1 region and in the polymorphic layer (PoL) of the dentate gyrus (DG) after I-R. Long-term exercise enhanced cell proliferation and neuroblast differentiation in a time-dependent manner, and newly generated mature cells were found in the granule cell layer of the DG, but not in the SP of the CA1 region or in the PoL of the DG. In addition, long-term exercise ameliorated ischemia-induced damage of myelin and microvessels, which was correlated with increased BDNF expression in the CA1 region and the DG. CONCLUSIONS These results suggest that long-term treadmill exercise after I-R can restore memory function through replacement of multiple damaged structures in the ischemic aged hippocampus.
Collapse
Affiliation(s)
| | | | - Joon Ha Park
- Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Kangwon National University, Chuncheon, South Korea
| | | | - Jae-Chul Lee
- Kangwon National University, Chuncheon, South Korea
| | | | | | - Ki-Yeon Yoo
- Gangneung-Wonju National University, Gangneung, South Korea
| | | | | | - Jun Hwi Cho
- Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | - Moo-Ho Won
- Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
64
|
Venezia AC, Guth LM, Sapp RM, Spangenburg EE, Roth SM. Sex-dependent and independent effects of long-term voluntary wheel running on Bdnf mRNA and protein expression. Physiol Behav 2016; 156:8-15. [PMID: 26752611 PMCID: PMC4753141 DOI: 10.1016/j.physbeh.2015.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED The beneficial effects of physical activity on brain health (synaptogenesis, neurogenesis, enhanced synaptic plasticity, improved learning and memory) appear to be mediated through changes in region-specific expression of neurotrophins, transcription factors, and postsynaptic receptors, though investigations of sex differences in response to long-term voluntary wheel running are limited. PURPOSE To examine the effect of five months of voluntary wheel running on hippocampal mRNA and protein expression of factors critical for exercise-induced structural and functional plasticity in male and female adult mice. METHODS At 8weeks of age, male and female C57BL/6 mice were individually housed with (PA; n=20; 10 male) or without (SED; n=20; 10 male) access to a computer monitored voluntary running wheel. At 28weeks, all mice were sacrificed and hippocampi removed. Total RNA was isolated from the hippocampus and expression of total Bdnf, Bdnf transcript IV, tPA, Pgc-1a, GluR1, NR2A, and NR2B were assessed with quantitative RT-PCR and total and mature Bdnf protein were assessed with ELISA. RESULTS We found significantly higher Bdnf IV mRNA expression in PA males (p=0.03) and females (p=0.03) compared to SED animals. Total Bdnf mRNA expression was significantly greater in PA males compared to SED males (p=0.01), but there was no difference in females. Similarly, we observed significantly higher mature Bdnf protein in PA males compared to SED males (p=0.04), but not in females. CONCLUSION These findings indicate that the impact of long-term voluntary wheel running on transcriptional and post-translational regulation of Bdnf may be sex-dependent, though the activity-dependent Bdnf IV transcript is sensitive to exercise independent of sex.
Collapse
Affiliation(s)
- Andrew C Venezia
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Lisa M Guth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Stephen M Roth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
65
|
Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia. Brain Res Bull 2016; 120:90-6. [DOI: 10.1016/j.brainresbull.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022]
|
66
|
Gram MG, Wogensen E, Wörtwein G, Mogensen J, Malá H. Delayed restraint procedure enhances cognitive recovery of spatial function after fimbria-fornix transection. Restor Neurol Neurosci 2015; 34:1-17. [PMID: 26518669 DOI: 10.3233/rnn-140396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To i) evaluate the effect of a restraint procedure (7 days, 2 h/day) on place learning after fimbria-fornix transection (FF), ii) investigate effects of early vs. late administration of restraint, and iii) establish effects of the restraint procedure on expression of brain derived neurotrophic factor (BDNF) in prefrontal cortex and hippocampus. METHODS Fifty rats subjected to FF or sham surgery and divided into groups exposed to restraint immediately (early restraint) or 21 days (late restraint) after surgery were trained to acquire an allocentric place learning task. In parallel, 29 animals were subjected to FF or sham surgery and an identical restraint procedure in order to measure concentrations of BDNF and corticosterone. RESULTS The performance of the sham operated rats was positively affected by the late restraint. In FF-lesioned animals, the late restraint significantly improved task performance compared to the lesioned group with no restraint, while the early restraint was associated with a negative impact on task acquisition. Biochemical analysis after restraint procedure revealed a lesion-induced upregulation of BDNF in FF animals. CONCLUSIONS The improved task performance of lesioned animals suggests a therapeutic effect of this manipulation, independent of BDNF. This effect is sensitive to the temporal administration of treatment.
