51
|
Age of onset of RNA toxicity influences phenotypic severity: evidence from an inducible mouse model of myotonic dystrophy (DM1). PLoS One 2013; 8:e72907. [PMID: 24039817 PMCID: PMC3764231 DOI: 10.1371/journal.pone.0072907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/13/2013] [Indexed: 01/23/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by an expanded (CTG)n tract in the 3′ UTR of the Dystrophia Myotonica Protein Kinase (DMPK) gene. This causes nuclear retention of the mutant mRNA into ribonuclear foci and sequestration of interacting RNA-binding proteins (such as muscleblind-like 1 (MBNL1)). More severe congenital and childhood-onset forms of the disease exist but are less understood than the adult disease, due in part to the lack of adequate animal models. To address this, we utilized transgenic mice over-expressing the DMPK 3′ UTR as part of an inducible RNA transcript to model early-onset myotonic dystrophy. In mice in which transgene expression was induced during embryogenesis, we found that by two weeks after birth, mice reproduced cardinal features of myotonic dystrophy, including myotonia, cardiac conduction abnormalities, muscle weakness, histopathology and mRNA splicing defects. Notably, these defects were more severe than in adult mice induced for an equivalent period of exposure to RNA toxicity. Additionally, the utility of the model was tested by over-expressing MBNL1, a key therapeutic strategy being actively pursued for treating the disease phenotypes associated with DM1. Significantly, increased MBNL1 in skeletal muscle partially corrected myotonia and splicing defects present in these mice, demonstrating the responsiveness of the model to relevant therapeutic interventions. Furthermore, these results also represent the first murine model for early-onset DM1 and provide a tool to investigate the effects of RNA toxicity at various stages of development.
Collapse
|
52
|
Kim YK, Mandal M, Yadava RS, Paillard L, Mahadevan MS. Evaluating the effects of CELF1 deficiency in a mouse model of RNA toxicity. Hum Mol Genet 2013; 23:293-302. [PMID: 24001600 DOI: 10.1093/hmg/ddt419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy, is caused by an expanded (CTG)n repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The toxic RNA transcripts produced from the mutant allele alter the function of RNA-binding proteins leading to the functional depletion of muscleblind-like (MBNL) proteins and an increase in steady state levels of CUG-BP1 (CUGBP-ETR-3 like factor 1, CELF1). The role of increased CELF1 in DM1 pathogenesis is well studied using genetically engineered mouse models. Also, as a potential therapeutic strategy, the benefits of increasing MBNL1 expression have recently been reported. However, the effect of reduction of CELF1 is not yet clear. In this study, we generated CELF1 knockout mice, which also carry an inducible toxic RNA transgene to test the effects of CELF1 reduction in RNA toxicity. We found that the absence of CELF1 did not correct splicing defects. It did however mitigate the increase in translational targets of CELF1 (MEF2A and C/EBPβ). Notably, we found that loss of CELF1 prevented deterioration of muscle function by the toxic RNA, and resulted in better muscle histopathology. These data suggest that while reduction of CELF1 may be of limited benefit with respect to DM1-associated spliceopathy, it may be beneficial to the muscular dystrophy associated with RNA toxicity.
Collapse
Affiliation(s)
- Yun Kyoung Kim
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
53
|
Veyckemans F, Scholtes JL. Myotonic dystrophies type 1 and 2: anesthetic care. Paediatr Anaesth 2013; 23:794-803. [PMID: 23384336 DOI: 10.1111/pan.12120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2012] [Indexed: 01/19/2023]
Abstract
Myotonic dystrophy is classified as one of the myotonic syndromes although myotonia is only a minor characteristic of it. It is, in fact, also a multisystem disease with cardiac, digestive, ocular, and endocrine abnormalities. Two subgroups are currently identified with many similarities: DM1 refers to classic dystrophia myotonica (Steinert disease), while DM2, formerly called proximal myotonic myopathy has a later onset. The congenital form is present only in DM1. The genetic causes of DM1 and 2 are different but end up in a similar way of altering RNAm processing and splicing of other genes. The anesthetic risk is increased in case of DM1 type. This review summarizes current knowledge concerning the pathophysiology and anesthetic management of this disease in children and adults.
Collapse
Affiliation(s)
- Francis Veyckemans
- Anesthesiology, Université catholique de Louvain Medical School, Cliniques universitaires St Luc, Brussels, Belgium.
| | | |
Collapse
|
54
|
Disney MD. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts. Drug Discov Today 2013; 18:1228-36. [PMID: 23939337 DOI: 10.1016/j.drudis.2013.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 02/06/2023]
Abstract
RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA.
Collapse
Affiliation(s)
- Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way #3A1, Jupiter, FL 33458, USA.
| |
Collapse
|
55
|
Michalova E, Vojtesek B, Hrstka R. Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders. Int J Mol Sci 2013; 14:15681-94. [PMID: 23896598 PMCID: PMC3759880 DOI: 10.3390/ijms140815681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022] Open
Abstract
The biological fate of each mRNA and consequently, the protein to be synthesised, is highly dependent on the nature of the 3' untranslated region. Despite its non-coding character, the 3' UTR may affect the final mRNA stability, the localisation, the export from the nucleus and the translation efficiency. The conserved regulatory sequences within 3' UTRs and the specific elements binding to them enable gene expression control at the posttranscriptional level and all these processes reflect the actual state of the cell including proliferation, differentiation, cellular stress or tumourigenesis. Through this article, we briefly outline how the alterations in the establishment and final architecture of 3' UTRs may contribute to the development of various disorders in humans.
