51
|
Analysis of lipid profile in lipid storage myopathy. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:157-168. [DOI: 10.1016/j.jchromb.2016.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 01/27/2023]
|
52
|
Abstract
One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.
Collapse
|
53
|
Béhin A, Acquaviva-Bourdain C, Souvannanorath S, Streichenberger N, Attarian S, Bassez G, Brivet M, Fouilhoux A, Labarre-Villa A, Laquerrière A, Pérard L, Kaminsky P, Pouget J, Rigal O, Vanhulle C, Eymard B, Vianey-Saban C, Laforêt P. Multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of late-onset treatable metabolic disease. Rev Neurol (Paris) 2016; 172:231-41. [PMID: 27038534 DOI: 10.1016/j.neurol.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare, treatable, beta-oxidation disorder responsible for neuromuscular symptoms in adults. This case series describes the clinical and biochemical features of 13 French patients with late-onset MADD. METHODS AND RESULTS Thirteen ambulant patients (eight women, five men), with a median age at onset of 27 years, initially experienced exercise intolerance (n=9), isolated muscle weakness (n=1) and a multisystemic pattern with either central nervous system or hepatic dysfunction (n=3). During the worsening period, moderate rhabdomyolysis (n=5), a pseudomyasthenic pattern (n=5) and acute respiratory failure (n=1) have been observed. Weakness typically affected the proximal limbs and axial muscles, and there was sometimes facial asymmetry (n=3). Moderate respiratory insufficiency was noted in one case. Median baseline creatine kinase was 190IU/L. Lactacidemia was sometimes moderately increased at rest (3/10) and after exercise (1/3). The acylcarnitine profile was characteristic, with increases in all chain-length acylcarnitine species. Electromyography revealed a myogenic pattern, while muscle biopsy showed lipidosis, sometimes with COX-negative fibers (n=2). The mitochondrial respiratory chain was impaired in five cases, with coenzyme Q10 decreased in two cases. All patients harbored mutations in the ETFDH gene (four homozygous, seven compound heterozygous, two single heterozygous), with nine previously unidentified mutations. All patients were good responders to medical treatment, but exercise intolerance and/or muscular weakness persisted in 11 of them. CONCLUSION Late-onset forms of MADD may present as atypical beta-oxidation disorders. Acylcarnitine profiling and muscle biopsy remain the most decisive investigations for assessing the diagnosis. These tests should thus probably be performed more widely, particularly in unexplained cases of neuromuscular and multisystemic disorders.
Collapse
Affiliation(s)
- A Béhin
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | - C Acquaviva-Bourdain
- Centre de Référence des Maladies Héréditaires du Métabolisme, Inserm U820, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - S Souvannanorath
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - N Streichenberger
- Service de Neuropathologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Université Claude Bernard Lyon I, 69500 Bron, France
| | - S Attarian
- AP-HM, Centre de Référence des Maladies Neuromusculaires et de la SLA, CHU de La Timone, 13005 Marseille, France
| | - G Bassez
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Ouest, CHU Henri-Mondor, Créteil, France
| | - M Brivet
- AP-HP, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert-Debré, 75020 Paris, France
| | - A Fouilhoux
- Centre de Référence lyonnais des Maladies Héréditaires du Métabolisme, Groupement Hospitalier Est, Hôpital Femme Mère-Enfant, CHU de Lyon, 69500 Bron, France
| | - A Labarre-Villa
- Centre de Référence Rhône-Alpes des Maladies Neuromusculaires, CHU de Grenoble, 38000 Grenoble, France
| | - A Laquerrière
- Service d'Anatomie et Cytologie pathologiques, CHU de Rouen, 76000 Rouen, France
| | - L Pérard
- Service de Médecine Interne, Hôpital Édouard-Herriot, 69437 Lyon cedex 03, France
| | - P Kaminsky
- Centre de Référence des Maladies Neuromusculaires, CHU de Nancy (Hôpitaux de Brabois), 54500 Vandœuvre-Lès-Nancy, France
| | - J Pouget
- AP-HM, Centre de Référence des Maladies Neuromusculaires et de la SLA, CHU de La Timone, 13005 Marseille, France
| | - O Rigal
- AP-HP, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert-Debré, 75020 Paris, France
| | - C Vanhulle
- Centre de Compétences Pathologies Neuromusculaires Enfants, Néonatalogie et Réanimation Pédiatrique, CHU de Rouen, 76000 Rouen, France
| | - B Eymard
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C Vianey-Saban
- Centre de Référence des Maladies Héréditaires du Métabolisme, Inserm U820, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - P Laforêt
- AP-HP, Service de Biochimie, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
54
|
Fragaki K, Chaussenot A, Benoist JF, Ait-El-Mkadem S, Bannwarth S, Rouzier C, Cochaud C, Paquis-Flucklinger V. Coenzyme Q10 defects may be associated with a deficiency of Q10-independent mitochondrial respiratory chain complexes. Biol Res 2016; 49:4. [PMID: 26742794 PMCID: PMC4705639 DOI: 10.1186/s40659-015-0065-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coenzyme Q10 (CoQ10 or ubiquinone) deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC) spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system. It is widely reported that CoQ10 deficient patients present decreased quinone-dependent activities (segments I + III or G3P + III and II + III) while MRC activities of complexes I, II, III, IV and V are normal. We previously suggested that CoQ10 defect may be associated with a deficiency of CoQ10-independent MRC complexes. The aim of this study was to verify this hypothesis in order to improve the diagnosis of this disease. RESULTS To determine whether CoQ10 defect could be associated with MRC deficiency, we quantified CoQ10 by LC-MSMS in a cohort of 18 patients presenting CoQ10-dependent deficiency associated with MRC defect. We found decreased levels of CoQ10 in eight patients out of 18 (45 %), thus confirming CoQ10 disease. CONCLUSIONS Our study shows that CoQ10 defect can be associated with MRC deficiency. This could be of major importance in clinical practice for the diagnosis of a disease that can be improved by CoQ10 supplementation.