Collapse
Affiliation(s)
- Marie Gajhede Gram
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Elise Wogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hana Malá
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
67
|
Sale A, Berardi N. Active training for amblyopia in adult rodents. Front Behav Neurosci 2015; 9:281. [PMID: 26578911 PMCID: PMC4621305 DOI: 10.3389/fnbeh.2015.00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
Amblyopia is the most diffused form of visual function impairment affecting one eye, with a prevalence of 1–5% in the total world population. Amblyopia is usually caused by an early functional imbalance between the two eyes, deriving from anisometropia, strabismus, or congenital cataract, leading to severe deficits in visual acuity, contrast sensitivity and stereopsis. While amblyopia can be efficiently treated in children, it becomes irreversible in adults, as a result of a dramatic decline in visual cortex plasticity which occurs at the end of the critical period (CP) in the primary visual cortex. Notwithstanding this widely accepted dogma, recent evidence in animal models and in human patients have started to challenge this view, revealing a previously unsuspected possibility to enhance plasticity in the adult visual system and to achieve substantial visual function recovery. Among the new proposed intervention strategies, non invasive procedures based on environmental enrichment, physical exercise or visual perceptual learning (vPL) appear particularly promising in terms of future applicability in the clinical setting. In this survey, we will review recent literature concerning the application of these behavioral intervention strategies to the treatment of amblyopia, with a focus on possible underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Alessandro Sale
- Neuroscience Institute, National Research Council Pisa, Italy
| | - Nicoletta Berardi
- Neuroscience Institute, National Research Council Pisa, Italy ; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence Florence, Italy
| |
Collapse
|
68
|
Patten AR, Yau SY, Fontaine CJ, Meconi A, Wortman RC, Christie BR. The Benefits of Exercise on Structural and Functional Plasticity in the Rodent Hippocampus of Different Disease Models. Brain Plast 2015; 1:97-127. [PMID: 29765836 PMCID: PMC5928528 DOI: 10.3233/bpl-150016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, the benefits of physical exercise on structural and functional plasticity in the hippocampus are discussed. The evidence is clear that voluntary exercise in rats and mice can lead to increases in hippocampal neurogenesis and enhanced synaptic plasticity which ultimately result in improved performance in hippocampal-dependent tasks. Furthermore, in models of neurological disorders, including fetal alcohol spectrum disorders, traumatic brain injury, stroke, and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease exercise can also elicit beneficial effects on hippocampal function. Ultimately this review highlights the multiple benefits of exercise on hippocampal function in both the healthy and the diseased brain.
Collapse
Affiliation(s)
- Anna R. Patten
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Suk Yu Yau
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J. Fontaine
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Alicia Meconi
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ryan C. Wortman
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Brain Research Centre and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
69
|
The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review. Neural Plast 2015; 2015:830871. [PMID: 26509085 PMCID: PMC4609870 DOI: 10.1155/2015/830871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications fulfilled the criteria. The studies were examined relative to cognitive effects associated with three themes: exercise type (forced or voluntary), timing of exercise (early or late), and dose-related factors (intensity, duration, etc.). The studies indicate that exercise in many cases can promote cognitive recovery after brain injury. However, the optimal parameters to ensure cognitive rehabilitation efficacy still elude us, due to considerable methodological variations between studies.
Collapse
|
70
|
Real CC, Garcia PC, Britto LR, Pires RS. Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor areas. Brain Res 2015; 1624:188-198. [DOI: 10.1016/j.brainres.2015.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/14/2022]
|
71
|
Lin Y, Lu X, Dong J, He X, Yan T, Liang H, Sui M, Zheng X, Liu H, Zhao J, Lu X. Involuntary, Forced and Voluntary Exercises Equally Attenuate Neurocognitive Deficits in Vascular Dementia by the BDNF-pCREB Mediated Pathway. Neurochem Res 2015; 40:1839-48. [PMID: 26240057 DOI: 10.1007/s11064-015-1673-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/03/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
A rat model of vascular dementia was used to compare the effects of involuntary exercise induced by functional electrical stimulation (FES), forced exercise and voluntary exercise on the recovery of cognitive function recovery and its underlying mechanisms. In an involuntary exercise (I-EX) group, FES was used to induce involuntary gait-like running on ladder at 12 m/min. A forced exercise group (F-EX) and a voluntary exercise group (V-EX) exercised by wheel running. The Barnes maze was used for behavioral assessment. Brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP response element binding protein (CREB) positive cells in hippocampal CA1, CA2/3 and dentate gyrus (DG) regions were evaluated using immunohistochemical methods. Western blotting was used to assess the levels of BDNF, phosphorylated protein kinase B (Akt), tropomyosin receptor kinase B (TrkB), mitogen-activated protein kinase 1 and 2 (MEK1/2), ERK1/2 and CREB in BDNF-pCREB signaling in the hippocampus and prefrontal cortex. Involuntary, forced and voluntary exercises were all found to reverse the cognitive deficits of vascular dementia with about equal effectiveness. The number of BDNF, pCREB and pERK1/2 immunopositive cells was significantly increased in the hippocampal CA1, CA2/3 and DG regions in all three exercise groups. In addition, involuntary exercise activated BDNF and the phosphorylation of Akt, TrkB, MEK1/2, ERK1/2 and CREB in the hippocampus and prefrontal cortex equally as well as voluntary or forced exercise. These results suggest that involuntary exercise induced by FES may be as beneficial for alleviating cognitive deficits after cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Erheng Road, Yuan Village, Guangzhou, 510655, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Lin Y, Dong J, Yan T, He X, Zheng X, Liang H, Sui M. Involuntary, forced and voluntary exercises are equally capable of inducing hippocampal plasticity and the recovery of cognitive function after stroke. Neurol Res 2015; 37:893-901. [DOI: 10.1179/1743132815y.0000000074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
73
|
Sheng T, Zhang X, Wang S, Zhang J, Lu W, Dai Y. Endothelin-1-induced mini-stroke in the dorsal hippocampus or lateral amygdala results in deficits in learning and memory. J Biomed Res 2015; 29:362-9. [PMID: 26445569 PMCID: PMC4585430 DOI: 10.7555/jbr.29.20150008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/29/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022] Open
Abstract
Functional and structural alterations in brain connectivity associated with brain ischemia have been extensively studied. However, the mechanism whereby local ischemia in deep brain region affect brain functions is still unknown. Here, we first established a mini-stroke model by infusion of endothelin-1 (ET-1) into the dorsal hippocampus or the lateral amygdala, and then investigated how these mini-infarcts affected brain functions associated with these regions. We found that rats with ET-1 infusion showed deficit in recall of contextual fear memory, but not in learning process and recall of tone fear memory. In novel object task, ET-1 in the hippocampus also eliminated object identity memory. ET-1 in the lateral amygdale affected acquisition of fear conditioning and disrupted retention of tone-conditioned fear, but did not impair retention of contextual fear. These findings suggest that ET-1-induced mini-infarct in deep brain area leads to functional deficits in learning and memory associated with these regions.