Collapse
Affiliation(s)
- Eva Michalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| |
Collapse
|
56
|
Gawel M, Szmidt-Salkowska E, Lusakowska A, Nojszewska M, Sulek A, Krysa W, Rajkiewicz M, Seroka A, Kaminska AM. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle Nerve 2013; 49:277-83. [DOI: 10.1002/mus.23908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Malgorzata Gawel
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | | | - Anna Lusakowska
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | - Monika Nojszewska
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | - Anna Sulek
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| | - Wioletta Krysa
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| | - Marta Rajkiewicz
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| | - Andrzej Seroka
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | - Anna M. Kaminska
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| |
Collapse
|
57
|
Savić Pavićević D, Miladinović J, Brkušanin M, Šviković S, Djurica S, Brajušković G, Romac S. Molecular genetics and genetic testing in myotonic dystrophy type 1. BIOMED RESEARCH INTERNATIONAL 2013; 2013:391821. [PMID: 23586035 PMCID: PMC3613064 DOI: 10.1155/2013/391821] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3'-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling.
Collapse
Affiliation(s)
- Dušanka Savić Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| | - Jelena Miladinović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| | - Saša Šviković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| | - Svetlana Djurica
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| | - Stanka Romac
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, P.O. Box 52, 11000 Belgrade, Serbia
| |
Collapse
|
58
|
Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, Piepenhagen PA, Cheng SH, Wentworth BM. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther 2013; 23:109-17. [PMID: 23308382 DOI: 10.1089/nat.2012.0404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Expansions of CUG trinucleotide sequences in RNA transcripts provide the basis for toxic RNA gain-of-function that leads to detrimental changes in RNA metabolism. A CTG repeat element normally resides in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene, but when expanded it is the genetic lesion of myotonic dystrophy type 1 (DM1), a hereditary neuromuscular disease. The pathogenic DMPK transcript containing the CUG expansion is retained in ribonuclear foci as part of a complex with RNA-binding proteins such as muscleblind-like 1 (MBNL1), resulting in aberrant splicing of numerous RNA transcripts and consequent physiological abnormalities including myotonia. Herein, we demonstrate molecular and physiological amelioration of the toxic effects of mutant RNA in the HSA(LR) mouse model of DM1 by systemic administration of peptide-linked morpholino (PPMO) antisense oligonucleotides bearing a CAG repeat sequence. Intravenous administration of PPMO conjugates to HSA(LR) mice led to redistribution of Mbnl1 protein in myonuclei and corrections in abnormal RNA splicing. Additionally, myotonia was completely eliminated in PPMO-treated HSA(LR) mice. These studies provide proof of concept that neutralization of RNA toxicity by systemic delivery of antisense oligonucleotides that target the CUG repeat is an effective therapeutic approach for treating the skeletal muscle aspects of DM1 pathology.
Collapse
|
59
|
Shabalina SA, Spiridonov NA, Kashina A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 2013; 41:2073-94. [PMID: 23293005 PMCID: PMC3575835 DOI: 10.1093/nar/gks1205] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions.
Collapse
Affiliation(s)
- Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20984, USA.
| | | | | |
Collapse
|
60
|
Guan L, Disney MD. Small-molecule-mediated cleavage of RNA in living cells. Angew Chem Int Ed Engl 2012; 52:1462-5. [PMID: 23280953 DOI: 10.1002/anie.201206888] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/22/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Lirui Guan
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, 3A1, Jupiter, FL 33458, USA
| | | |
Collapse
|
61
|
|
62
|
Lukáš Z, Falk M, Feit J, Souček O, Falková I, Štefančíková L, Janoušová E, Fajkusová L, Zaorálková J, Hrabálková R. Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscul Disord 2012; 22:604-16. [DOI: 10.1016/j.nmd.2012.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
|
63
|
Lanzuolo C. Epigenetic alterations in muscular disorders. Comp Funct Genomics 2012; 2012:256892. [PMID: 22761545 PMCID: PMC3385594 DOI: 10.1155/2012/256892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
64
|
Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 2012; 7:856-62. [PMID: 22332923 DOI: 10.1021/cb200408a] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.
Collapse
Affiliation(s)
- Jessica L. Childs-Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Jason Hoskins
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Suzanne G. Rzuczek
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Charles A. Thornton
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Matthew D. Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| |
Collapse
|
65
|
Kumar A, Parkesh R, Sznajder LJ, Childs-Disney JL, Sobczak K, Disney MD. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. ACS Chem Biol 2012; 7:496-505. [PMID: 22252896 DOI: 10.1021/cb200413a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.
Collapse
Affiliation(s)
- Amit Kumar
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Raman Parkesh
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Lukasz J. Sznajder
- Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan,
Poland
| | - Jessica L. Childs-Disney
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Krzysztof Sobczak
- Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan,
Poland
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| |
Collapse
|
66
|
Hemminki K, Li X, Sundquist K. Familial Risks for Diseases of Myoneural Junction and Muscle in Siblings Based on Hospitalizations and Deaths in Sweden. Twin Res Hum Genet 2012. [DOI: 10.1375/twin.9.4.573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractDiseases of the myoneural junction and muscle are disabling and some are life-threatening. Recent successes in the identification of the underlying genetic mechanisms have had profound implication for their diagnostics, treatment and classification. We define familial risks for siblings who were hospitalized for or deceased from diseases of the myoneural junction and muscle. A nationwide database on diseases of the myoneural junction and muscle was constructed by linking the Multigeneration Register on 0- to 69-year-old siblings to the Hospital Discharge Register and the Causes of Death Register from years 1987 to 2001. Standardized risk ratios (SIRs) were calculated for affected sibling pairs by comparing to those whose siblings had no diseases of myoneural junction and muscle. Among a total of 2307 patients, myasthenia gravis, muscular dystrophy and myotonic disorders were commonest diagnoses. The sibling risks for these disease were 22, 190 and 198, respectively, when a sibling was diagnosed with any disease of the myoneural junction and muscle. The concordant SIRs, both siblings presenting the same disease, were 42 for myasthenia gravis, 737 for muscular dystrophy, 2000 for congenital myopathy, 1211 for myotonic disorder, 909 for periodic paralysis and 209 for unspecified myopathy. Only a few discordant sibling pairs were noted. The very high overall SIRs for the diseases of the myoneural junction and muscle imply that the sporadic forms of these diseases are relatively rare and these diseases are overwhelmingly heritable.