Collapse
Affiliation(s)
- Konstantina Fragaki
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France. .,Department of Medical Genetics, Nice Teaching Hospital, National Centre for Mitochondrial Diseases, Nice, France.
| | - Annabelle Chaussenot
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France. .,Department of Medical Genetics, Nice Teaching Hospital, National Centre for Mitochondrial Diseases, Nice, France.
| | | | - Samira Ait-El-Mkadem
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France. .,Department of Medical Genetics, Nice Teaching Hospital, National Centre for Mitochondrial Diseases, Nice, France.
| | - Sylvie Bannwarth
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France. .,Department of Medical Genetics, Nice Teaching Hospital, National Centre for Mitochondrial Diseases, Nice, France.
| | - Cécile Rouzier
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France. .,Department of Medical Genetics, Nice Teaching Hospital, National Centre for Mitochondrial Diseases, Nice, France.
| | - Charlotte Cochaud
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France.
| | - Véronique Paquis-Flucklinger
- School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia-Antipolis University, 28 av de Valombrose, 06107, Nice Cedex 2, France. .,Department of Medical Genetics, Nice Teaching Hospital, National Centre for Mitochondrial Diseases, Nice, France.
| |
Collapse
|
55
|
Ersoy EO, Rama D, Ünal Ö, Sivri S, Topeli A. Glutaric aciduria type 2 presenting with acute respiratory failure in an adult. Respir Med Case Rep 2015; 15:92-4. [PMID: 26236614 PMCID: PMC4501457 DOI: 10.1016/j.rmcr.2015.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glutaric aciduria (GTA) type II can be seen as late onset form with myopathic phenotype. We present a case of a 19-year old female with progressive muscle weakness was admitted in intensive care unit (ICU) with respiratory failure and acute renal failure. Patient was unconscious. Pupils were anisocoric and light reflex was absent. She had hepatomegaly. The laboratory results showed a glucose level of 70 mg/dl and the liver enzymes were high. The patient also had hyponatremia (117 mEq/L) and lactate level of 3.9 mmol/L. Tandem MS and organic acid analysis were compatible with GTA type II. Carnitine 1gr, riboflavin 100 mg and co-enzymeQ10 100 mg was arranged. After four months from beginning of treatment tandem MS results are improved. Respiratory failure, acute renal failure due to profound proximal myopathy can be due to glutaric aciduria type II that responded rapidly to appropriate therapy.
Collapse
Affiliation(s)
- Ebru Ortac Ersoy
- Department of Internal Intensive Care Medicine, Hacettepe University Medicine Faculty Hospital, Ankara, Turkey
| | - Dorina Rama
- Department of Internal Intensive Care Medicine, Hacettepe University Medicine Faculty Hospital, Ankara, Turkey
| | - Özlem Ünal
- Department of Internal Intensive Care Medicine, Hacettepe University Medicine Faculty Hospital, Ankara, Turkey
| | - Serap Sivri
- Department of Internal Intensive Care Medicine, Hacettepe University Medicine Faculty Hospital, Ankara, Turkey
| | - Arzu Topeli
- Department of Internal Intensive Care Medicine, Hacettepe University Medicine Faculty Hospital, Ankara, Turkey
| |
Collapse
|
56
|
A case of late-onset riboflavin responsive multiple acyl-CoA dehydrogenase deficiency (MADD) with a novel mutation in ETFDH gene. J Neurol Sci 2015; 353:84-6. [PMID: 25913573 DOI: 10.1016/j.jns.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 11/21/2022]
Abstract
We report a novel mutation in the electron transfer flavoprotein dehydrogenase (EFTDH) gene in an adolescent Chinese patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD) characterized by muscle weakness as early symptom. At the age of 9 years, the patient experienced progressive muscle weakness. Blood creatine kinase level and aminotransferase were higher than normal. The muscle biopsy revealed lipid storage myopathy. Serum acylcarnitine and urine organic acid analyses were consistent with MADD. Genetic mutation analysis revealed a compound heterozygous mutation in EFTDH gene. The patients showed good response to riboflavin and l-carnitine treatment.
Collapse
|
57
|
Olpin SE, Murphy E, Kirk RJ, Taylor RW, Quinlivan R. The investigation and management of metabolic myopathies. J Clin Pathol 2015; 68:410-7. [DOI: 10.1136/jclinpath-2014-202808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a ‘rhabdomyolysis’ gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a ‘rhabdomyolysis’ gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Collapse
|
58
|
Wen B, Li D, Li W, Zhao Y, Yan C. Multiple acyl-CoA dehydrogenation deficiency as decreased acyl-carnitine profile in serum. Neurol Sci 2015; 36:853-9. [PMID: 25827849 DOI: 10.1007/s10072-015-2197-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
Abstract
We report a case with late onset riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency (MADD) characterized by decreased acyl-carnitine profile in serum which is consistent with primary systemic carnitine deficiency (CDSP) while just the contrary to a typical MADD. This patient complained with muscle weakness, muscle pain and intermittent vomiting, and was diagnosed as polymyositis, received prednisone therapy before consulted with us. Muscle biopsy revealed mild lipid storage. The findings of serum acyl-carnitines were consistent with CDSP manifesting as decreased free and total carnitines in serum. But oral L-carnitine supplementation was not very effective to this patient and mutation analysis of the SLC22A5 gene for CDSP was normal. Later, another acyl-carnitine analysis revealed a typical MADD profile in serum, which was characterized by increased multiple acyl-carnitines. Compound heterozygous mutations were identified in electron transferring-flavoprotein dehydrogenase (ETFDH) gene which confirmed the diagnosis of MADD. After administration of riboflavin, he improved dramatically, both clinically and biochemically. Thus, late onset riboflavin-responsive MADD should be included in the differential diagnosis for adult carnitine deficiency.
