51
|
Ratelade J, Bennett JL, Verkman AS. Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J Biol Chem 2011; 286:45156-64. [PMID: 22069320 PMCID: PMC3247969 DOI: 10.1074/jbc.m111.297275] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/05/2011] [Indexed: 11/06/2022] Open
Abstract
Autoantibodies against astrocyte water channel aquaporin-4 (AQP4) are thought to be pathogenic in neuromyelitis optica (NMO). Prior work has suggested that a key component of NMO autoantibody (NMO-IgG) pathogenesis is internalization of AQP4 and the associated glutamate transporter EAAT2, leading to glutamate excitotoxicity. Here, we show selective endocytosis of NMO-IgG and AQP4 in transfected cell cultures, but little internalization in brain in vivo. AQP4-dependent endocytosis of NMO-IgG occurred rapidly in various AQP4-transfected cell lines, with efficient transport from early endosomes to lysosomes. Cell surface AQP4 was also reduced following NMO-IgG exposure. However, little or no internalization of NMO-IgG, AQP4, or EAAT2 was found in primary astrocyte cultures, nor was glutamate uptake affected by NMO-IgG exposure. Following injection of NMO-IgG into mouse brain, NMO-IgG binding and AQP4 expression showed a perivascular astrocyte distribution, without detectable cellular internalization over 24 h. We conclude that astrocyte endocytosis of NMO-IgG, AQP4, and EAAT2 is not a significant consequence of AQP4 autoantibody in vivo, challenging generally accepted views about NMO pathogenesis.
Collapse
Affiliation(s)
- Julien Ratelade
- From the Departments of Medicine and Physiology, University of California, San Francisco, California 94143 and
| | - Jeffrey L. Bennett
- the Departments of Neurology and Ophthalmology, University of Colorado Denver, Aurora, Colorado 80045
| | - A. S. Verkman
- From the Departments of Medicine and Physiology, University of California, San Francisco, California 94143 and
| |
Collapse
|
52
|
Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 2011; 109:1245-50. [PMID: 22128336 DOI: 10.1073/pnas.1109980108] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The astrocytic aquaporin-4 (AQP4) water channel is the target of pathogenic antibodies in a spectrum of relapsing autoimmune inflammatory central nervous system disorders of varying severity that is unified by detection of the serum biomarker neuromyelitis optica (NMO)-IgG. Neuromyelitis optica is the most severe of these disorders. The two major AQP4 isoforms, M1 and M23, have identical extracellular residues. This report identifies two novel properties of NMO-IgG as determinants of pathogenicity. First, the binding of NMO-IgG to the ectodomain of astrocytic AQP4 has isoform-specific outcomes. M1 is completely internalized, but M23 resists internalization and is aggregated into larger-order orthogonal arrays of particles that activate complement more effectively than M1 when bound by NMO-IgG. Second, NMO-IgG binding to either isoform impairs water flux directly, independently of antigen down-regulation. We identified, in nondestructive central nervous system lesions of two NMO patients, two previously unappreciated histopathological correlates supporting the clinical relevance of our in vitro findings: (i) reactive astrocytes with persistent foci of surface AQP4 and (ii) vacuolation in adjacent myelin consistent with edema. The multiple molecular outcomes identified as a consequence of NMO-IgG interaction with AQP4 plausibly account for the diverse pathological features of NMO: edema, inflammation, demyelination, and necrosis. Differences in the nature and anatomical distribution of NMO lesions, and in the clinical and imaging manifestations of disease documented in pediatric and adult patients, may be influenced by regional and maturational differences in the ratio of M1 to M23 proteins in astrocytic membranes.