Collapse
|
67
|
CUGBP1 and MBNL1 preferentially bind to 3' UTRs and facilitate mRNA decay. Sci Rep 2012; 2:209. [PMID: 22355723 PMCID: PMC3250574 DOI: 10.1038/srep00209] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022] Open
Abstract
CUGBP1 and MBNL1 are developmentally regulated RNA-binding proteins that are causally associated with myotonic dystrophy type 1. We globally determined the in vivo RNA-binding sites of CUGBP1 and MBNL1. Interestingly, CUGBP1 and MBNL1 are both preferentially bound to 3′ UTRs. Analysis of CUGBP1- and MBNL1-bound 3′ UTRs demonstrated that both factors mediate accelerated mRNA decay and temporal profiles of expression arrays supported this. Role of CUGBP1 on accelerated mRNA decay has been previously reported, but the similar function of MBNL1 has not been reported to date. It is well established that CUGBP1 and MBNL1 regulate alternative splicing. Screening by exon array and validation by RT-PCR revealed position dependence of CUGBP1- and MBNL1-binding sites on the resulting alternative splicing pattern. This study suggests that regulation of CUGBP1 and MBNL1 is essential for accurate control of destabilization of a broad spectrum of mRNAs as well as of alternative splicing events.
Collapse
|
68
|
Myotonic Dystrophy Type 1 or Steinert’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:239-57. [DOI: 10.1007/978-1-4614-0653-2_18] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
69
|
Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, Marie J. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res 2011; 40:3159-71. [PMID: 22156369 PMCID: PMC3326330 DOI: 10.1093/nar/gkr1228] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type I (DM1) is caused by an abnormal expansion of CTG triplets in the 3′ UTR of the dystrophia myotonica protein kinase (DMPK) gene, leading to the aggregation of the mutant transcript in nuclear RNA foci. The expanded mutant transcript promotes the sequestration of the MBNL1 splicing factor, resulting in the misregulation of a subset of alternative splicing events. In this study, we identify the DEAD-box RNA helicase p68 (DDX5) in complexes assembled onto in vitro-transcribed CUG repeats. We showed that p68 colocalized with RNA foci in cells expressing the 3′UTR of the DMPK gene containing expanded CTG repeats. We found that p68 increased MBNL1 binding onto pathological repeats and the stem–loop structure regulatory element within the cardiac Troponin T (TNNT2) pre-mRNA, splicing of which is misregulated in DM1. Mutations in the helicase core of p68 prevented both the stimulatory effect of the protein on MBNL1 binding and the colocalization of p68 with CUG repeats, suggesting that remodeling of RNA secondary structure by p68 facilitates MBNL1 binding. We also found that the competence of p68 for regulating TNNT2 exon 5 inclusion depended on the integrity of MBNL1 binding sites. We propose that p68 acts as a modifier of MBNL1 activity on splicing targets and pathogenic RNA.
Collapse
Affiliation(s)
- François-Xavier Laurent
- Centre de Génétique Moléculaire, CNRS, UPR 3404, Avenue de Terrasse, 91198 Gif-sur-Yvette, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- Tetsuo Ashizawa
- Department of Neurology, Evelyn & WIlliam L. McKinght Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
71
|
Daniele A, De Rosa A, De Cristofaro M, Monaco ML, Masullo M, Porcile C, Capasso M, Tedeschi G, Oriani G, Di Costanzo A. Decreased concentration of adiponectin together with a selective reduction of its high molecular weight oligomers is involved in metabolic complications of myotonic dystrophy type 1. Eur J Endocrinol 2011; 165:969-75. [PMID: 21964963 DOI: 10.1530/eje-11-0537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The hormone adiponectin exerts beneficial pleiotropic effects on biological and metabolic processes. Although a well-recognized insulin sensitizer, its characteristic has yet to be clearly defined. Myotonic dystrophy type 1 (DM1) is a rare genetic disorder that features muscle wasting and metabolic comorbidity, and patients have an increased risk of developing type 2 diabetes. We analyzed circulating levels of adiponectin and its oligomers to determine whether their expression correlates with metabolic alterations in DM1 patients. DESIGN AND METHODS We measured the anthropometric and biochemical features and three insulin resistance (IR) indices (homeostasis model assessment, quantitative insulin sensitivity check index, and McAuley) of 21 DM1 patients and of 82 age-, sex-, and weight-matched controls. In the blood samples of patients and controls, adiponectin levels were measured by ELISA, and its oligomers were characterized by using western blotting and gel filtration. The adiponectin gene was molecularly analyzed in patients. RESULTS DM1 patients had significantly higher body mass index, waist circumference, triglycerides (TGs), glucose, tumor necrosis factor α, and IR; conversely, they had significantly lower concentrations of total serum adiponectin with a selective, pronounced decrease of its high molecular weight (HMW) oligomers. There was a strong negative correlation between adiponectin and TGs in DM1 patients. CONCLUSIONS Our results endorse the hypothesis that decreased expression of adiponectin together with a selective reduction of its HMW oligomers contributes to the worsening of IR and its metabolic complications in DM1 patients. These findings suggest that adiponectin and HMW oligomers may serve as biomarkers and are promising therapeutic agents for IR and its consequences in DM1.