Collapse
Affiliation(s)
- Tao Sheng
- The Center of Metabolic Disease Research
| | - Xueting Zhang
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing, Jiangsu 210096 , China
| | - Shaoli Wang
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing, Jiangsu 210096 , China
| | - Jingyun Zhang
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing, Jiangsu 210096 , China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University , Nanjing, Jiangsu 210029 , China ; The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing, Jiangsu 210096 , China
| | - Yifan Dai
- The Center of Metabolic Disease Research
| |
Collapse
|
74
|
Carruthers K, Zampieri C, Damiano D. RELATING MOTOR AND COGNITIVE INTERVENTIONS IN ANIMALS AND HUMANS. Transl Neurosci 2014; 5:227-238. [PMID: 37605785 PMCID: PMC10440854 DOI: 10.2478/s13380-014-0233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cognition and motor performance are essential components of human functioning. Recent research has provided evidence that these two domains are more interrelated than previously thought. This is a potentially important area of research with many questions that warrant further exploration and have practical implications to the field of neurological rehabilitation. In this review of literature we included animals and humans in healthy conditions as well as pathological conditions affecting the central nervous system. Our primary goal was to comprehensively review the relevant basic science and clinical literature on the effects of motor interventions on cognitive function and vice versa. We found more evidence supporting positive effects of exercise on cognition than effects of cognitive training on motor function. In addition, we examined the extent to which findings from animal literature have been or can be translated to humans. We found that, with the exception of one study in monkeys, most animal studies which investigate rodents are somewhat challenging to translate to human studies, independent of the intervention employed. It is difficult to find a human parallel to exercise in rodents, because both the voluntary and forced exercise paradigms used in rodents happen in a different context than humans. In addition it is difficult to find an animal parallel to cognitive training in humans, because the environmental enrichment intervention cannot be considered "purely" cognitive stimulation as it also involves sensory, motor and social components. We conclude the review by suggesting avenues for future research and intervention strategies.
Collapse
Affiliation(s)
- Kadir Carruthers
- NIH, Clinical Center, Rehabilitation Medicine Department, Functional & Applied Biomechanics Section, Bethesda, MD, 20892, USA
| | - Cris Zampieri
- NIH, Clinical Center, Rehabilitation Medicine Department, Functional & Applied Biomechanics Section, Bethesda, MD, 20892, USA
| | - Diane Damiano
- NIH, Clinical Center, Rehabilitation Medicine Department, Functional & Applied Biomechanics Section, Bethesda, MD, 20892, USA
| |
Collapse
|
75
|
Abstract
BACKGROUND Aerobic activity positively affects patients recovering from stroke and is part of best practice guidelines, yet this evidence has not been translated to routine practice. OBJECTIVE The objective of this study was to evaluate the feasibility of a model of care that integrated aerobic training in an inpatient rehabilitation setting for patients in the subacute stage of stroke recovery. Key elements of the program were personalized training prescription based on submaximal test results and supervision within a group setting. DESIGN This was a prospective cohort study. METHODS Participants (N=78) completed submaximal exercise testing prior to enrollment, and the test results were used by their treating physical therapists for exercise prescription. Feasibility was evaluated using enrollment, class attendance, adherence to prescription, and participant perceptions. RESULTS Overall, 31 patients (40%) were referred to and completed the exercise program. Cardiac comorbidities were the main reason for nonreferral to the fitness group. Program attendance was 77%; scheduling conflicts were the primary barrier to participation. The majority of participants (63%) achieved 20 minutes of continuous exercise by the end of the program. No adverse events were reported, all participants felt they benefited from the program, and 80% of the participants expressed interest in continuing to exercise regularly after discharge. LIMITATIONS Cardiac comorbidities prevented enrollment in the program for 27% of the admitted patients, and strategies for inclusion in exercise programs in this population should be explored. CONCLUSIONS This individualized exercise program within a group delivery model was feasible; however, ensuring adequate aerobic targets were met was a challenge, and future work should focus on how best to include individuals with cardiac comorbidities.
Collapse
|
76
|
Berretta A, Tzeng YC, Clarkson AN. Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev Neurother 2014; 14:1335-44. [DOI: 10.1586/14737175.2014.969242] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
77
|
Bonaccorsi J, Berardi N, Sale A. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning. Front Neural Circuits 2014; 8:82. [PMID: 25076874 PMCID: PMC4100600 DOI: 10.3389/fncir.2014.00082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.
Collapse
Affiliation(s)
- Joyce Bonaccorsi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| | - Nicoletta Berardi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy ; Department of Psychology, Florence University Florence, Italy
| | - Alessandro Sale
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
78
|
The effects of poststroke aerobic exercise on neuroplasticity: a systematic review of animal and clinical studies. Transl Stroke Res 2014; 6:13-28. [PMID: 25023134 DOI: 10.1007/s12975-014-0357-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Aerobic exercise may be a catalyst to promote neuroplasticity and recovery following stroke; however, the optimal methods to measure neuroplasticity and the effects of training parameters have not been fully elucidated. We conducted a systematic review and synthesis of clinical trials and studies in animal models to determine (1) the extent to which aerobic exercise influences poststroke markers of neuroplasticity, (2) the optimal parameters of exercise required to induce beneficial effects, and (3) consistent outcomes in animal models that could help inform the design of future trials. Synthesized findings show that forced exercise at moderate to high intensity increases brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I), nerve growth factor (NGF), and synaptogenesis in multiple brain regions. Dendritic branching was most responsive to moderate rather than intense training. Disparity between clinical stroke and stroke models (timing of initiation of exercise, age, gender) and clinically viable methods to measure neuroplasticity are some of the areas that should be addressed in future research.