Collapse
Affiliation(s)
- Bing Wen
- Laboratory of Neuromuscular Disorders, Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | | | | | | | | |
Collapse
|
59
|
Whitaker CH, Felice KJ, Silvers D, Wu Q. Fulminant lipid storage myopathy due to multiple acyl-coenzyme a dehydrogenase deficiency. Muscle Nerve 2015; 52:289-93. [DOI: 10.1002/mus.24552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Charles H. Whitaker
- Department of Neuromuscular Medicine; Hospital for Special Care; 2150 Corbin Avenue New Britain Connecticut 06053 USA
| | - Kevin J. Felice
- Department of Neuromuscular Medicine; Hospital for Special Care; 2150 Corbin Avenue New Britain Connecticut 06053 USA
| | - David Silvers
- Department of Neurology; Hartford Hospital; Hartford Connecticut USA
| | - Qian Wu
- Deparment of Pathology; University of Connecticut Health Center; Farmington Connecticut USA
| |
Collapse
|
60
|
Ghosal A, Sabui S, Said HM. Identification and characterization of the minimal 5'-regulatory region of the human riboflavin transporter-3 (SLC52A3) in intestinal epithelial cells. Am J Physiol Cell Physiol 2014; 308:C189-96. [PMID: 25394472 DOI: 10.1152/ajpcell.00342.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human riboflavin (RF) transporter-3 (product of the SLC52A3 gene) plays an important role in intestinal RF absorption. Our aims in this study were to identify the minimal 5'-regulatory region of the SLC52A3 gene and the regulatory element(s) involved in its activity in intestinal epithelial cells, as well as to confirm promoter activity and establish physiological relevance in vivo in transgenic mice. With the use of transiently transfected human intestinal epithelial HuTu 80 cells and 5'-deletion analysis, the minimal SLC52A3 promoter was found to be encoded between -199 and +8 bp (using the start of the transcription start site as position 1). Although several putative cis-regulatory elements were predicted in this region, only the stimulating protein-1 (Sp1) binding site (at position -74/-71 bp) was found to play a role in promoter activity, as indicated by mutational analysis. Binding of Sp1 to the minimal SLC52A3 promoter was demonstrated by means of EMSA and supershift assays and by chromatin immunoprecipitation analysis. Studies with Drosophila SL2 cells (which lack Sp activity) confirmed the importance of Sp1 in driving the activity of the SLC52A3 minimal promoter; they further showed that Sp3 can also do the activation. Finally, with the use of luciferase gene fusions, the activity of the cloned SLC52A3 promoter was confirmed in vivo in transgenic mice. These studies report, for the first time, on the identification and characterization of the SLC52A3 promoter and also demonstrate the importance of Sp1 in regulating its activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Subrata Sabui
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
61
|
Sabui S, Ghosal A, Said HM. Identification and characterization of 5'-flanking region of the human riboflavin transporter 1 gene (SLC52A1). Gene 2014; 553:49-56. [PMID: 25284511 DOI: 10.1016/j.gene.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
The human SLC52A1 gene encodes the riboflavin transporter-1 (RFVT-1), a plasma membrane protein that transports vitamin B2 (riboflavin, RF) into cells, and thus, plays a role in controlling cellular homeostasis of RF in those tissues that express the carrier protein (e.g. placenta and intestine). Currently, there is nothing known about transcriptional regulation of the SLC52A1 gene, therefore, we aimed to clone and characterize its 5'-flanking region. Using rapid amplification of the cDNA ends (5'-RACE), we identified one transcription start site (TSS). A 579 bp segment of the 5'-flanking region of this gene was cloned which exhibited robust promoter activity upon transfection in human intestinal epithelial cells. Deletion analysis revealed that the core promoter activity to be embedded in a region between -234 and -23 that lacked TATA element, was GC-rich, and harbored several putative cis-regulatory sites including KLFs, AP-2, EGRF and Sp-1. Mutating each of these sites led to a significant decrease in promoter activity (which was highest for the Sp-1 site), suggesting their possible involvement in regulating SLC52A1 transcription. Focusing on the Sp-1 site, EMSA, super-shift and ChIP analysis was performed that established the interaction of the Sp-1 transcription factor with the SLC52A1 promoter; also, co-transfection of the minimal SLC52A1 promoter with an Sp-1 containing vector in Drosophila SL-2 cells led to significant promoter activation. These results are the first to reveal the identity of the minimal SLC52A1 promoter and to establish an important role for Sp-1 in its activity.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Abhisek Ghosal
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Hamid M Said
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| |
Collapse
|
62
|
Abstract
Although mitochondrial disorders are among the most common inherited conditions that cause neurologic impairment, there are currently no U.S. Food and Drug Administration (FDA)-approved medications designed to treat primary mitochondrial disease. This is in part related to the lack of biomarkers to monitor disease status or response to treatment and the paucity of randomized, controlled clinical trials focused on mitochondrial disease therapies. Despite this discouraging historical precedent, a number of new approaches to mitochondrial disease therapy are on the horizon. By studying metabolites central to redox chemistry, investigators are gaining new insights into potential noninvasive biomarkers. Controlled clinical trials designed to study the effects of novel redox-modulating therapies, such as EPI-743, in patients with inherited mitochondrial disease are also underway. Furthermore, several new compounds with potential effects on inner mitochondrial membrane function and mitochondrial biogenesis are in development. Such advances are providing the foundation for a new era in mitochondrial disease therapeutics.