Collapse
Affiliation(s)
- Aurora Daniele
- CEINGE Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Minnerop M, Weber B, Schoene-Bake JC, Roeske S, Mirbach S, Anspach C, Schneider-Gold C, Betz RC, Helmstaedter C, Tittgemeyer M, Klockgether T, Kornblum C. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. ACTA ACUST UNITED AC 2011; 134:3530-46. [PMID: 22131273 PMCID: PMC3235566 DOI: 10.1093/brain/awr299] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies.
Collapse
Affiliation(s)
- Martina Minnerop
- Department of Neurology, University Hospital of Bonn, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Rhodes JD, Lott MC, Russell SL, Moulton V, Sanderson J, Wormstone IM, Broadway DC. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet 2011; 21:852-62. [DOI: 10.1093/hmg/ddr515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
74
|
Pruna L, Chatelin J, Pascal-Vigneron V, Kaminsky P. Regional body composition and functional impairment in patients with myotonic dystrophy. Muscle Nerve 2011; 44:503-8. [DOI: 10.1002/mus.22099] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2011] [Indexed: 11/10/2022]
|
75
|
Llamusí B, Artero R. Molecular Effects of the CTG Repeats in Mutant Dystrophia Myotonica Protein Kinase Gene. Curr Genomics 2011; 9:509-16. [PMID: 19516957 PMCID: PMC2694559 DOI: 10.2174/138920208786847944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/18/2008] [Accepted: 06/24/2008] [Indexed: 11/22/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a multi-system disorder characterized by muscle wasting, myotonia, cardiac conduction defects, cataracts, and neuropsychological dysfunction. DM1 is caused by expansion of a CTG repeat in the 3´untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene. A body of work demonstrates that DMPK mRNAs containing abnormally expanded CUG repeats are toxic to several cell types. A core mechanism underlying symptoms of DM1 is that mutant DMPK RNA interferes with the developmentally regulated alternative splicing of defined pre-mRNAs. Expanded CUG repeats fold into ds(CUG) hairpins that sequester nuclear proteins including human Muscleblind-like (MBNL) and hnRNP H alternative splicing factors. DM1 cells activate CELF family member CUG-BP1 protein through hyperphosphorylation and stabilization in the cell nucleus. CUG-BP1 and MBNL1 proteins act antagonistically in exon selection in several pre-mRNA transcripts, thus MBNL1 sequestration and increase in nuclear activity of CUG-BP1 both act synergistically to missplice defined transcripts. Mutant DMPK-mediated effect on subcellular localization, and defective phosphorylation of cytoplasmic CUG-BP1, have additionally been linked to defective translation of p21 and MEF2A in DM1, possibly explaining delayed differentiation of DM1 muscle cells. Mutant DMPK transcripts bind and sequester transcription factors such as Specificity protein 1 leading to reduced transcription of selected genes. Recently, transcripts containing long hairpin structures of CUG repeats have been shown to be a Dicer ribonuclease target and Dicer-induced downregulation of the mutant DMPK transcripts triggers silencing effects on RNAs containing long complementary repeats. In summary, mutant DMPK transcripts alter gene transcription, alternative splicing, and translation of specific gene transcripts, and have the ability to trigger gene-specific silencing effects in DM1 cells. Therapies aimed at reversing these gene expression alterations should prove effective ways to treat DM1.
Collapse
Affiliation(s)
- Beatriz Llamusí
- Department of Genetics, University of Valencia, Doctor Moliner, 50, E46100 Burjasot, Valencia, Spain
| | | |
Collapse
|
76
|
Kaminsky P, Poussel M, Pruna L, Deibener J, Chenuel B, Brembilla-Perrot B. Organ dysfunction and muscular disability in myotonic dystrophy type 1. Medicine (Baltimore) 2011; 90:262-268. [PMID: 21694643 DOI: 10.1097/md.0b013e318226046b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder characterized by muscle weakness and multiple organ impairment, especially the eyes, lung, and heart. We conducted the current study to analyze the prevalence and intercorrelation among these disorders and their respective relationships with muscular disability. We assessed medical history, anthropometric data, lung volumes, arterial and venous blood samples, surface 12-lead electrocardiogram, echocardiography, ophthalmologic examination, and muscular impairment rating scale (MIRS) in 106 patients (48 male and 58 female) with DM1, aged 43.7 ± 12.8 years. Obesity, hypertriglyceridemia, and diabetes were found in respectively 25.6%, 47.6%, and 17.1% of patients. Disabling cataract was found in 43.4%, and was independently predicted by age and MIRS. Restrictive lung disease was noted in 34%, and was predicted by MIRS, CTG repeat expansion, and body mass index. Conduction disorders were found in 30.2% of patients and were predicted by left ventricular ejection fraction, MIRS, and CTG repeat expansion.We found significant relationships between cataract, restrictive lung disease, and conduction disorders: patients with cataract and those with conduction disorders exhibited more severe restrictive lung disease than the other patients. Conversely, the relative risk of restrictive lung disease was 2.42 (1% confidence interval [CI], 1.06-5.51) in patients with cataract and 2.54 (1% CI, 1.26-5.07) in patients with conduction disorders. Multivariate analysis revealed that MIRS was the only independent predictor for conduction disorders and restrictive lung disease. MIRS ≥3 and MIRS ≥4 were the best simple cutoff values to predict, respectively, lung and cardiac involvements.To conclude, muscular disability, ophthalmologic, and cardiac and pulmonary involvement are strongly correlated. Particular attention should be given to these entities in patients with distal or proximal muscular weakness.