Collapse
|
79
|
Austin MW, Ploughman M, Glynn L, Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 2014; 87:8-15. [PMID: 24997243 DOI: 10.1016/j.neures.2014.06.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 06/24/2014] [Indexed: 01/02/2023]
Abstract
Aerobic exercise (AE) enhances neuroplasticity and improves functional outcome in animal models of stroke, however the optimal parameters (days post-stroke, intensity, mode, and duration) to influence brain repair processes are not known. We searched PubMed, CINAHL, PsychInfo, the Cochrane Library, and the Central Register of Controlled Clinical Trials, using predefined criteria, including all years up to July 2013 (English language only). Clinical studies were included if participants had experienced an ischemic or hemorrhagic stroke. We included animal studies that utilized any method of global or focal ischemic stroke or intracerebral hemorrhage. Any intervention utilizing AE-based activity with the intention of improving cardiorespiratory fitness was included. Of the 4250 titles returned, 47 studies (all in animal models) met criteria and measured the effects of exercise on brain repair parameters (lesion volume, oxidative damage, inflammation and cell death, neurogenesis, angiogenesis and markers of stress). Our synthesized findings show that early-initiated (24-48h post-stroke) moderate forced exercise (10m/min, 5-7 days per week for about 30min) reduced lesion volume and protected perilesional tissue against oxidative damage and inflammation at least for the short term (4 weeks). The applicability and translation of experimental exercise paradigms to clinical trials are discussed.
Collapse
Affiliation(s)
- Mark W Austin
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Lindsay Glynn
- Health Sciences Library, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
80
|
Gradually increased training intensity benefits rehabilitation outcome after stroke by BDNF upregulation and stress suppression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925762. [PMID: 25045713 PMCID: PMC4090448 DOI: 10.1155/2014/925762] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 12/02/2022]
Abstract
Physical training is necessary for effective rehabilitation in the early poststroke period. Animal studies commonly use fixed training intensity throughout rehabilitation and without adapting it to the animals' recovered motor ability. This study investigated the correlation between training intensity and rehabilitation efficacy by using a focal ischemic stroke rat model. Eighty male Sprague-Dawley rats were induced with middle cerebral artery occlusion/reperfusion surgery. Sixty rats with successful stroke were then randomly assigned into four groups: control (CG, n = 15), low intensity (LG, n = 15), gradually increased intensity (GIG, n = 15), and high intensity (HG, n = 15). Behavioral tests were conducted daily to evaluate motor function recovery. Stress level and neural recovery were evaluated via plasma corticosterone and brain-derived neurotrophic factor (BDNF) concentration, respectively. GIG rats significantly (P < 0.05) recovered motor function and produced higher hippocampal BDNF (112.87 ± 25.18 ng/g). GIG and LG rats exhibited similar stress levels (540.63 ± 117.40 nM/L and 508.07 ± 161.30 nM/L, resp.), which were significantly lower (P < 0.05) than that (716.90 ± 156.48 nM/L) of HG rats. Training with gradually increased intensity achieved better recovery with lower stress. Our observations indicate that a training protocol that includes gradually increasing training intensity should be considered in both animal and clinical studies for better stroke recovery.
Collapse
|
81
|
Li JY, Kuo TBJ, Yen JC, Tsai SC, Yang CCH. Voluntary and involuntary running in the rat show different patterns of theta rhythm, physical activity, and heart rate. J Neurophysiol 2014; 111:2061-70. [PMID: 24623507 DOI: 10.1152/jn.00475.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Involuntarily exercising rats undergo more physical and mental stress than voluntarily exercising rats; however, these findings still lack electrophysiological evidence. Many studies have reported that theta rhythm appears when there is mental stress and that it is affected by emotional status. Thus we hypothesized that the differences between voluntary and involuntary movement should also exist in the hippocampal theta rhythm. Using the wheel and treadmill exercise models as voluntary and involuntary exercise models, respectively, this study wirelessly recorded the hippocampal electroencephalogram, electrocardiogram, and three-dimensional accelerations of young male rats. Treadmill and wheel exercise produced different theta patterns in the rats before and during running. Even though the waking baselines for the two exercise types were recorded in different environments, there did not exist any significant difference after distinguishing the rats' sleep/wake status. When the same movement-related parameters are considered, the treadmill running group showed more changes in their theta frequency (4-12 Hz), in their theta power between 9.5-12 Hz, and in their heart rate than the wheel running group. A positive correlation between the changes in high-frequency (9.5-12 Hz) theta power and heart rate was identified. Our results reveal various voluntary and involuntary changes in hippocampal theta rhythm as well as divergences in heart rate and high-frequency theta activity that may represent the effects of an additional emotional state or the sensory interaction during involuntary running by rats.
Collapse
Affiliation(s)
- Jia-Yi Li
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Republic of China; Sleep Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China; and
| | - Terry B J Kuo
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Republic of China; Sleep Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China; and
| | - Jiin-Cherng Yen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Shih-Chih Tsai
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China; and
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Republic of China; Sleep Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China; and
| |
Collapse
|
82
|
Shahine EM, Shafshak TS. Central neuroplasticity and functional outcome of swinging upper limbs following repetitive locomotor training of lower limbs in stroke patients. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2014. [DOI: 10.4103/1110-161x.128130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
83
|
Voluntary running in young adult mice reduces anxiety-like behavior and increases the accumulation of bioactive lipids in the cerebral cortex. PLoS One 2013; 8:e81459. [PMID: 24349072 PMCID: PMC3859495 DOI: 10.1371/journal.pone.0081459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/22/2013] [Indexed: 01/27/2023] Open
Abstract
Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while the sedentary group was kept in their home cages without access to a running wheel. Elevated plus maze (EPM), several behavioral postures and two risk assessment behaviors (RABs) were then measured in both animal groups followed immediately by blood samplings for assessment of corticosterone levels. Brains were then dissected for non-targeted lipidomic analysis of selected brain regions using gas chromatography coupled to mass spectrometry (GC/MS). Results showed that mice in the running group, when examined in the EPM, displayed significantly lower anxiety-like behavior, higher exploratory and risky behaviors, compared to sedentary mice. Notably, we found no differences in blood corticosterone levels between the two groups, suggesting that the different EPM and RAB behaviors were not related to reduced physiological stress in the running mice. Lipidomics analysis revealed a region-specific cortical decrease of the saturated FA: palmitate (C16:0) and a concomitant increase of polyunsaturated FA, arachidonic acid (AA, omega 6-C20: 4) and docosahexaenoic acid (DHA, omega 3-C22: 6), in running mice compared to sedentary controls. Finally, we found that running mice, as opposed to sedentary animals, showed significantly enhanced cortical expression of phospholipase A2 (PLA2) protein, a signaling molecule required in the production of both AA and DHA. In summary, our data support the anxiolytic effects of exercise and provide insights into the molecular processes modulated by exercise that may lead to its beneficial effects on mood.