Collapse
Affiliation(s)
- Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University and the Lucile Packard Children's Hospital, Stanford, CA, USA
| |
Collapse
|
63
|
Quinzii CM, Emmanuele V, Hirano M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol Syndromol 2014; 5:141-6. [PMID: 25126046 DOI: 10.1159/000360490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous syndrome which has been associated with 5 major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) nephropathy, (4) cerebellar ataxia, and (5) isolated myopathy. Of these phenotypes, cerebellar ataxia and syndromic or isolated nephrotic syndrome are the most common. CoQ10 deficiency predominantly presents in childhood. To date, causative mutations have been identified in a small proportion of patients, making it difficult to identify a phenotype-genotype correlation. Identification of CoQ10 deficiency is important because the disease, in particular muscle symptoms and nephropathy, frequently responds to CoQ10 supplementation.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Valentina Emmanuele
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| |
Collapse
|
64
|
Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis 2014; 9:117. [PMID: 25200064 PMCID: PMC4222585 DOI: 10.1186/s13023-014-0117-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder caused by deficiency of electron transfer flavoprotein or electron transfer flavoprotein dehydrogenase. The clinical picture of late-onset forms is highly variable with symptoms ranging from acute metabolic decompensations to chronic, mainly muscular problems or even asymptomatic cases. METHODS All 350 cases of late-onset MADD reported in the literature to date have been analyzed and evaluated with respect to age at presentation, diagnostic delay, biochemical features and diagnostic parameters as well as response to treatment. RESULTS Mean age at onset was 19.2 years. The mean delay between onset of symptoms and diagnosis was 3.9 years. Chronic muscular symptoms were more than twice as common as acute metabolic decompensations (85% versus 33% of patients, respectively). 20% had both acute and chronic symptoms. 5% of patients had died at a mean age of 5.8 years, while 3% of patients have remained asymptomatic until a maximum age of 14 years. Diagnosis may be difficult as a relevant number of patients do not display typical biochemical patterns of urine organic acids and blood acylcarnitines during times of wellbeing. The vast majority of patients carry mutations in the ETFDH gene (93%), while mutations in the ETFA (5%) and ETFB (2%) genes are the exceptions. Almost all patients with late-onset MADD (98%) are clearly responsive to riboflavin. CONCLUSIONS Late-onset MADD is probably an underdiagnosed disease and should be considered in all patients with acute or chronic muscular symptoms or acute metabolic decompensation with hypoglycemia, acidosis, encephalopathy and hepatopathy. This may not only prevent patients from invasive diagnostic procedures such as muscle biopsies, but also help to avoid fatal metabolic decompensations.
Collapse
Affiliation(s)
- Sarah C Grünert
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
65
|
Abstract
With advances in the genetics of muscle disease, the term, muscular dystrophy, has expanded to include mutations in an increasing large list of genes. This review discusses the genetics, pathophysiology, and potential treatments of the most common forms of muscular dystrophy: Duchenne muscular dystrophy, Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, and myotonic dystrophy. Other forms of muscular dystrophy and other genetic muscle disorders are also discussed to provide an overview of this complex clinical problem.
Collapse
Affiliation(s)
- Perry B Shieh
- Department of Neurology, UCLA Medical Center, 300 Medical Plaza, Suite B-200, Los Angeles, CA 90095, USA.
| |
Collapse
|
66
|
Touw CML, Derks TGJ, Bakker BM, Groen AK, Smit GPA, Reijngoud DJ. From genome to phenome-Simple inborn errors of metabolism as complex traits. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2021-2029. [PMID: 24905735 DOI: 10.1016/j.bbadis.2014.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 05/28/2014] [Indexed: 01/05/2023]
Abstract
Sporadically, patients with a proven defect in either mFAO or OXPHOS are described presenting with a metabolic profile and clinical phenotype expressing concurrent defects in both pathways. Biochemical linkages between both processes are tight. Therefore, it is striking that concurrent dysfunction of both systems occurs so infrequent. In this review, the linkages between OXPHOS and mFAO and the hypothesized processes responsible for concurrent problems in both systems are reviewed, both from the point of view of primary biochemical connections and secondary cellular responses, i.e. signaling pathways constituting nutrient-sensing networks. We propose that affected signaling pathways may play an important role in the phenomenon of concurrent defects. Recent data indicate that interference in the affected signaling pathways may resolve the pathological phenotype even though the primary enzyme deficiency persists. This offers new (unexpected) prospects for treatment of these inborn errors of metabolism. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- C M L Touw
- Section of Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands.
| | - T G J Derks
- Section of Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands
| | - B M Bakker
- Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands
| | - A K Groen
- Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands
| | - G P A Smit
- Section of Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands
| | - D J Reijngoud
- Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University of Groningen, University Medical Centre of Groningen, Groningen, The Netherlands
| |
Collapse
|
67
|
Xi J, Wen B, Lin J, Zhu W, Luo S, Zhao C, Li D, Lin P, Lu J, Yan C. Clinical features and ETFDH mutation spectrum in a cohort of 90 Chinese patients with late-onset multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2014; 37:399-404. [PMID: 24357026 DOI: 10.1007/s10545-013-9671-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
The major cause of lipid storage myopathies (LSM) in China is multiple acyl-CoA dehydrogenase deficiency (MADD) caused by ETFDH mutations. We here present an analysis of the spectrum of ETFDH mutations in the largest cohort of patients with MADD (90 unrelated patients). We identified 61 ETFDH mutations, including 31 novel mutations, which were widely distributed within the coding sequence. Three frequent mutations were identified: c.250G > A (most common in South China), c.770A > G and c.1227A > C (most common in both South and North China). Regional differences of allele frequency and further haplotype analysis suggest the possibility of founder effects of c.250G > A and c.770A > G. These findings promise to provide the basis for implementing a rapid and economical strategy for diagnosing MADD.
Collapse
Affiliation(s)
- Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Cornelius N, Corydon TJ, Gregersen N, Olsen RKJ. Cellular consequences of oxidative stress in riboflavin responsive multiple acyl-CoA dehydrogenation deficiency patient fibroblasts. Hum Mol Genet 2014; 23:4285-301. [PMID: 24698980 DOI: 10.1093/hmg/ddu146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are central to the molecular pathology of many human diseases. Riboflavin responsive multiple acyl-CoA dehydrogenation deficiency (RR-MADD) is in most cases caused by variations in the gene coding for electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Currently, patients with RR-MADD are treated with high doses of riboflavin resulting in improvements of the clinical and biochemical profiles. However, in our recent studies of RR-MADD, we have shown that riboflavin treatment cannot fully correct the molecular defect in patient cells producing increased reactive oxygen species (ROS). In the current study, we aim to elucidate the cellular consequences of increased ROS by studying the cellular ROS adaption systems including antioxidant system, mitochondrial dynamics and metabolic reprogramming. We have included fibroblasts from six unrelated RR-MADD patients and two control fibroblasts cultivated under supplemented and depleted riboflavin conditions and with coenzyme Q10 (CoQ10) treatment. We demonstrated inhibition of mitochondrial fusion with increased fractionation and mitophagy in the patient fibroblasts. Furthermore, we indicated a shift in the energy metabolism by decreased protein levels of SIRT3 and decreased expression of fatty acid β-oxidation enzymes in the patient fibroblasts. Finally, we showed that CoQ10 treatment has a positive effect on the mitochondrial dynamic in the patient fibroblasts, indicated by increased mitochondrial fusion marker and reduced mitophagy. In conclusion, our results indicate that RR-MADD patient fibroblasts suffer from a general mitochondria dysfunction, probably initiated as a rescue mechanism for the patient cells to escape apoptosis as a result of the oxidative stress.