Collapse
Affiliation(s)
- Pierre Kaminsky
- From Médecine Interne (PK, LP, JD), Laboratoire d'Explorations Fonctionnelles Respiratoires (MP, BC), Cardiologie (BBP), Centre de Référence des Maladies Neuromusculaires (PK), and EA3450-Nancy-Université (MP, BC); Faculté de Médecine, and Centre Hospitalier Universitaire de Nancy, Hôpitaux de Brabois, Vandoeuvre, France
| | | | | | | | | | | |
Collapse
|
77
|
Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1. PLoS One 2011; 6:e19780. [PMID: 21603621 PMCID: PMC3095625 DOI: 10.1371/journal.pone.0019780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/04/2011] [Indexed: 11/24/2022] Open
Abstract
Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.
Collapse
|
78
|
Sun C, Van Ghelue M, Tranebjaerg L, Thyssen F, Nilssen Ø, Torbergsen T. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011; 80:574-80. [DOI: 10.1111/j.1399-0004.2010.01616.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
79
|
Yu Z, Bonini NM. Modeling human trinucleotide repeat diseases in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:191-212. [PMID: 21906541 DOI: 10.1016/b978-0-12-387003-2.00008-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drosophila is a powerful model system to study human trinucleotide repeat diseases. Findings in Drosophila models highlighted importance of host proteins, chaperons, and protein clearance pathways in polyglutamine diseases as well as that of RNA-binding proteins in noncoding repeat RNA toxicity diseases. Recent novel aspects revealed in Drosophila models include pleiotropic Ataxin 2 interactions, antisense transcription in trinucleotide repeat diseases, contribution of CAG RNA in polyglutamine diseases, and the role of RNA foci in CUG expansion diseases. Drosophila models have been also used for repeat stability studies.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Biology, 415 S University Ave., University of Pennsylvania, PA, USA
| | | |
Collapse
|
80
|
Abstract
Myotonic dystrophies (dystrophia myotonica, or DM) are inherited disorders characterized by myotonia and progressive muscle degeneration, which are variably associated with a multisystemic phenotype. To date, two types of myotonic dystrophy, type 1 (DM1) and type 2 (DM2), are known to exist; both are autosomal dominant disorders caused by expansion of an untranslated short tandem repeat DNA sequence (CTG)(n) and (CCTG)(n), respectively. These expanded repeats in DM1 and DM2 show different patterns of repeat-size instability. Phenotypes of DM1 and DM2 are similar but there are some important differences, most conspicuously in the severity of the disease (including the presence or absence of the congenital form), muscles primarily affected (distal versus proximal), involved muscle fiber types (type 1 versus type 2 fibers), and some associated multisystemic phenotypes. The pathogenic mechanism of DM1 and DM2 is thought to be mediated by the mutant RNA transcripts containing expanded CUG and CCUG repeats. Strong evidence supports the hypothesis that sequestration of muscle-blind like (MBNL) proteins by these expanded repeats leads to misregulated splicing of many gene transcripts in corroboration with the raised level of CUG-binding protein 1. However, additional mechanisms, such as changes in the chromatin structure involving CTCN-binding site and gene expression dysregulations, are emerging. Although treatment of DM1 and DM2 is currently limited to supportive therapies, new therapeutic approaches based on pathogenic mechanisms may become feasible in the near future.
Collapse
Affiliation(s)
- Tetsuo Ashizawa
- Department of Neurology, McKnight Brain Institute, The University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
81
|
Magaña JJ, Cisneros B. Perspectives on gene therapy in myotonic dystrophy type 1. J Neurosci Res 2010; 89:275-85. [DOI: 10.1002/jnr.22551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 11/08/2022]
|
82
|
Abstract
Trinucleotide expansion underlies several human diseases. Expansion occurs during multiple stages of human development in different cell types, and is sensitive to the gender of the parent who transmits the repeats. Repair and replication models for expansions have been described, but we do not know whether the pathway involved is the same under all conditions and for all repeat tract lengths, which differ among diseases. Currently, researchers rely on bacteria, yeast and mice to study expansion, but these models differ substantially from humans. We need now to connect the dots among human genetics, pathway biochemistry and the appropriate model systems to understand the mechanism of expansion as it occurs in human disease.
Collapse
|
83
|
Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin–proteasome pathway. Neuromuscul Disord 2010; 20:319-25. [DOI: 10.1016/j.nmd.2010.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 01/05/2023]
|
84
|
Rusconi F, Mancinelli E, Colombo G, Cardani R, Da Riva L, Bongarzone I, Meola G, Zippel R. Proteome profile in Myotonic Dystrophy type 2 myotubes reveals dysfunction in protein processing and mitochondrial pathways. Neurobiol Dis 2010; 38:273-80. [DOI: 10.1016/j.nbd.2010.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 02/07/2023] Open
|
85
|
Mulders SAM, van Engelen BGM, Wieringa B, Wansink DG. Molecular therapy in myotonic dystrophy: focus on RNA gain-of-function. Hum Mol Genet 2010; 19:R90-7. [DOI: 10.1093/hmg/ddq161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
86
|
Schoser B, Timchenko L. Myotonic dystrophies 1 and 2: complex diseases with complex mechanisms. Curr Genomics 2010; 11:77-90. [PMID: 20885816 PMCID: PMC2874224 DOI: 10.2174/138920210790886844] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/22/2009] [Accepted: 11/25/2009] [Indexed: 11/22/2022] Open
Abstract
Two multi-system disorders, Myotonic Dystrophies type 1 and type 2 (DM1 and DM2), are complex neuromuscular diseases caused by an accumulation of expanded, non-coding RNAs, containing repetitive CUG and CCUG elements. Similarities of these mutations suggest similar mechanisms for both diseases. The expanded CUGn and CCUGn RNAs mainly target two RNA binding proteins, MBNL1 and CUGBP1, elevating levels of CUGBP1 and reducing levels of MBNL1. These alterations change processing of RNAs that are regulated by these proteins. Whereas overall toxicity of CUGn/CCUGn RNAs on RNA homeostasis in DM cells has been proven, the mechanisms which make these RNAs toxic remain illusive. A current view is that the toxicity of RNA CUGn and CCUGn is associated exclusively with global mis-splicing in DM patients. However, a growing number of new findings show that the expansion of CUGn and CCUGn RNAs mis-regulates several additional pathways in nuclei and cytoplasm of cells from patients with DM1 and DM2. The purpose of this review is to discuss the similarities and differences in the clinical presentation and molecular genetics of both diseases. We will also discuss the complexity of the molecular abnormalities in DM1 and DM2 caused by CUG and CCUG repeats and will summarize the outcomes of the toxicity of CUG and CCUG repeats.