Collapse
|
84
|
Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels. Behav Brain Res 2013; 247:34-9. [DOI: 10.1016/j.bbr.2013.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/23/2022]
|
85
|
McCullough MJ, Gyorkos AM, Spitsbergen JM. Short-term exercise increases GDNF protein levels in the spinal cord of young and old rats. Neuroscience 2013; 240:258-68. [PMID: 23500094 DOI: 10.1016/j.neuroscience.2013.02.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/12/2013] [Accepted: 02/27/2013] [Indexed: 12/29/2022]
Abstract
Neurotrophic factors may play a role in exercise-induced neuroprotective effects, however it is not known if exercise mediates changes in glial cell line-derived neurotrophic factor (GDNF) protein levels in the spinal cord. The aim of the current study was to determine if 2 weeks of exercise alters GDNF protein content in the lumbar spinal cord of young and old rats. GDNF protein was quantified via an enzyme-linked immunosorbent assay and Western blot. Immunohistochemical analysis localized GDNF in choline acetyltransferase (ChAT)-positive motor neurons and cell body areas were measured. Involuntary running in the young animals appeared to elicit the greatest increase in GDNF protein content (sixfold increase), followed by swimming (threefold increase) and voluntary running (twofold increase); however there was no significant difference between the modalities of exercise. Low-intensity running of the old animals significantly increased GDNF protein content in the spinal cord. Both young and old exercised animals showed a doubling in ChAT-positive motor neuron cell body areas. These results suggest that GDNF protein content in the spinal cord is modulated by exercise.
Collapse
Affiliation(s)
- M J McCullough
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI 49008-5410, USA.
| | | | | |
Collapse
|
86
|
Ransome MI, Hannan AJ. Impaired basal and running-induced hippocampal neurogenesis coincides with reduced Akt signaling in adult R6/1 HD mice. Mol Cell Neurosci 2013; 54:93-107. [PMID: 23384443 DOI: 10.1016/j.mcn.2013.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder affecting a range of cellular and molecular functions in the brain. Deficits in adult hippocampal neurogenesis (AHN) have been documented in the R6/1 mouse model of HD. Here we examined basal and running-induced neuronal precursor proliferation in adult female and male R6/1 HD mice. We further tested whether sequential delivery of voluntary running followed by environmental enrichment could synergistically enhance functional AHN in female R6/1 HD mice. R6/1 HD mice engaged in significantly reduced levels of voluntary running, with males showing a more severe deficit. Basal neural precursor proliferation in the hippocampal sub-granular zone remained unchanged between female and male R6/1 HD mice and neither sex significantly responded to running-induced proliferation. While discrete provision of running wheels and enriched environments doubled AHN in adult female R6/1 HD mice it did not reflect the significant 3-fold increase in female wildtypes. Nevertheless, triple-label c-Fos/BrdU/NeuN immunofluorescence and confocal microscopy provided evidence that the doubling of AHN in female R6/1 HD mice was functional. Intrinsic cellular dysfunction mediated by protein aggregates containing mutant huntingtin (mHtt) did not appear to coincide with AHN deficits. In the hippocampus of female R6/1 HD mice, proliferating precursors and 6 week old adult-generated neurons were devoid of mHtt immuno-reactive aggregates, as were endothelial, microglial and astroglial cells populating the neurogenic niche. Serum transforming growth factor-β concentrations remained unaltered in female R6/1 HD mice as did the hippocampal levels of proliferating microglia and glial fibrillarly acidic protein expression. Examining the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis showed no change in base-line serum GH between genotypes. However, despite a reduced distance, acute running increases serum GH in both female wildtype and R6/1 HD mice. Serum IGF-1 levels were increased in female R6/1 HD mice compared to wildtypes during daytime inactive period, while hippocampal levels of the IGF-1 receptor remained unchanged. Running induced Akt phosphorylation in the hippocampus of female wildtype mice, which was not reflected in R6/1 HD mice. Total Akt levels were decreased in the hippocampus of both control and running R6/1 HD mice. Our results show adult-generated hippocampal neurons in female R6/1 HD mice express c-Fos and that running and Akt signaling deficits may mediate reduced basal and running-induced AHN levels.
Collapse
Affiliation(s)
- Mark I Ransome
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | |
Collapse
|
87
|
Abstract
It has been suggested that long-term modifications of synaptic transmission constitute the foundation of the processes by which information is stored in the central nervous system. A group of proteins called neurotrophins are considered powerful molecular mediators in central synaptic plasticity. Among these, brain-derived neurotrophic factor (BDNF) as well as neurotrophin-3 (NT-3) have emerged as having key roles in the neurobiological mechanisms related to learning and memory. In this chapter, we review the studies that have represented a significant step forward in understanding the role played by BDNF and NT-3 in long-term synaptic plasticity. The effects of BDNF and NT-3 on synaptic plasticity can be of a permissive nature, establishing the conditions under which plastic changes can take place, or it may be instructive, directly modifying the communication and morphology of synapses. The actions carried out by BDNF include its capacity to contribute to the stabilization and maturation of already-existing synapses, as well as to generate new synaptic contacts. One important finding that highlights the participation of these neurotrophins in synaptic plasticity is the observation that adding BDNF or NT-3 gives rise to drastic long-term increases in synaptic transmission, similar to the long-term potentiation in the hippocampus and neocortex of mammals. Because neurotrophins modulate both the electrical properties and the structural organization of the synapse, these proteins have been considered important biological markers of learning and memory processes.