Collapse
|
53
|
Ratelade J, Bennett JL, Verkman AS. Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS One 2011; 6:e27412. [PMID: 22076159 PMCID: PMC3208637 DOI: 10.1371/journal.pone.0027412] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of neuromyelitis optica (NMO) involves binding of IgG autoantibodies (NMO-IgG) to aquaporin-4 (AQP4) on astrocytes in the central nervous system (CNS). We studied the in vivo processing in mice of a recombinant monoclonal human NMO-IgG that binds strongly to mouse AQP4. Following intravenous administration, serum [NMO-IgG] decreased with t(½) ∼18 hours in wildtype mice and ∼41 hours in AQP4 knockout mice. NMO-IgG was localized to AQP4-expressing cell membranes in kidney (collecting duct), skeletal muscle, trachea (epithelial cells) and stomach (parietal cells). NMO-IgG was seen on astrocytes in the area postrema in brain, but not elsewhere in brain, spinal cord, optic nerve or retina. Intravenously administered NMO-IgG was also seen in brain following mechanical disruption of the blood-brain barrier. Selective cellular localization was not found for control (non-NMO) IgG, or for NMO-IgG in AQP4 knockout mice. NMO-IgG injected directly into brain parenchyma diffused over an area of ∼5 mm² over 24 hours and targeted astrocyte foot-processes. Our data establish NMO-IgG pharmacokinetics and tissue distribution in mice. The rapid access of serum NMO-IgG to AQP4 in peripheral organs but not the CNS indicates that restricted antibody access cannot account for the absence of NMO pathology in peripheral organs.
Collapse
Affiliation(s)
- Julien Ratelade
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - A. S. Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
54
|
Závada J, Nytrová P, Wandinger KP, Jarius S, Svobodová R, Probst C, Peterová V, Tegzová D, Pavelka K, Vencovský J. Seroprevalence and specificity of NMO-IgG (anti-aquaporin 4 antibodies) in patients with neuropsychiatric systemic lupus erythematosus. Rheumatol Int 2011; 33:259-63. [PMID: 22038193 DOI: 10.1007/s00296-011-2176-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
Neuropsychiatric manifestations are present in 30-40% of patients with systemic lupus erythematosus (SLE). Recently, antibodies to aquaporin-4 (termed AQP4-Ab, or NMO-IgG), a water channel protein, were reported to be present in a subset of patients with SLE and neurological involvement. To evaluate the syndrome specificity and prevalence of serum NMO-IgG/anti-AQP4 antibodies in patients with neuropsychiatric systemic lupus erythematosus (NPSLE). Sera of 76 patients with SLE and neurological symptoms, 50 of whom met the ACR case definitions of NPSLE, were tested for AQP4-Ab in an indirect immunofluorescence assay employing HEK293 cells transfected with recombinant human AQP4. Only one of the examined sera was positive for NMO-IgG/AQP4-Ab. This patient suffered from TM, ranging over two vertebral segments on spinal MRI. None of the 75 NPSLE without TM was found to be seropositive for NMO-IgG/AQP4-Ab. NMO-IgG/AQP4-Ab in NPSLE were present only in a patient with TM and were not detectable in NPSLE patients with other neurological manifestations. Testing for NMO-IgG/AQP4-Ab positivity should be considered in patients presenting with SLE and TM. Non-longitudinally extensive lesions do no not exclude NMO-IgG/AQP4-Ab in patients presenting with SLE and TM.
Collapse
Affiliation(s)
- Jakub Závada
- Institute of Rheumatology and First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 128 50, Praha 2, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny AM, Eliceiri B, Coimbra R, Bansal V. Ghrelin prevents disruption of the blood-brain barrier after traumatic brain injury. J Neurotrauma 2011; 29:385-93. [PMID: 21939391 DOI: 10.1089/neu.2011.2053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Significant effort has been focused on reducing neuronal damage from post-traumatic brain injury (TBI) inflammation and blood-brain barrier (BBB)-mediated edema. The orexigenic hormone ghrelin decreases inflammation in sepsis models, and has recently been shown to be neuroprotective following subarachnoid hemorrhage. We hypothesized that ghrelin modulates cerebral vascular permeability and mediates BBB breakdown following TBI. Using a weight-drop model, TBI was created in three groups of mice: sham, TBI, and TBI/ghrelin. The BBB was investigated by examining its permeability to FITC-dextran and through quantification of perivascualar aquaporin-4 (AQP-4). Finally, we immunoblotted for serum S100B as a marker of brain injury. Compared to sham, TBI caused significant histologic neuronal degeneration, increases in vascular permeability, perivascular expression of AQP-4, and serum levels of S100B. Treatment with ghrelin mitigated these effects; after TBI, ghrelin-treated mice had vascular permeability and perivascular AQP-4 and S100B levels that were similar to sham. Our data suggest that ghrelin prevents BBB disruption after TBI. This is evident by a decrease in vascular permeability that is linked to a decrease in AQP-4. This decrease in vascular permeability may diminish post-TBI brain tissue damage was evident by decreased S100B.