Collapse
Affiliation(s)
- Benedikt Schoser
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximilians-University, Ziemssenstr. 1a, Munich, Germany
| | - Lubov Timchenko
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
87
|
Romeo V, Pegoraro E, Ferrati C, Squarzanti F, Sorarù G, Palmieri A, Zucchetta P, Antunovic L, Bonifazi E, Novelli G, Trevisan CP, Ermani M, Manara R, Angelini C. Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study in DM1 and DM2. J Neurol 2010; 257:1246-55. [PMID: 20221771 DOI: 10.1007/s00415-010-5498-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 01/16/2010] [Accepted: 02/04/2010] [Indexed: 01/18/2023]
Abstract
The objective of this study was to determine the degree of brain involvement in a cohort of myotonic dystrophy type 1 and type 2 (DM1, DM2) patients by brain studies and functional tests and to compare the results of the two groups. DM1, DM2 are multisystemic disorders due to polynucleotide expansions. Previous studies on brain involvement by neuroimaging and functional methods have led to contradictory results. Fifty molecularly defined DM1 patients and 14 DM2 patients, were recruited for the study. Age at recruitment, age at disease onset, disease duration and educational level were recorded. Neuromuscular assessment was done by MIRS. An extensive neuropsychological battery was performed in 48/50 DM1 and in a control group of 44 healthy matched subjects. Forty six of 50 DM1 and 12/14 DM2 underwent brain MRI; 21/50 DM1 and 9/14 DM2 underwent brain perfusion SPECT, with semiquantitative analysis of the results. MRI images were classified by ARWMC (age-related white matter changes) score, in order to quantify recurrence, localization and patterns of distribution of white matter hyperintense lesions (WMHLs) in our two cohorts. MRI results were matched to SPECT and to neuropsychological results. Thirty-seven of 46 DM1 and 10/12 DM2 had abnormal MRI imaging, showing scattered supratentorial, bilateral, symmetrical focal or diffuse WMHLs. A typical temporo-insular diffuse subcortical pattern was seen in DM1 subjects only, with no correlation with cognitive involvement. Major cognitive involvement was seen in the case of diffuse frontal lesions. A relationship with CTG expansion size was documented for DM1 subjects. SPECT showed minimal hypoperfusion in the posterior cortex planes in DM1 and, to a lesser extent, in DM2. Very mild degrees of involvement in the DM2 cohort were seen. Neuroimaging and functional investigations confirmed a more severe involvement of the brain in DM1 compared to DM2. A temporo-insular diffuse lesional pattern, specific for DM1, was found on MRI. This confirms greater expansion size as a risk factor for more extensive brain involvement in DM1.
Collapse
Affiliation(s)
- Vincenzo Romeo
- Department of Neurosciences, School of Medicine, University of Padova, via Giustiniani, 5, 35128 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Forner F, Furlan S, Salvatori S. Mass spectrometry analysis of complexes formed by myotonic dystrophy protein kinase (DMPK). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1334-41. [PMID: 20188867 DOI: 10.1016/j.bbapap.2010.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/28/2010] [Accepted: 02/18/2010] [Indexed: 12/24/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expansion of CTG repeats at the 3'-UTR of the serine/threonine protein kinase DMPK. Expanded CTG repeats are toxic since they are transcribed into an RNA molecule which is then sequestered within the nucleus in the form of foci. RNA cytotoxicity is linked to the aberrant splicing of several developmentally regulated genes. DMPK transcripts undergo alternative splicing giving rise to many isoforms but do not seem to be involved in the splicing dysregulation of DM1. However, decreased levels of DMPK in DM1 patients and DMPK involvement in muscle weakness and cardiac dysfunction in animal models have been reported. The variability in phenotypic expression of DMPK together with its differential subcellular targeting, suggests that different splicing isoforms may be involved in different signalling pathways, possibly through DMPK-interacting proteins. To gain better insight into the DMPK function, we used mass spectrometry to identify proteins co-segregating with DMPK in soluble complexes isolated from high-speed supernatant of rat muscles. We carried out experiments with native DMPK to preserve the physiological stoichiometry with potential partners. DMPK-containing complexes were isolated and immuno-detected by non-denaturing electrophoresis, gel filtration, ionic-exchange chromatography and immunoprecipitation. DMPK peptides were identified by high-resolution mass spectrometry together with several putative DMPK-binding proteins, including several heat shock proteins such as HSP20/HSPB6, HSP60/CPN60, HSP70 and HSP90. We also obtained evidence of a direct interaction of DMPK with alphaB-crystallin/HSPB5 and HSP25/HSPB1.