Collapse
Affiliation(s)
- Andrea Gómez-Palacio-Schjetnan
- División de Investigación y Estudios de Posgrado, Facultad de Psicologia, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico
| | | |
Collapse
|
88
|
Schmidt W, Endres M, Dimeo F, Jungehulsing GJ. Train the Vessel, Gain the Brain: Physical Activity and Vessel Function and the Impact on Stroke Prevention and Outcome in Cerebrovascular Disease. Cerebrovasc Dis 2013; 35:303-12. [DOI: 10.1159/000347061] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
|
89
|
Hopkins RO, Suchyta MR, Farrer TJ, Needham D. Improving post-intensive care unit neuropsychiatric outcomes: understanding cognitive effects of physical activity. Am J Respir Crit Care Med 2012; 186:1220-8. [PMID: 23065013 DOI: 10.1164/rccm.201206-1022cp] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Critical illness and its treatment often result in long-term neuropsychiatric morbidities. Consequently, there is a need to focus on means to prevent or ameliorate these morbidities. Animal models provide important data regarding the neurobiological effects of physical activity, including angiogenesis, neurogenesis, and release of neurotrophic factors that enhance plasticity. Studies in noncritically ill patients demonstrate that exercise is associated with increased cerebral blood flow, neurogenesis, and brain volume, which are associated with improved cognition. Clinically, research in both healthy and diseased human subjects suggests that exercise improves neuropsychiatric outcomes. In the critical care setting, early physical rehabilitation and mobilization are safe and feasible, with demonstrated improvements in physical functional outcomes. Such activity may also reduce the duration of delirium in the intensive care unit (ICU) and improve neuropsychiatric outcomes, although data are limited. Barriers exist regarding implementing ICU rehabilitation in routine care, including use of sedatives and lack of awareness of post-ICU cognitive impairments. Further research is necessary to determine whether prior animal and human research, in conjunction with preliminary results from existing ICU studies, can translate into improvements for neuropsychiatric outcomes in critically ill patients. Studies are needed to evaluate biological mechanisms, risk factors, the role of pre-ICU functional level, and the timing, duration, and type of physical activity for optimal patient outcomes.
Collapse
Affiliation(s)
- Ramona O Hopkins
- Department of Medicine, Pulmonary and Critical Care Division, Intermountain Medical Center, Murray, UT 84107, USA.
| | | | | | | |
Collapse
|
90
|
Cirillo J, Hughes J, Ridding M, Thomas PQ, Semmler JG. Differential modulation of motor cortex excitability in BDNF Met allele carriers following experimentally induced and use-dependent plasticity. Eur J Neurosci 2012; 36:2640-9. [PMID: 22694150 DOI: 10.1111/j.1460-9568.2012.08177.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate how healthy young subjects with one of three variants of the brain-derived neurotrophic factor (BDNF) gene modulate motor cortex excitability following experimentally induced and use-dependent plasticity interventions. Electromyographic recordings were obtained from the right first dorsal interosseous (FDI) muscle of 12 Val/Val, ten Val/Met and seven Met/Met genotypes (aged 18-39 years). Transcranial magnetic stimulation of the left hemisphere was used to assess changes in FDI motor-evoked potentials (MEPs) following three separate interventions involving paired associative stimulation, a simple ballistic task and complex visuomotor tracking task using the index finger. Val/Val subjects increased FDI MEPs following all interventions (≥ 25%, P < 0.01), whereas the Met allele carriers only showed increased MEPs after the simple motor task (≥ 26%, P < 0.01). In contrast to the simple motor task, there was no significant change in MEPs for the Val/Met subjects (7%, P = 0.50) and a reduction in MEPs for the Met/Met group (-38%, P < 0.01) following the complex motor task. Despite these differences in use-dependent plasticity, the performance of both motor tasks was not different between BDNF genotypes. We conclude that modulation of motor cortex excitability is strongly influenced by the BDNF polymorphism, with the greatest differences observed for the complex motor task. We also found unique motor cortex plasticity in the rarest form of the BDNF polymorphism (Met/Met subjects), which may have implications for functional recovery after disease or injury to the nervous system in these individuals.
Collapse
Affiliation(s)
- John Cirillo
- Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
91
|
Yi CX, Al-Massadi O, Donelan E, Lehti M, Weber J, Ress C, Trivedi C, Müller TD, Woods SC, Hofmann SM. Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiol Behav 2012; 106:485-90. [DOI: 10.1016/j.physbeh.2012.03.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/02/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
|
92
|
Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience 2012; 215:59-68. [PMID: 22554780 DOI: 10.1016/j.neuroscience.2012.04.056] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 12/17/2022]
Abstract
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for 4 weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans.