Collapse
Affiliation(s)
- Nicole E Lopez
- Department of Surgery, University of California-San Diego, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Nakamura Y, Suzuki Y, Tsujita M, Huber VJ, Yamada K, Nakada T. Development of a Novel Ligand, [C]TGN-020, for Aquaporin 4 Positron Emission Tomography Imaging. ACS Chem Neurosci 2011; 2:568-571. [PMID: 22022637 PMCID: PMC3198134 DOI: 10.1021/cn2000525] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/27/2011] [Indexed: 12/02/2022] Open
Abstract
![]()
Aquaporin 4 (AQP4), the most abundant isozyme of the water specific membrane transporter aquaporin family, has now been implicated to play a significant role in the pathogenesis of various disease processes of the nervous system from epilepsy to Alzheimer’s disease. Considering its clinical relevance, it is highly desirable to develop a noninvasive method for the quantitative analysis of AQP distribution in humans under clinical settings. Currently, the method of choice for such diagnostic examinations continues to be positron emission tomography (PET). Here, we report the successful development of a PET ligand for AQP4 imaging based on TGN-020, a potent AQP4 inhibitor developed previously in our laboratory. Utilizing [11C]-TGN-020, PET images were successfully generated in wild type and AQP4 null mice, providing a basis for future evaluation regarding its suitability for clinical studies.
Collapse
Affiliation(s)
- Yukihiro Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Niigata 951-8585, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Niigata 951-8585, Japan
| | - Mika Tsujita
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Niigata 951-8585, Japan
| | - Vincent J. Huber
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Niigata 951-8585, Japan
| | - Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Niigata 951-8585, Japan
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Niigata 951-8585, Japan
| |
Collapse
|
57
|
McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol 2011; 122:381-400. [PMID: 21938556 DOI: 10.1007/s00401-011-0876-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
The last three decades have seen major advances in the understanding of paraneoplastic and idiopathic autoimmune disorders affecting the central nervous system (CNS). Neural-specific autoantibodies and their target antigens have been discovered, immunopathology and neuroimaging patterns recognized and pathogenic mechanisms elucidated. Disorders accompanied by autoantibody markers of neural peptide-specific cytotoxic effector T cells [such as anti-neuronal nuclear antibody type 1 (ANNA-1, aka anti-Hu), Purkinje cell antibody type 1 (PCA-1, aka anti-Yo) and CRMP-5 IgG] are generally poorly responsive to immunotherapy. Disorders accompanied by neural plasma membrane-reactive autoantibodies [the effectors of synaptic disorders, which include antibodies targeting voltage-gated potassium channel (VGKC) complex proteins, NMDA and GABA-B receptors] generally respond well to early immunotherapy. Here we describe in detail the neuropathological findings and pathophysiology of paraneoplastic CNS disorders with reference to antigen-specific serology and neurological and oncological contexts.