Collapse
Affiliation(s)
- Nanna Cornelius
- Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus 8200, Denmark and
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus 8200, Denmark and
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus 8200, Denmark and
| |
Collapse
|
69
|
Engqvist MKM, Eßer C, Maier A, Lercher MJ, Maurino VG. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 2014; 19 Pt B:275-81. [PMID: 24561575 DOI: 10.1016/j.mito.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/03/2023]
Abstract
2-Hydroxyglutarate (2-HG) is a five-carbon dicarboxylic acid with a hydroxyl group at the alpha position, which forms a stereocenter in this molecule. Although the existence of mitochondrial D- and L-2HG metabolisms has long been known in different eukaryotes, the biosynthetic pathways, especially in plants, have not been completely elucidated. While D-2HG is involved in intermediary metabolism, L-2HG may not have a cellular function but it needs to be recycled through a metabolic repair reaction. Independent of their metabolic origin, D- and L-2HG are oxidized in plant mitochondria to 2-ketoglutarate through the action of two stereospecific enzymes, D- and L-2-hydroxyacid dehydrogenases. While plants are to a large extent unaffected by high cellular concentrations of D-2HG, deficiencies in the metabolism of D- and L-2HG result in fatal disorders in humans. We present current data gathered on plant D- and L-2HG metabolisms and relate it to existing knowledge on 2HG metabolism in other organisms. We focus on the metabolic origin of these compounds, the mitochondrial catabolic steps catalyzed by the stereospecific dehydrogenases, and phylogenetic relationships between different studied 2-hydroxyacid dehydrogenases.
Collapse
Affiliation(s)
- Martin K M Engqvist
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, CA 91125, United States
| | - Christian Eßer
- Institute for Computer Science, Heinrich-Heine-University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Alexander Maier
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich-Heine-University, Universitätsstr. 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany.
| |
Collapse
|
70
|
Rosenbohm A, Süssmuth SD, Kassubek J, Müller HP, Pontes C, Abicht A, Bulst S, Ludolph AC, Pinkhardt E. Novel ETFDH mutation and imaging findings in an adult with glutaric aciduria type II. Muscle Nerve 2014; 49:446-50. [PMID: 23893693 DOI: 10.1002/mus.23979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Glutaric aciduria type II (GAII) is a rare autosomal recessive disorder with variable clinical course. The disorder is caused by a defect in the mitochondrial electron transfer flavoprotein or the electron transfer flavoprotein dehydrogenase (ETFDH). METHODS We performed clinical characterization, brain and whole body MRI, muscle histopathology, and genetic analysis of the ETFDH gene in a young woman. RESULTS She presented with rhabdomyolysis and severe quadriparesis. We identified a novel homozygous missense mutation in ETFDH (c.1544G>T, p.Ser515Ile). Body fat MRI revealed a large amount of subcutaneous fat but no increase in visceral fat despite steatosis of liver and muscle. Diffusion tensor imaging (DTI) of cerebral MRI revealed reduced directionality of the white matter tracts. Histopathological findings showed lipid storage myopathy. CONCLUSIONS In this study, we highlight diagnostic clues and body fat MRI in this rare metabolic disorder.
Collapse
Affiliation(s)
- Angela Rosenbohm
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Buján N, Arias A, Montero R, García-Villoria J, Lissens W, Seneca S, Espinós C, Navas P, De Meirleir L, Artuch R, Briones P, Ribes A. Characterization of CoQ₁₀ biosynthesis in fibroblasts of patients with primary and secondary CoQ₁₀ deficiency. J Inherit Metab Dis 2014; 37:53-62. [PMID: 23774949 DOI: 10.1007/s10545-013-9620-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 11/30/2022]
Abstract
Primary coenzyme Q₁₀ (CoQ₁₀) deficiencies are associated with mutations in genes encoding enzymes important for its biosynthesis and patients are responsive to CoQ₁₀ supplementation. Early treatment allows better prognosis of the disease and therefore, early diagnosis is desirable. The complex phenotype and genotype and the frequent secondary CoQ₁₀ deficiencies make it difficult to achieve a definitive diagnosis by direct quantification of CoQ₁₀. We developed a non-radioactive methodology for the quantification of CoQ₁₀ biosynthesis in fibroblasts that allows the identification of primary deficiencies. Fibroblasts were incubated 72 h with 28 μmol/L (2)H₃-mevalonate or 1.65 mmol/L (13)C₆-p-hydroxybenzoate. The newly synthesized (2)H₃- and (13)C₆- labelled CoQ₁₀ were analysed by high performance liquid chromatography-tandem mass spectrometry. The mean and the reference range for (13)C₆-CoQ₁₀ and (2)H₃-CoQ₁₀ biosynthesis were 0.97 (0.83-1.1) and 0.13 (0.09-0.17) nmol/Unit of citrate synthase, respectively. We validated the methodology through the study of one patient with COQ2 mutations and six patients with CoQ₁₀ deficiency secondary to other inborn errors of metabolism. Afterwards we investigated 16 patients' fibroblasts and nine showed decreased CoQ₁₀ biosynthesis. Therefore, the next step is to study the COQ genes in order to reach a definitive diagnosis in these nine patients. In the patients with normal rates the deficiency is probably secondary. In conclusion, we have developed a non-invasive non-radioactive method suitable for the detection of defects in CoQ₁₀ biosynthesis, which offers a good tool for the stratification of patients with these treatable mitochondrial diseases.