Collapse
Affiliation(s)
- Francesca Forner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
89
|
Braida C, Stefanatos RK, Adam B, Mahajan N, Smeets HJ, Niel F, Goizet C, Arveiler B, Koenig M, Lagier-Tourenne C, Mandel JL, Faber CG, de Die-Smulders CE, Spaans F, Monckton DG. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol Genet 2010; 19:1399-412. [DOI: 10.1093/hmg/ddq015] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
90
|
Łusakowska A, Sułek-Piątkowska A. Dystrofia miotoniczna – nowe spojrzenie na znaną chorobę. Neurol Neurochir Pol 2010; 44:264-76. [DOI: 10.1016/s0028-3843(14)60041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
91
|
Massa R, Panico MB, Caldarola S, Fusco FR, Sabatelli P, Terracciano C, Botta A, Novelli G, Bernardi G, Loreni F. The myotonic dystrophy type 2 (DM2) gene product zinc finger protein 9 (ZNF9) is associated with sarcomeres and normally localized in DM2 patients' muscles. Neuropathol Appl Neurobiol 2009; 36:275-84. [PMID: 20102514 DOI: 10.1111/j.1365-2990.2010.01068.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS Myotonic dystrophy type 2 (DM2) is caused by a [CCTG]n intronic expansion in the zinc finger protein 9 (ZNF9) gene. As for DM1, sharing with DM2 a similar phenotype, the pathogenic mutation involves a transcribed but untranslated genomic region, suggesting that RNA toxicity may have a role in the pathogenesis of these multisystem disorders by interfering with common cellular mechanisms. However, haploinsufficiency has been described in DM1 and DM2 animal models, and might contribute to pathogenesis. The aim of the present work was therefore to assess ZNF9 protein expression in rat tissues and in human muscle, and ZNF9 subcellular distribution in normal and DM2 human muscles. METHODS Polyclonal anti-ZNF9 antibodies were obtained in rabbit, high pressure liquid chromatography-purified, and used for Western blot, standard and confocal immunofluorescence and immunogold labelling electron microscopy on a panel of normal rat tissues and on normal and DM2 human muscles. RESULTS Western blot analysis showed that ZNF9 is ubiquitously expressed in mammalian tissues, and that its signal is not substantially modified in DM2 muscles. Immunofluorescence studies showed a myofibrillar distribution of ZNF9, and double staining with two non-repetitive epitopes of titin located it in the I bands. This finding was confirmed by the visualization of ZNF9 in close relation with sarcomeric thin filaments by immunogold labelling electron microscopy. ZNF9 distribution was unaltered in DM2 muscle fibres. CONCLUSIONS ZNF9 is abundantly expressed in human myofibres, where it is located in the sarcomeric I bands, and no modification of this pattern is observed in DM2 muscles.
Collapse
Affiliation(s)
- R Massa
- Department of Neurosciences, Tor Vergata University of Rome, Via Montpellier 1, I-00133, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Parness J, Bandschapp O, Girard T. The Myotonias and Susceptibility to Malignant Hyperthermia. Anesth Analg 2009; 109:1054-64. [DOI: 10.1213/ane.0b013e3181a7c8e5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
93
|
Absence of a differentiation defect in muscle satellite cells from DM2 patients. Neurobiol Dis 2009; 36:181-90. [DOI: 10.1016/j.nbd.2009.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/07/2009] [Accepted: 07/16/2009] [Indexed: 01/01/2023] Open
|
94
|
Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French JM, Thornton CA, Disney MD. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. J Am Chem Soc 2009; 131:9767-79. [PMID: 19552411 PMCID: PMC2731475 DOI: 10.1021/ja9020149] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed that exhibit higher affinity and specificity for binding RNA than natural proteins. These studies suggest a general approach to targeting RNA, including those that cause RNA dominant disease.
Collapse
Affiliation(s)
- Alexei Pushechnikov
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 657 Natural Sciences Complex, Buffalo, NY 14260
| | - Melissa M. Lee
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 657 Natural Sciences Complex, Buffalo, NY 14260
| | | | - Krzysztof Sobczak
- Department of Neurology, University of Rochester, Rochester, NY, 14620
| | - Jonathan M. French
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 657 Natural Sciences Complex, Buffalo, NY 14260
| | | | - Matthew D. Disney
- Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 657 Natural Sciences Complex, Buffalo, NY 14260
| |
Collapse
|
95
|
Elkins JM, Amos A, Niesen FH, Pike ACW, Fedorov O, Knapp S. Structure of dystrophia myotonica protein kinase. Protein Sci 2009; 18:782-91. [PMID: 19309729 DOI: 10.1002/pro.82] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled-coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM-8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled-coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully-ordered and correctly positioned alphaC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C-terminal extension of the kinase domain is bound to the N-terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C-terminal extension compared to the closely related Rho-associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM-8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
96
|
Milone M, Batish SD, Daube JR. Myotonic dystrophy type 2 with focal asymmetric muscle weakness and no electrical myotonia. Muscle Nerve 2009; 39:383-5. [PMID: 19208413 DOI: 10.1002/mus.21150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetically proven myotonic dystrophy type 2 (DM2) was found in a 61-year-old woman with creatine kinase (CK) elevation and only isolated weakness of one triceps. There was no clinical or electrical myotonia. Electromyography (EMG) showed only scattered fibrillation potentials and short duration motor unit potentials. Muscle biopsy showed nonspecific myopathic features and highly atrophic fibers with nuclear clumps. DM2 should be considered in patients with focal proximal weakness and abnormal EMG without myotonic discharges.
Collapse
Affiliation(s)
- Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, USA.
| | | | | |
Collapse
|
97
|
Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2. Neuromuscul Disord 2009; 19:335-43. [PMID: 19345584 DOI: 10.1016/j.nmd.2009.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 12/22/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by a CCTG expansion in intron 1 of the zinc finger protein 9 gene on chromosome 3. Mutant transcripts are retained in muscle nuclei producing ribonuclear inclusions, which can bind specific RNA-binding proteins leading to a reduction in their activity. The nuclear sequestration of muscleblind-like proteins appears to be involved in splicing defects of genes directly related to the myotonic dystrophy phenotypes. Experimental evidence suggests that ribonuclear inclusions and muscleblind-like protein 1 (MBNL1) sequestration are strongly involved in DM2 pathogenesis. By using fluorescence in situ hybridization in combination with MBNL1-immunofluorescence, we have observed the presence of ribonuclear inclusions and MBNL1 nuclear sequestration at different time points of in vitro myoblast differentiation in each DM2 patient examined. Immunofluorescence and Western blot analysis of several markers of skeletal muscle differentiation reveal that the degree of differentiation of DM2 myoblasts is comparable to that observed in controls. Nevertheless the splicing pattern of the insulin receptor and MBNL1 transcripts, directly related to the DM2 phenotype, appears to be altered in in vitro differentiated DM2 myotubes. Our data seem indicate that the presence of ribonuclear inclusions and MBNL1 nuclear foci are involved in alteration of alternative splicing but do not impair DM2 myogenic differentiation.