Collapse
|
58
|
Matà S, Lolli F. Neuromyelitis optica: An update. J Neurol Sci 2011; 303:13-21. [DOI: 10.1016/j.jns.2011.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 12/01/2010] [Accepted: 01/05/2011] [Indexed: 11/30/2022]
|
59
|
Usefulness of serum S100B as a marker for the acute phase of aquaporin-4 autoimmune syndrome. Neurosci Lett 2011; 494:86-8. [PMID: 21371524 DOI: 10.1016/j.neulet.2011.02.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/21/2022]
Abstract
The aquaporin-4 (AQP4) water channel antibody is used in the diagnosis of neuromyelitis optica (NMO) due to its high sensitivity and high specificity. However, some patients are reported to have neither optic neuritis nor myelitis despite being positive for the AQP4-autoantibody (AQP4-Ab). Therefore, recent reports suggest that such patients should be diagnosed as having 'AQP4-autoimmune syndrome'. In this study, we quantified the levels of glial fibrillar acidic protein (GFAP) and S100B by enzyme-linked immunosorbent assay (ELISA) in CSF and serum samples simultaneously obtained in the acute phase of ten AQP4-autoantibody (AQP4Ab)-positive and seven AQP4Ab-negative patients. Serum levels of S100B were significantly higher in the acute phase of the AQP4Ab-positive patients (2.92±1.22pg/ml) than in the AQP4Ab-negative patients (0.559±0.180pg/ml, p=0.0250), while serum levels of GFAP were not different between the two groups (AQP4Ab-positive vs. AQP4Ab-negative: 0.120±0.113ng/ml vs. 0.00609±0.00609ng/ml, p=0.193). Furthermore, the CSF and serum levels of S100B had a significant positive correlation in AQP4Ab-positive patients (n=10, r=0.673, p=0.0390). Our results raise the possibility that serum levels of S100B, but not GFAP, examined in the acute phase of the disease might be a useful biomarker for the relapse of AQP4 autoimmune syndrome.
Collapse
|
60
|
Popescu BFG, Parisi JE, Cabrera-Gómez JA, Newell K, Mandler RN, Pittock SJ, Lennon VA, Weinshenker BG, Lucchinetti CF. Absence of cortical demyelination in neuromyelitis optica. Neurology 2011; 75:2103-9. [PMID: 21135384 DOI: 10.1212/wnl.0b013e318200d80c] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To asses the presence of cortical demyelination in brains of patients with neuromyelitis optica (NMO). NMO is an autoimmune inflammatory demyelinating disease that specifically targets aquaporin-4-rich regions of the CNS. Since aquaporin-4 is highly expressed in normal cortex, we anticipated that cortical demyelination may occur in NMO. METHODS This is a cross-sectional neuropathologic study performed on archival forebrain and cerebellar tissue sections from 19 autopsied patients with a clinically and/or pathologically confirmed NMO spectrum disorder. RESULTS Detailed immunohistochemical analyses of 19 archival NMO cases revealed preservation of aquaporin-4 in a normal distribution within cerebral and cerebellar cortices, and no evidence of cortical demyelination. CONCLUSIONS This study provides a plausible explanation for the absence of a secondary progressive clinical course in NMO and shows that cognitive and cortical neuroimaging abnormalities previously reported in NMO cannot be attributed to cortical demyelination. Lack of cortical demyelination is another characteristic that further distinguishes NMO from MS.
Collapse
Affiliation(s)
- B F Gh Popescu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Pisani F, Mastrototaro M, Rossi A, Nicchia GP, Tortorella C, Ruggieri M, Trojano M, Frigeri A, Svelto M. Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding. J Biol Chem 2011; 286:9216-24. [PMID: 21212277 DOI: 10.1074/jbc.m110.123000] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease characterized by the presence of anti-aquaporin-4 (AQP4) antibodies in the patient sera. We recently reported that these autoantibodies are able to bind AQP4 when organized in the supramolecular structure called the orthogonal array of particles (OAP). To map the antigenic determinants, we produced a series of AQP4 mutants based on multiple alignment sequence analysis between AQP4 and other OAP-forming AQPs. Mutations were introduced in the three extracellular loops (A, C, and E), and the binding capacity of NMO sera was tested on AQP4 mutants. Results indicate that one group of sera was able to recognize a limited portion of loop C containing the amino acid sequence (146)GVT(T/M)V(150). A second group of sera was characterized by a predominant role of loop A. Deletion of four AQP4-specific amino acids ((61)G(S/T)E(N/K)(64)) in