51
|
Naudin M, Mondon K, El-Hage W, Perriot E, Boudjarane M, Desmidt T, Lorette A, Belzung C, Hommet C, Atanasova B. Taste identification used as a potential discriminative test among depression and Alzheimer׳s disease in elderly: A pilot study. Psychiatry Res 2015; 228:228-32. [PMID: 25998001 DOI: 10.1016/j.psychres.2015.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/08/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Major Depression and Alzheimer׳s disease (AD) are two diseases in the elderly characterized by an overlap of early symptoms including memory and emotional disorders. The identification of specific markers would facilitate their diagnosis. The aim of this study was to identify such markers by investigating gustatory function in depressed and AD patients. We included 20 patients with unipolar major depressive episodes (MDE), 20 patients with mild to moderate AD and 24 healthy individuals. We investigated the cognitive profile (depression, global cognitive efficiency and social/physical anhedonia) and gustatory function (ability to identify four basic tastes and to judge their intensity and hedonic value) in all participants. We found that AD patients performed worse than healthy participants in the taste identification test (for the analysis of all tastants together); however, this was not the case for depressed patients. We found no significant differences among the three groups in their ability to evaluate the intensity and hedonic value of the four tastes. Overall, our findings suggest that a taste identification test may be useful to distinguish AD and healthy controls but further investigation is required to conclude whether such a test can differentiate AD and depressed patients.
Collapse
Affiliation(s)
- Marine Naudin
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France
| | - Karl Mondon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France; Centre Mémoire de Ressources et de Recherche Région Centre et médecine interne gériatrique, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Wissam El-Hage
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France; Pôle de Psychiatrie, Clinique Psychiatrique Universitaire, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Elise Perriot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France
| | - Mohamed Boudjarane
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France
| | - Thomas Desmidt
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France; Centre Mémoire de Ressources et de Recherche Région Centre et médecine interne gériatrique, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Adrien Lorette
- Centre Mémoire de Ressources et de Recherche Région Centre et médecine interne gériatrique, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Catherine Belzung
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France
| | - Caroline Hommet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France; Centre Mémoire de Ressources et de Recherche Région Centre et médecine interne gériatrique, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 37044 Tours, France
| | - Boriana Atanasova
- Institut National de la Santé et de la Recherche Médicale (INSERM) U930, équipe 4 "Troubles affectifs", Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
52
|
Expression and identification of olfactory receptors in sciatic nerve and dorsal root ganglia of rats. Neurosci Lett 2015; 600:171-5. [DOI: 10.1016/j.neulet.2015.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/27/2022]
|
53
|
Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets. Biochem Biophys Res Commun 2015; 460:616-21. [DOI: 10.1016/j.bbrc.2015.03.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/29/2022]
|
54
|
Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 2015; 60:109-16. [PMID: 25282281 DOI: 10.1016/j.jpsychires.2014.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.
Collapse
|
55
|
Grison A, Zucchelli S, Urzì A, Zamparo I, Lazarevic D, Pascarella G, Roncaglia P, Giorgetti A, Garcia-Esparcia P, Vlachouli C, Simone R, Persichetti F, Forrest ARR, Hayashizaki Y, Carloni P, Ferrer I, Lodovichi C, Plessy C, Carninci P, Gustincich S. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics 2014; 15:729. [PMID: 25164183 PMCID: PMC4161876 DOI: 10.1186/1471-2164-15-729] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/18/2014] [Indexed: 01/15/2023] Open
Abstract
Background The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson’s disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. Results By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Conclusions Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-729) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Piero Carninci
- SISSA, Area of Neuroscience, via Bonomea 265, 34136 Trieste, Italy.
| | | |
Collapse
|
56
|
Zieselman AL, Fisher JM, Hu T, Andrews PC, Greene CS, Shen L, Saykin AJ, Moore JH. Computational genetics analysis of grey matter density in Alzheimer's disease. BioData Min 2014; 7:17. [PMID: 25165488 PMCID: PMC4145360 DOI: 10.1186/1756-0381-7-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/18/2014] [Indexed: 12/24/2022] Open
Abstract
Background Alzheimer’s disease is the most common form of progressive dementia and there is currently no known cure. The cause of onset is not fully understood but genetic factors are expected to play a significant role. We present here a bioinformatics approach to the genetic analysis of grey matter density as an endophenotype for late onset Alzheimer’s disease. Our approach combines machine learning analysis of gene-gene interactions with large-scale functional genomics data for assessing biological relationships. Results We found a statistically significant synergistic interaction among two SNPs located in the intergenic region of an olfactory gene cluster. This model did not replicate in an independent dataset. However, genes in this region have high-confidence biological relationships and are consistent with previous findings implicating sensory processes in Alzheimer’s disease. Conclusions Previous genetic studies of Alzheimer’s disease have revealed only a small portion of the overall variability due to DNA sequence differences. Some of this missing heritability is likely due to complex gene-gene and gene-environment interactions. We have introduced here a novel bioinformatics analysis pipeline that embraces the complexity of the genetic architecture of Alzheimer’s disease while at the same time harnessing the power of functional genomics. These findings represent novel hypotheses about the genetic basis of this complex disease and provide open-access methods that others can use in their own studies.