Collapse
|
93
|
Drumond LE, Mourão FAG, Leite HR, Abreu RV, Reis HJ, Moraes MFD, Pereira GS, Massensini AR. Differential effects of swimming training on neuronal calcium sensor-1 expression in rat hippocampus/cortex and in object recognition memory tasks. Brain Res Bull 2012; 88:385-91. [PMID: 22521426 DOI: 10.1016/j.brainresbull.2012.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
Abstract
Physical activity has been proposed as a behavioral intervention that improves learning and memory; nevertheless, the mechanisms underlying these health benefits are still not well understood. Neuronal Calcium Sensor-1 (NCS-1) is a member of a superfamily of proteins that respond to local Ca(2+) changes shown to have an important role in learning and memory. The aim of the present study was to investigate the effects of swimming training on NCS-1 levels in the rat brain after accessing cognitive performance. Wistar rats were randomly assigned to sedentary (SG) or exercised groups (EG). The EG was subject to forced swimming activity, 30 min/day, 5 days/week, during 8 weeks. Progressive load trials were performed in the first and last week in order to access the efficiency of the training. After the 8 week training protocol, memory performance was evaluated by the novel object preference and object location tasks. NCS-1 levels were measured in the cortex and hippocampus using immunoblotting. The EG performed statistically better for the spatial short-term memory (0.73 ± 0.01) when compared to the SG (0.63 ± 0.02; P<0.05). No statistically significant exercise-effect was observed in the novel object preference task (SG 0.65 ± 0.02 and EG 0.68 ± 0.02; p>0.05). In addition, chronic exercise promoted a significant increase in hippocampal NCS-1 levels (1.8 ± 0.1) when compared to SG (1.17 ± 0.08; P<0,05), but had no effect on cortical NCS-1 levels (SG 1.6 ± 0.1 and EG 1.5 ± 0.1; p>0.05). Results suggest that physical exercise would modulate the state of the neural network regarding its potential for plastic changes: physical exercise could be modulating NCS-1 in an activity dependent manner, for specific neural substrates, thus enhancing the cellular/neuronal capability for plastic changes in these areas; which, in turn, would differentially effect ORM task performance for object recognition and displacement.
Collapse
Affiliation(s)
- Luciana Estefani Drumond
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Chang HC, Yang YR, Wang PS, Kuo CH, Wang RY. Insulin-like growth factor I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc 2012; 43:2274-80. [PMID: 21606872 DOI: 10.1249/mss.0b013e318223b5d9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Exercise increases neuron survival and plasticity in the adult brain by enhancing the uptake of insulin-like growth factor I (IGF-I). Exercise also reduces the infarct volume in the ischemic brain and improves motor function after such a brain insult. However, the underlying mechanisms are not fully known. The purpose of this study was to investigate the involvement of IGF-I signaling in neuroprotection after exercise. METHOD Rats were assigned to one of four groups: middle cerebral artery occlusion (MCAO) without exercise training (MC), MCAO with exercise training (ME), MCAO with IGF-I receptor inhibitor and without exercise training (MAg), and MCAO with IGF-I receptor inhibitor and exercise training (MEAg). Rats in the ME and MEAg groups underwent treadmill training for 14 d, and rats in the MC and MAg groups served as controls. After the final intervention, rats were sacrificed under anesthesia, and samples were collected from the affected motor cortex, striatum, and plasma. RESULTS IGF-I and p-Akt levels in the affected motor cortex and the striatum of the ME group were significantly higher than those in the MC group, with significant decreases in infarct volume and improvements in motor function. However, IGF-I receptor inhibitor eliminated these effects and decreased the exercise ability. The brain IGF-I signaling strongly correlated with exercise ability. CONCLUSIONS Exercise-enhanced IGF-I entrance into ischemic brain and IGF-I signaling was related to exercise-mediated neuroprotection. IGF-1 signaling also affected the ability to exercise after brain ischemia.
Collapse
Affiliation(s)
- Heng-Chih Chang
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
95
|
Goekint M, Bos I, Heyman E, Meeusen R, Michotte Y, Sarre S. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor. J Appl Physiol (1985) 2012; 112:535-41. [PMID: 22134693 PMCID: PMC3289437 DOI: 10.1152/japplphysiol.00306.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022] Open
Abstract
Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours postexercise, the rats were killed, and the hippocampus was dissected. In experiments without microdialysis, hippocampus and serum samples were collected immediately after exercise. Exercise induced a twofold increase in hippocampal dopamine release. Noradrenaline and serotonin release were not affected. Hippocampal BDNF levels were not influenced, whether they were measured immediately or 2 h after the exercise protocol. Serum BDNF levels did not change either, but serum BDNF was negatively correlated to peripheral corticosterone concentrations, indicating a possible inhibitory reaction to the stress of running. Sixty minutes of exercise enhances dopamine release in the hippocampus of the rat in vivo. However, this increase is not associated with changes in BDNF protein levels immediately nor 2 h after the acute exercise bout. An increased corticosterone level might be the contributing factor for the absence of changes in BDNF.
Collapse
Affiliation(s)
- Maaike Goekint
- Department of Human Physiology and Sports Medicine, Faculty of Physical Education and Physical Therapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
96
|
Malá H, Rodríguez Castro M, Pearce H, Kingod SC, Nedergaard SK, Scharff Z, Zandersen M, Mogensen J. Delayed intensive acquisition training alleviates the lesion-induced place learning deficits after fimbria-fornix transection in the rat. Brain Res 2012; 1445:40-51. [PMID: 22322151 DOI: 10.1016/j.brainres.2012.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/03/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
This study evaluates the effects of two learning paradigms, intensive vs. baseline, on the posttraumatic acquisition of a water maze based place learning task. Rats were subjected either to a control operation (Sham) or to a fimbria-fornix (FF) transection, which renders the hippocampus dysfunctional and disrupts the acquisition of allocentric place learning. All animals were administered 30 post-lesion acquisition sessions, which spanned either 10 or 30days. The acquisition period was followed by a 7day pause after which a retention probe was administered. The lesioned animals were divided into 3 groups: i) Baseline Acquisition Paradigm (BAP) once daily for 30days starting 1week post-surgery; ii) Early Intensive Acquisition Paradigm (EIAP) 3 times daily for 10days starting 1week post-surgery; and iii) Late Intensive Acquisition Paradigm (LIAP) 3 times daily for 10days starting 3weeks post-surgery. Within the control animals, one group followed the schedule of BAP, and one group followed the schedule of Intensive Acquisition Paradigm (IAP). All lesioned animals showed an impaired task acquisition. LIAP was beneficial in FF animals, in that it led to a better acquisition of the place learning task than the two other acquisition paradigms. The FF/EIAP group did not show improved acquisition compared to the FF/BAP group. The control animals were not differentially affected by the two learning schedules. The findings have implications for cognitive rehabilitation after brain injury and support the assumption that intensive treatment can lead to an improved learning, even when the neural structures underlying such a process are compromised. However, the timing of intensive treatment needs to be considered further.