loop A substantially affected the binding of this group of sera. However, the binding capacity was further reduced when amino acids in loop A were mutated together with those in loop E or when those in loop C were mutated in combination with loop E. Finally, a series of AQP0 mutants were produced in which the extracellular loops were progressively changed to make them identical to AQP4. Results showed that none of the mutants was able to reproduce in AQP0 the NMO-IgG epitopes, indicating that the extracellular loop sequence by itself was not sufficient to determine the rearrangement required to create the epitopes. Although our data highlight the complexity of the disease, this study identifies key immunodominant epitopes and provides direct evidence that the transition from AQP4 tetramers to AQP4-OAPs involves conformational changes of the extracellular loops.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of General and Environmental Physiology, Centre of Excellence in Comparative Genomics, University of Bari, I-70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:1-41. [PMID: 21414585 DOI: 10.1016/b978-0-12-386043-9.00001-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthogonal arrays or assemblies of intramembranous particles (OAPs) are structures in the membrane of diverse cells which were initially discovered by means of the freeze-fracturing technique. This technique, developed in the 1960s, was important for the acceptance of the fluid mosaic model of the biological membrane. OAPs were first described in liver cells, and then in parietal cells of the stomach, and most importantly, in the astrocytes of the brain. Since the discovery of the structure of OAPs and the identification of OAPs as the morphological equivalent of the water channel protein aquaporin-4 (AQP4) in the 1990s, a plethora of morphological work on OAPs in different cells was published. Now, we feel a need to balance new and old data on OAPs and AQP4 to elucidate the interrelationship of both structures and molecules. In this review, the identity of OAPs as AQP4-based structures in a diversity of cells will be described. At the same time, arguments are offered that under pathological or experimental circumstances, AQP4 can also be expressed in a non-OAP form. Thus, we attempt to project classical work on OAPs onto the molecular biology of AQP4. In particular, astrocytes and glioma cells will play the major part in this review, not only due to our own work but also due to the fact that most studies on structure and function of AQP4 were done in the nervous system.
Collapse
Affiliation(s)
- Hartwig Wolburg
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
63
|
Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2010; 59:242-55. [DOI: 10.1002/glia.21094] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
64
|
Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010; 7:494-506. [PMID: 20880511 PMCID: PMC2952540 DOI: 10.1016/j.nurt.2010.07.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 12/30/2022] Open
Abstract
Reactive astrogliosis has long been recognized as a ubiquitous feature of CNS pathologies. Although its roles in CNS pathology are only beginning to be defined, genetic tools are enabling molecular dissection of the functions and mechanisms of reactive astrogliosis in vivo. It is now clear that reactive astrogliosis is not simply an all-or-nothing phenomenon but, rather, is a finely gradated continuum of molecular, cellular, and functional changes that range from subtle alterations in gene expression to scar formation. These changes can exert both beneficial and detrimental effects in a context-dependent manner determined by specific molecular signaling cascades. Dysfunction of either astrocytes or the process of reactive astrogliosis is emerging as an important potential source of mechanisms that might contribute to, or play primary roles in, a host of CNS disorders via loss of normal or gain of abnormal astrocyte activities. A rapidly growing understanding of the mechanisms underlying astrocyte signaling and reactive astrogliosis has the potential to open doors to identifying many molecules that might serve as novel therapeutic targets for a wide range of neurological disorders. This review considers general principles and examines selected examples regarding the potential of targeting specific molecular aspects of reactive astrogliosis for therapeutic manipulations, including regulation of glutamate, reactive oxygen species, and cytokines.