Collapse
Affiliation(s)
- Amanda L Zieselman
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jonathan M Fisher
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Ting Hu
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Peter C Andrews
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Casey S Greene
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Li Shen
- Department of Radiology and Imaging Sciences, Center for Neuroimaging and Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging and Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason H Moore
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
57
|
Llorens F, López-González I, Thüne K, Carmona M, Zafar S, Andréoletti O, Zerr I, Ferrer I. Subtype and regional-specific neuroinflammation in sporadic creutzfeldt-jakob disease. Front Aging Neurosci 2014; 6:198. [PMID: 25136317 PMCID: PMC4120692 DOI: 10.3389/fnagi.2014.00198] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/19/2014] [Indexed: 11/13/2022] Open
Abstract
The present study identifies deregulated cytokines and mediators of the immune response in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 and VV2 subtypes compared to age-matched controls. Deregulated genes include pro- and anti-inflammatory cytokines, toll-like receptors, colony stimulating factors, cathepsins, members of the complement system, and members of the integrin and CTL/CTLD family with particular regional and sCJD subtype patterns. Analysis of cytokines and mediators at protein level shows expression of selected molecules and receptors in neurons, in astrocytes, and/or in microglia, thus suggesting interactions between neurons and glial cells, mainly microglia, in the neuroinflammatory response in sCJD. Similar inflammatory responses have been shown in the tg340 sCJD MM1 mice, revealing a progressive deregulation of inflammatory mediators with disease progression. Yet, inflammatory molecules involved are subjected to species differences in humans and mice. Moreover, inflammatory-related cell signaling pathways NFκB/IKK and JAK/STAT are activated in sCJD and sCJD MM1 mice. Together, the present observations show a self-sustained complex inflammatory and inflammatory-related responses occurring already at early clinical stages in animal model and dramatically progressing at advanced stages of sCJD. Considering this scenario, measures tailored to modulate (activate or inhibit) specific molecules could be therapeutic options in CJD.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical School, Georg-August University , Göttingen , Germany ; Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat , Barcelona , Spain
| | - Irene López-González
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat , Barcelona , Spain
| | - Katrin Thüne
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical School, Georg-August University , Göttingen , Germany
| | - Margarita Carmona
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat , Barcelona , Spain ; Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health , Madrid , Spain
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical School, Georg-August University , Göttingen , Germany
| | - Olivier Andréoletti
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique , Toulouse , France
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical School, Georg-August University , Göttingen , Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat , Barcelona , Spain ; Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health , Madrid , Spain
| |
Collapse
|
58
|
Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 2014; 127:459-75. [PMID: 24554308 DOI: 10.1007/s00401-014-1261-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 12/24/2022]
Abstract
Olfactory dysfunction is a common and early symptom of many neurodegenerative diseases, particularly of Parkinson's disease and other synucleinopathies, Alzheimer's disease (AD), and mild cognitive impairment heralding its progression to dementia. The neuropathologic changes of olfactory dysfunction in neurodegenerative diseases may involve the olfactory epithelium, olfactory bulb/tract, primary olfactory cortices, and their secondary targets. Olfactory dysfunction is related to deposition of pathological proteins, α-synuclein, hyperphosphorylated tau protein, and neurofilament protein in these areas, featured by neurofibrillary tangles, Lewy bodies and neurites inducing a complex cascade of molecular processes including oxidative damage, neuroinflammation, and cytosolic disruption of cellular processes leading to cell death. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with severe anosmia. Recent studies of olfactory dysfunction have focused its potential as an early biomarker for the diagnosis of neurodegenerative disorders and their disease progression. Here, we summarize the current knowledge on neuropathological and pathophysiological changes of the olfactory system in the most frequent neurodegenerative diseases, in particular AD and synucleinopathies. We also present neuropathological findings in the olfactory bulb and tract in a large autopsy cohort (n = 536, 57.8 % female, mean age 81.3 years). The severity of olfactory bulb HPτ, Aβ, and αSyn pathology correlated and increased significantly (P < 0.001) with increasing neuritic Braak stages, Thal Aβ phases, and cerebral Lewy body pathology, respectively. Hence, further studies are warranted to investigate the potential role of olfactory biopsies (possibly restricted to the olfactory epithelium) in the diagnostic process of neurodegenerative diseases in particular in clinical drug trials to identify subjects showing early, preclinical stages of neurodegeneration and to stratify clinically impaired cohorts according to the underlying cerebral neuropathology.
Collapse
Affiliation(s)
- Johannes Attems
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
59
|
Pascarella G, Lazarevic D, Plessy C, Bertin N, Akalin A, Vlachouli C, Simone R, Faulkner GJ, Zucchelli S, Kawai J, Daub CO, Hayashizaki Y, Lenhard B, Carninci P, Gustincich S. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. Front Cell Neurosci 2014; 8:41. [PMID: 24600346 PMCID: PMC3927265 DOI: 10.3389/fncel.2014.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/28/2014] [Indexed: 11/13/2022] Open
Abstract
By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE). Transcription start sites (TSSs) for the large majority of Olfactory Receptors (ORs) have been previously mapped increasing our understanding of their promoter architecture. Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs). These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs). We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing and positioning transcribed LINEs as candidate regulatory RNAs for VRs expression.
Collapse
Affiliation(s)
- Giovanni Pascarella
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Dejan Lazarevic
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Cluster in Biomedicine (CBM), AREA Science Park Trieste, Italy
| | - Charles Plessy
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Nicolas Bertin
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Altuna Akalin
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Christina Vlachouli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Roberto Simone
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Geoffrey J Faulkner
- Cancer Biology Program, Mater Medical Research Institute South Brisbane, QLD, Australia ; School of Biomedical Sciences, University of Queensland Brisbane, QLD, Australia
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Department of Health Sciences, University of Eastern Piedmont "A. Avogadro," Novara, Italy
| | - Jun Kawai
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Carsten O Daub
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Boris Lenhard
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Piero Carninci
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| |
Collapse
|
60
|
Taste Receptor Gene Expression Outside the Gustatory System. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|