Collapse
Affiliation(s)
- Nuria Buján
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Wakitani S, Torisu S, Yoshino T, Hattanda K, Yamato O, Tasaki R, Fujita H, Nishino K. Multiple Acyl-CoA Dehydrogenation Deficiency (Glutaric Aciduria Type II) with a Novel Mutation of Electron Transfer Flavoprotein-Dehydrogenase in a Cat. JIMD Rep 2013; 13:43-51. [PMID: 24142280 DOI: 10.1007/8904_2013_268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Multiple acyl-CoA dehydrogenation deficiency (MADD; also known as glutaric aciduria type II) is a human autosomal recessive disease classified as one of the mitochondrial fatty-acid oxidation disorders. MADD is caused by a defect in the electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH) molecule, but as yet, inherited MADD has not been reported in animals. Here we present the first report of MADD in a cat. The affected animal presented with symptoms characteristic of MADD including hypoglycemia, hyperammonemia, vomiting, diagnostic organic aciduria, and accumulation of medium- and long-chain fatty acids in plasma. Treatment with riboflavin and L-carnitine ameliorated the symptoms. To detect the gene mutation responsible for MADD in this case, we determined the complete cDNA sequences of feline ETFα, ETFβ, and ETFDH. Finally, we identified the feline patient-specific mutation, c.692T>G (p.F231C) in ETFDH. The affected animal only carries mutant alleles of ETFDH. p.F231 in feline ETFDH is completely conserved in eukaryotes, and is located on the apical surface of ETFDH, receiving electrons from ETF. This study thus identified the mutation strongly suspected to have been the cause of MADD in this cat.
Collapse
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Biochemistry and Molecular Biology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Liang WC, Nishino I. Riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency: A frequent condition in the southern Chinese population. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/ncn3.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Pediatrics; School of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Ichizo Nishino
- Department of Neuromuscular Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Clinical Development; Translational Medical Center; National Center of Neurology and Psychiatry; Tokyo Japan
| |
Collapse
|
74
|
Subramanian VS, Subramanya SB, Ghosal A, Said HM. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport. Am J Physiol Cell Physiol 2013; 305:C539-46. [PMID: 23804199 DOI: 10.1152/ajpcell.00089.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin B2 (riboflavin, RF) is essential for normal human health. Mammals obtain RF from exogenous sources via intestinal absorption and prevent its urinary loss by reabsorption in the kidneys. Both of these absorptive events are carrier-mediated and involve specific RF transporters (RFVTs). Chronic alcohol consumption in humans is associated with a high prevalence of RF deficiency and suboptimal levels, but little is known about the effect of chronic alcohol exposure on physiological and molecular parameters of the intestinal and renal RF transport events. We addressed these issues using rats chronically fed an alcohol liquid diet and pair-fed controls as a model. The results showed that chronic alcohol feeding significantly inhibits carrier-mediated RF transport across the intestinal brush-border and basolateral membrane domains of the polarized enterocytes. This inhibition was associated with a parallel reduction in the expression of the rat RFVT-1 and -3 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels. Chronic alcohol feeding also caused a significant inhibition in RF uptake in the colon. Similarly, a significant inhibition in carrier-mediated RF transport across the renal brush-border and basolateral membrane domains was observed, which again was associated with a significant reduction in the level of expression of RFVT-1 and -3 at the protein, mRNA, and hnRNA levels. These findings demonstrate that chronic alcohol exposure impairs both intestinal absorption and renal reabsorption processes of RF and that these effects are, at least in part, mediated via transcriptional mechanism(s) involving the slc52a1 and slc52a3 genes.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Department of Medicine and Physiology/Biophysics, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
75
|
Wen B, Li D, Shan J, Liu S, Li W, Zhao Y, Lin P, Zheng J, Li D, Gong Y, Yan C. Increased muscle coenzyme Q10 in riboflavin responsive MADD with ETFDH gene mutations due to secondary mitochondrial proliferation. Mol Genet Metab 2013; 109:154-60. [PMID: 23628458 DOI: 10.1016/j.ymgme.2013.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenation deficiency (MADD) has a wide range of phenotypic variation ranging from a neonatal lethal form to a mild late-onset form. Our previous data showed that in a group of Chinese patients, a mild type of MADD characterized by myopathy with clinically no other systemic involvement was caused by mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, which encodes electron transfer flavoprotein: ubiquinone oxidoreductase (ETF:QO). Coenzyme Q10 (CoQ10), a downstream electron receptor of ETF:QO was first reported deficient in muscle of MADD patients with ETFDH gene mutations. Nevertheless, this result was not confirmed in a recently published study. Therefore to elucidate muscle CoQ10 level in a large group of MADD patients may provide further insight into the pathomechanism and therapeutic strategies. In this study, we found that 34 riboflavin responsive patients with ETFDH gene mutations had an elevated CoQ10 pool in muscle by high performance liquid chromatography (HPLC). However, when CoQ10 levels were normalized to citrate synthase, a marker of mitochondrial mass, there was no significant difference between patients and normal controls. Meanwhile, the increased mitochondrial DNA copy number in muscle also supported that the elevated CoQ10 pool was mainly due to mitochondrial mass proliferation. The expression of CoQ10 biosynthesis genes showed no significant changes whereas genes involved in lipid metabolism, such as PPARα, were marked up regulated. Our results suggested that CoQ10 seems not to be a primary factor in riboflavin responsive MADD and the apparent increase in CoQ10 may be secondary to mitochondrial proliferation.