Collapse
Affiliation(s)
- Mary E. Hamby
- grid.19006.3e0000000096326718Department of Neurobiology, David Geffen School of Medicine, University of California, 90095 Los Angeles, California
| | - Michael V. Sofroniew
- grid.19006.3e0000000096326718Department of Neurobiology, David Geffen School of Medicine, University of California, 90095 Los Angeles, California
| |
Collapse
|
65
|
Nesic O, Guest JD, Zivadinovic D, Narayana PA, Herrera JJ, Grill RJ, Mokkapati VUL, Gelman BB, Lee J. Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 2010; 168:1019-35. [PMID: 20109536 PMCID: PMC2885549 DOI: 10.1016/j.neuroscience.2010.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/16/2010] [Accepted: 01/19/2010] [Indexed: 02/07/2023]
Abstract
Although malfunction of spinal cord water channels (aquaporins, AQP) likely contributes to severe disturbances in ion/water homeostasis after spinal cord injury (SCI), their roles are still poorly understood. Here we report and discuss the potential significance of changes in the AQP4 expression in human SCI that generates glial fibrillary acidic protein (GFAP)-labeled astrocytes devoid of AQP4, and GFAP-labeled astroglia that overexpress AQP4. We used a rat model of contusion SCI to study observed changes in human SCI. AQP4-negative astrocytes are likely generated during the process of SCI-induced replacement of lost astrocytes, but their origin and role in SCI remains to be investigated. We found that AQP4-overexpression is likely triggered by hypoxia. Our transcriptional profiling of injured rat cords suggests that elevated AQP4-mediated water influx accompanies increased uptake of chloride and potassium ions which represents a protective astrocytic reaction to hypoxia. However, unbalanced water intake also results in astrocytic swelling that can contribute to motor impairment, but likely only in milder injuries. In severe rat SCI, a low abundance of AQP4-overexpressing astrocytes was found during the motor recovery phase. Our results suggest that severe rat contusion SCI is a better model to analyze AQP4 functions after SCI. We found that AQP4 increases in the chronic post-injury phase are associated with the development of pain-like behavior in SCI rats, while possible mechanisms underlying pain development may involve astrocytic swelling-induced glutamate release. In contrast, the formation and size of fluid-filled cavities occurring later after SCI does not appear to be affected by the extent of increased AQP4 levels. Therefore, the effect of therapeutic interventions targeting AQP4 will depend not only on the time interval after SCI or animal models, but also on the balance between protective role of increased AQP4 in hypoxia and deleterious effects of ongoing astrocytic swelling.
Collapse
Affiliation(s)
- O Nesic
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Amiry-Moghaddam M, Hoddevik EH, Ottersen OP. Aquaporins: multifarious roles in brain. Neuroscience 2010; 168:859-61. [PMID: 20450960 DOI: 10.1016/j.neuroscience.2010.04.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/30/2022]
Affiliation(s)
- M Amiry-Moghaddam
- Centre for Molecular Biology and Neuroscience, University of Oslo, Sognsvannsveien 9, PO Box 1105 Blindern, 0317 Oslo, Norway.
| | | | | |
Collapse
|
67
|
Higher order structure of aquaporin-4. Neuroscience 2010; 168:903-14. [PMID: 20153404 DOI: 10.1016/j.neuroscience.2010.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/28/2010] [Accepted: 02/04/2010] [Indexed: 11/21/2022]
Abstract
Unlike other mammalian AQPs, multiple tetramers of AQP4 associate in the plasma membrane to form peculiar structures called Orthogonal Arrays of Particles (OAPs), that are observable by freeze-fracture electron microscopy (FFEM). However, FFEM cannot give information about the composition of OAPs of different sizes, and due to its technical complexity is not easily applicable as a routine technique. Recently, we employed the 2D gel electrophoresis BN-SDS/PAGE that for the first time enabled the biochemical isolation of AQP4-OAPs from several tissues. We found that AQP4 protein is present in several higher-order complexes (membrane pools of supra-structures) which contain different ratios of M1/M23 isoforms corresponding to AQP4-OAPs of different size. In this paper, we illustrate in detail the potentiality of 2D BN/SDS-PAGE for analyzing AQP4 supra-structures, their relationship with the dystrophin glycoprotein complex and other membrane proteins, and their role as a specific target of Neuromyelitis Optica autoantibodies.
Collapse
|
68
|
Sakabe E, Takizawa S, Ohnuki Y, Ohnuki Y, Kontani S, Takagi S. Syringomyelia in neuromyelitis optica seropositive for aquaporin-4 antibody. Intern Med 2010; 49:353-4. [PMID: 20154446 DOI: 10.2169/internalmedicine.49.2970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Eri Sakabe
- Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Isehara
| | | | | | | | | | | |
Collapse
|