Collapse
Affiliation(s)
- Hana Malá
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol Learn Mem 2012; 97:140-7. [DOI: 10.1016/j.nlm.2011.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/14/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022]
|
98
|
Langdon KD, Corbett D. Improved working memory following novel combinations of physical and cognitive activity. Neurorehabil Neural Repair 2011; 26:523-32. [PMID: 22157145 DOI: 10.1177/1545968311425919] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In humans, retrospective studies suggest that habitual physical activity (PA) or cognitive activity (CA) can help maintain or improve cognitive function. Similar findings have been reported using physical exercise in animal studies; however, the exercise paradigms differ markedly in duration and frequency, making extrapolation difficult. Here, the authors present a novel PA and CA paradigm that combines voluntary wheel running with Hebb-Williams and radial arm maze (RAM) training. METHODS A total of 57 male Sprague-Dawley rats were divided into 4 treatment groups: the PA, CA, and combined PA and CA groups and sedentary controls. PA (voluntary wheel running) and CA (Hebb-Williams mazes) consisted of a moderate 2 h/d, 5 d/wk treatment paradigm. RESULTS Animals exposed to a combination of PA and CA made significantly fewer working memory errors and exhibited superior choice accuracy when compared with animals exposed to either PA or CA alone in the 8-arm baited configuration of the RAM. Additional analyses revealed that the cognitive improvements were independent of exercise intensity/duration. Assessment of brain-derived neurotrophic factor (BDNF) levels revealed a significant increase in hippocampal BDNF only in the PA-alone group. CONCLUSION A novel combination of PA and CA improves learning and memory abilities independent of activity intensity, BDNF, or phosphorylated cyclic AMP response element binding protein levels. This is the first report of significant changes in cognitive ability using a paradigm involving moderate levels of PA plus cognitive stimulation. An adaptation of this paradigm may be particularly beneficial in slowing the development of mild cognitive impairment and subsequent dementia in elderly people.
Collapse
|
99
|
Daniels WMU, Marais L, Stein DJ, Russell VA. Exercise normalizes altered expression of proteins in the ventral hippocampus of rats subjected to maternal separation. Exp Physiol 2011; 97:239-47. [PMID: 22080486 DOI: 10.1113/expphysiol.2011.061176] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many studies have reported on the detrimental effects of early life adversity and the beneficial effects of exercise on brain function. However, the molecular mechanisms that underpin these various effects remain poorly understood. The advent of advanced proteomic analysis techniques has enabled simultaneous measurement of protein expression in a wide range of biological systems. We therefore used iTRAQ proteomic analysis of protein expression to determine whether exercise counteracts the detrimental effects of early life adversity in the form of maternal separation on protein expression in the brain. Rat pups were subjected to maternal separation from postnatal day 2 to 14 for 3 h day(-1) or normally reared. At 40 days of age, half of the rats in each group (maternal separation and normally reared) were allowed to exercise voluntarily (access to a running wheel) for 6 weeks and the remainder kept as sedentary control animals. At 83 days of age, rats were killed and the ventral hippocampus was dissected for quantitative proteomic (iTRAQ) analysis. The iTRAQ proteomic analysis identified several proteins that had been altered by maternal separation, including proteins involved in neuronal structure, metabolism, signalling, anti-oxidative stress and neurotransmission, and that many of these proteins were restored to normal by subsequent exposure to voluntary exercise in adolescence. Our data show that a broad range of proteins play a role in the complex consequences of adversity and exercise.
Collapse
Affiliation(s)
- Willie M U Daniels
- Discipline of Human Physiology, Faculty of Health Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban KZ 4000, South Africa.
| | | | | | | |
Collapse
|
100
|
Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 2011; 31:7275-90. [PMID: 21593312 DOI: 10.1523/jneurosci.6476-10.2011] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligomannosidic glycans play important roles in nervous system development and function. By performing a phage display screening with oligomannose-specific antibodies, we identified an oligomannose-mimicking peptide that was functionally active in modulating neurite outgrowth and neuron-astrocyte adhesion. Using the oligomannose-mimicking peptide in crosslinking experiments, synapsin I was identified as a novel oligomannose-binding protein in mouse brain. Further analyses not only verified that synapsin I is an oligomannose-binding lectin, but also indicated that it is a glycoprotein carrying oligomannose and Lewis(x). We also found that synapsin I is expressed in glia-enriched cultures and is released from glial cells via exosomes. Incubation of glial-derived exosomes in the presence of high KCl concentrations or subjecting glial cell cultures to either oxygen/glucose deprivation or hydrogen peroxide resulted in release of synapsin I from exosomes. Application of synapsin I promoted neurite outgrowth from hippocampal neurons and increased survival of cortical neurons upon hydrogen peroxide treatment or oxygen/glucose deprivation. Coculture experiments using wild-type hippocampal neurons and wild-type or synapsin-deficient glial cells showed enhanced neurite outgrowth when synapsin was expressed by glial cells. Synapsin-induced neurite outgrowth was dependent on oligomannose on synapsin I and the neural cell adhesion molecule NCAM at the neuronal cell surface. The data indicate that, under conditions of high neuronal activity and/or oxidative stress, synapsin can be released from glial-derived exosomes and promotes neurite outgrowth and neuronal survival by modulating the interactions between glia and neurons.
Collapse
|