Collapse
|
98
|
Cardani R, Mancinelli E, Giagnacovo M, Sansone V, Meola G. Ribonuclear inclusions as biomarker of myotonic dystrophy type 2, even in improperly frozen or defrozen skeletal muscle biopsies. Eur J Histochem 2009; 53:e13. [PMID: 19683984 PMCID: PMC3167286 DOI: 10.4081/ejh.2009.e13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2009] [Indexed: 01/14/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a dominantly inherited disorder caused by a CCTG repeat expansion in intron 1 of ZNF9 gene. The size and the somatic instability of DM2 expansion complicate the molecular diagnosis of DM2. In situ hybridization represents a rapid and sensitive method to obtain a definitive diagnosis in few hours, since it allows the direct visualization of the mutant mRNA foci on skeletal muscle sections. This approach makes the muscle biopsy an important tool for definitive diagnosis of DM2. Consequently, a rapid freezing at ultra cold temperature and a good storage of muscle specimens are essential to avoid morphologic alterations and nucleic acids degradation. However incorrect freezing or thawing may accidentally occur. In this work we report that fluorescence in situ hybridization may be applied on improperly frozen or inappropriately stored muscle biopsies since foci of mutant mRNA are well preserved and can still be detected in muscle sections no more useful for histopathological evaluation.
Collapse
Affiliation(s)
- R Cardani
- Department of Molecular Biology and Biotechnologies, University of Milan, Italy
| | | | | | | | | |
Collapse
|
99
|
Kim SY, Kim JY, Kim GP, Sung JJ, Lim KS, Lee KW, Chae JH, Hong YH, Seong MW, Park SS. Molecular and clinical characteristics of myotonic dystrophy type 1 in koreans. Korean J Lab Med 2009; 28:483-92. [PMID: 19127114 DOI: 10.3343/kjlm.2008.28.6.483] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is an autosomal-dominant muscular dystrophy caused by expansion of cytosine-thymine-guanine (CTG) trinucleotide repeats in the myotonic dystrophy protein kinase (DMPK) gene. The clinical features of DM1 are multisystemic and highly variable, and the unstable nature of CTG expansion causes wide genotypic and phenotypic presentations. The aim of this study was to characterize the molecular and clinical spectra of DM1 in Koreans. METHODS The CTG repeats of 283 Korean individuals were tested by PCR fragment analysis and Southern blot. The following characteristics were assessed retrospectively: spectrum of CTG expansions, clinical findings, genotype-phenotype correlation, anticipation, and genetic instability. RESULTS One-hundred twenty-four patients were confirmed as DM1 by molecular tests, and the CTG expansions ranged from 50 to 2,770 repeats (median 480 repeats). The most frequent clinical features were myotonia, muscular weakness, and family history. Patients with muscular weakness or dysfunction of the central nervous system harbored larger CTG expansions than those without each symptom (P<0.05). The age of onset was inversely correlated with the size of the CTG expansion (gamma=-0.422, P<0.001). The instability of CTG expansion representing as the maximum difference between sibships was observed from 50 to 700 repeats in nine families. Clinical anticipation and the increase in CTG repeat were significantly higher in maternally transmitted alleles (P=0.002). CONCLUSIONS Molecular genetic tests are not only essential for diagnosis, but also helpful for suggesting the spectrum and relationship between genotype and phenotype in Korean DM1 patients.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Thornell LE, Lindstöm M, Renault V, Klein A, Mouly V, Ansved T, Butler-Browne G, Furling D. Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1. Neuropathol Appl Neurobiol 2009; 35:603-13. [PMID: 19207265 DOI: 10.1111/j.1365-2990.2009.01014.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Myotonic dystrophy type 1 (DM1), one of the most common forms of inherited neuromuscular disorders in the adult, is characterized by progressive muscle weakness and wasting leading to distal muscle atrophy whereas proximal muscles of the same patients are spared during the early phase of the disease. In this report, the role of satellite cell dysfunction in the progressive muscular atrophy has been investigated. METHODS Biopsies were obtained from distal and proximal muscles of the same DM1 patients. Histological and immunohistological analyses were carried out and the past regenerative history of the muscle was evaluated. Satellite cell number was quantified in vivo and proliferative capacity was determined in vitro. RESULTS The size of the CTG expansion was positively correlated with the severity of the symptoms and the degree of muscle histopathology. Marked atrophy associated with typical DM1 features was observed in distal muscles of severely affected patients whereas proximal muscles were relatively spared. The number of satellite cells was significantly increased (twofold) in the distal muscles whereas very little regeneration was observed as confirmed by telomere analyses and developmental MyHC staining (0.3-3%). The satellite cells isolated from the DM1 distal muscles had a reduced proliferative capacity (36%) and stopped growing prematurely with telomeres longer than control cells (8.4 vs. 7.1 kb), indicating that the behaviour of these precursor cells was modified. CONCLUSIONS Our results indicate that alterations in the basic functions of the satellite cells progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.
Collapse
Affiliation(s)
- L-E Thornell
- Department of Integrative Medical Biology, Umea University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|