Collapse
Affiliation(s)
- Bing Wen
- Laboratory of Neuromuscular Disorders, Brain Science Research Institute and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Cornelius N, Byron C, Hargreaves I, Guerra PF, Furdek AK, Land J, Radford WW, Frerman F, Corydon TJ, Gregersen N, Olsen RKJ. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency. Hum Mol Genet 2013; 22:3819-27. [PMID: 23727839 DOI: 10.1093/hmg/ddt232] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is essential for the energy production of the cells and as an electron transporter in the mitochondrial respiratory chain. CoQ10 links the mitochondrial fatty acid β-oxidation to the respiratory chain by accepting electrons from electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Recently, it was shown that a group of patients with the riboflavin responsive form of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) carrying inherited amino acid variations in ETF-QO also had secondary CoQ10 deficiency with beneficial effects of CoQ10 treatment, thus adding RR-MADD to an increasing number of diseases involving secondary CoQ10 deficiency. In this study, we show that moderately decreased CoQ10 levels in fibroblasts from six unrelated RR-MADD patients were associated with increased levels of mitochondrial reactive oxygen species (ROS). Treatment with CoQ10, but not with riboflavin, could normalize the CoQ10 level and decrease the level of ROS in the patient cells. Additionally, riboflavin-depleted control fibroblasts showed moderate CoQ10 deficiency, but not increased mitochondrial ROS, indicating that variant ETF-QO proteins and not CoQ10 deficiency are the causes of mitochondrial ROS production in the patient cells. Accordingly, the corresponding variant Rhodobacter sphaeroides ETF-QO proteins, when overexpressed in vitro, bind a CoQ10 pseudosubstrate, Q10Br, less tightly than the wild-type ETF-QO protein, suggesting that molecular oxygen can get access to the electrons in the misfolded ETF-QO protein, thereby generating superoxide and oxidative stress, which can be reversed by CoQ10 treatment.
Collapse
|
77
|
Chien YH, Lee NC, Chao MC, Chen LC, Chen LH, Chien CC, Ho HC, Suen JH, Hwu WL. Fatty Acid oxidation disorders in a chinese population in taiwan. JIMD Rep 2013; 11:165-72. [PMID: 23700290 PMCID: PMC3755561 DOI: 10.1007/8904_2013_236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 04/14/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fatty acid oxidation (FAO) disorders are a heterogeneous group of inborn errors in the transportation and oxidation of fatty acids. FAO disorders were thought to be very rare in the Chinese population. Newborn screening for FAO disorders beginning in 2002 in Taiwan may have increased the diagnosis of this group of diseases. MATERIALS AND METHODS Till 2012, the National Taiwan University Hospital Newborn Screening Center screened more than 800,000 newborns for FAO disorders. Both patients diagnosed through screening and patients detected after clinical manifestations were included in this study. RESULTS A total of 48 patients with FAO disorders were identified during the study period. The disorders included carnitine palmitoyltransferase I deficiency, carnitine acylcarnitine translocase deficiency, carnitine palmitoyltransferase II deficiency, very long-chain acyl-CoA dehydrogenase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, multiple acyl-CoA dehydrogenase deficiency, short-chain defects, and carnitine uptake defect. Thirty-nine patients were diagnosed through newborn screening. Five false-negative newborn screening cases were noted during this period, and four patients who were not screened were diagnosed based on clinical manifestations. The ages of all patients ranged from 6 months to 22.9 years (mean age 6.6 years). Except for one case of postmortem diagnosis, there were no other mortalities. CONCLUSIONS The combined incidence of FAO disorders estimated by newborn screening in the Chinese population in Taiwan is 1 in 20,271 live births. Newborn screening also increases the awareness of FAO disorders and triggers clinical diagnoses of these diseases.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- />Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- />Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chyn Chao
- />Division of Genetics, Endocrinology and Metabolism, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- />Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Chu Chen
- />Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Hsin Chen
- />Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Ching Chien
- />Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Chen Ho
- />Taipei Institute of Pathology, Taipei, Taiwan
| | | | - Wuh-Liang Hwu
- />Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
78
|
Dames S, Chou LS, Xiao Y, Wayman T, Stocks J, Singleton M, Eilbeck K, Mao R. The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J Mol Diagn 2013; 15:526-34. [PMID: 23665194 DOI: 10.1016/j.jmoldx.2013.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 01/25/2023] Open
Abstract
Sanger sequencing of multigenic disorders can be technically challenging, time consuming, and prohibitively expensive. High-throughput next-generation sequencing (NGS) can provide a cost-effective method for sequencing targeted genes associated with multigenic disorders. We have developed a NGS clinical targeted gene assay for the mitochondrial genome and for 108 selected nuclear genes associated with mitochondrial disorders. Mitochondrial disorders have a reported incidence of 1 in 5000 live births, encompass a broad range of phenotypes, and are attributed to mutations in the mitochondrial and nuclear genomes. Approximately 20% of mitochondrial disorders result from mutations in mtDNA, with the remaining 80% found in nuclear genes that affect mtDNA levels or mitochondrion protein assembly. In our NGS approach, the 16,569-bp mtDNA is enriched by long-range PCR and the 108 nuclear genes (which represent 1301 amplicons and 680 kb) are enriched by RainDance emulsion PCR. Sequencing is performed on Illumina HiSeq 2000 or MiSeq platforms, and bioinformatics analysis is performed using commercial and in-house developed bioinformatics pipelines. A total of 16 validation and 13 clinical samples were examined. All previously reported variants associated with mitochondrial disorders were found in validation samples, and 5 of the 13 clinical samples were found to have mutations associated with mitochondrial disorders in either the mitochondrial genome or the 108 nuclear genes. All variants were confirmed by Sanger sequencing.
Collapse
Affiliation(s)
- Shale Dames
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Ghosal A, Said HM. Mechanism and regulation of vitamin B2 (riboflavin) uptake by mouse and human pancreatic β-cells/islets: physiological and molecular aspects. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1052-8. [PMID: 22917629 PMCID: PMC3517668 DOI: 10.1152/ajpgi.00314.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Riboflavin (RF) is essential for the normal metabolic activities of pancreatic β-cells and provides protection against oxidative stress. Very little is known about the mechanism of RF uptake by these cells and how the process is regulated. We addressed these issues using mouse-derived pancreatic β-TC-6 cells and freshly isolated primary mouse and human pancreatic islets. Our results showed (3)H-RF uptake by β-TC-6 cells is Na(+) independent, cis inhibited by RF-related compounds, trans stimulated by unlabeled RF, and saturable as a function of concentration (apparent K(m) of 0.17 ± 0.02 μM). The latter findings suggest involvement of a carrier-mediated process. Similarly, RF uptake by primary mouse and human pancreatic islets was via carrier-mediated process. RF transporters 1, 2, and 3 (RFVT-1, -3, and -2) were all expressed in mouse and human pancreatic β-cells/islets, with RFVT-1 being the predominant transporter expressed in the mouse and RFVT-3 in the human. Specific knockdown of RFVT-1 with gene-specific small interfering RNA leads to a significant inhibition in RF uptake by β-TC-6 cells. RF uptake by β-TC-6 cells was also found to be adaptively upregulated in RF deficiency via a transcriptional mechanism(s). Also, the process appears to be under the regulation of a Ca(2+)/calmodulin-mediated regulatory pathway. Results of these studies demonstrate, for the first time, the involvement of a carrier-mediated process for RF uptake by mouse and human pancreatic β-cells/islets. Furthermore, the process appears to be regulated by extracellular and intracellular factors.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
80
|
Trakadis Y, Kadlubowska D, Barnes R, Mitchell J, Spector E, Frerman F, Melancon S. Pregnancy of a patient with multiple Acyl-CoA dehydrogenation deficiency (MADD). Mol Genet Metab 2012; 106:491-4. [PMID: 22664151 DOI: 10.1016/j.ymgme.2012.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022]
Abstract
We describe the pregnancy of a patient of French-Canadian descent with multiple Acyl-CoA dehydrogenation deficiency (MADD). The proband was found to harbor a previously reported homozygous missense mutation on EFTDH gene (p.Pro534Leu:c.1601C>T) confirming the biochemical diagnosis of MADD. This mutation was not found in 50 controls from the same ethnic background. The clinical and molecular information of all patients with ETFDH mutations reported in the literature up-to-date are summarized.
Collapse
Affiliation(s)
- Y Trakadis
- Department of Medical Genetics, McGill University, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
81
|
Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C. Progress in understanding 2-hydroxyglutaric acidurias. J Inherit Metab Dis 2012; 35:571-87. [PMID: 22391998 PMCID: PMC3388262 DOI: 10.1007/s10545-012-9462-5] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
Abstract
The organic acidurias D: -2-hydroxyglutaric aciduria (D-2-HGA), L-2-hydroxyglutaric aciduria (L-2-HGA), and combined D,L-2-hydroxyglutaric aciduria (D,L-2-HGA) cause neurological impairment at young age. Accumulation of D-2-hydroxyglutarate (D-2-HG) and/or L-2-hydroxyglutarate (L-2-HG) in body fluids are the biochemical hallmarks of these disorders. The current review describes the knowledge gathered on 2-hydroxyglutaric acidurias (2-HGA), since the description of the first patients in 1980. We report on the clinical, genetic, enzymatic and metabolic characterization of D-2-HGA type I, D-2-HGA type II, L-2-HGA and D,L-2-HGA, whereas for D-2-HGA type I and type II novel clinical information is presented which was derived from questionnaires.
Collapse
Affiliation(s)
- Martijn Kranendijk
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Eduard A. Struys
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Gajja S. Salomons
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Cornelis Jakobs
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
82
|
Cornelius N, Frerman FE, Corydon TJ, Palmfeldt J, Bross P, Gregersen N, Olsen RKJ. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency. Hum Mol Genet 2012; 21:3435-48. [PMID: 22611163 DOI: 10.1093/hmg/dds175] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR-MADD patients carry genetic defects in ETF-QO and that the well-documented clinical efficacy of riboflavin treatment may be based on a chaperone effect that can compensate for inherited folding defects of ETF-QO. In the present study, we investigate the molecular mechanisms and the genotype-phenotype relationships for the riboflavin responsiveness in MADD, using a human HEK-293 cell expression system. We studied the influence of riboflavin and temperature on the steady-state level and the activity of variant ETF-QO proteins identified in patients with RR-MADD, or non- and partially responsive MADD. Our results showed that variant ETF-QO proteins associated with non- and partially responsive MADD caused severe misfolding of ETF-QO variant proteins when cultured in media with supplemented concentrations of riboflavin. In contrast, variant ETF-QO proteins associated with RR-MADD caused milder folding defects when cultured at the same conditions. Decreased thermal stability of the variants showed that FAD does not completely correct the structural defects induced by the variation. This may cause leakage of electrons and increased reactive oxygen species, as reflected by increased amounts of cellular peroxide production in HEK-293 cells expressing the variant ETF-QO proteins. Finally, we found indications of prolonged association of variant ETF-QO protein with the Hsp60 chaperonin in the mitochondrial matrix, supporting indications of folding defects in the variant ETF-QO proteins.
Collapse
Affiliation(s)
- Nanna Cornelius
- The Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Denmark.
| | | | | | | | | | | | | |
Collapse
|
83
|
Hirano M, Garone C, Quinzii CM. CoQ(10) deficiencies and MNGIE: two treatable mitochondrial disorders. Biochim Biophys Acta Gen Subj 2012; 1820:625-31. [PMID: 22274133 DOI: 10.1016/j.bbagen.2012.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/28/2011] [Accepted: 01/10/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). SCOPE OF REVIEW Here, we describe clinical and molecular features of CoQ(10) deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ(10) deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ(10) biosynthesis, often improve with CoQ(10) supplementation. In vitro and in vivo studies of CoQ(10) deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ(10) deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE. MAJOR CONCLUSIONS CoQ(10) deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules. GENERAL SIGNIFICANCE Studies of CoQ(10) deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW Coenzyme Q (CoQ) is a vital component of the mitochondrial respiratory chain. A number of patients with CoQ deficiency presented with different clinical phenotypes, often affecting skeletal muscle, and responded well to CoQ supplementation. We discuss recent advances in this field with special attention to muscle involvement. RECENT FINDINGS The identification of genetic defects causing CoQ deficiency has allowed to distinguish primary forms, due to mutations in biosynthetic genes, from secondary defects caused either by mutations in genes unrelated to CoQ biosynthesis or by nongenetic factors. To date, none of the patients with genetically proven primary deficiency presented with an exclusively (or prominently) myopathic phenotype. Most patients with myopathy were found to harbor other genetic defects (mutations in electron-transferring-flavoprotein dehydrogenase or mitochondrial DNA). The majority of patients with CoQ deficiency still lack a genetic diagnosis. The pathogenesis of CoQ deficiency cannot be attributed solely to the bioenergetic defect, suggesting that other roles of CoQ, including its antioxidant properties or its role in pyrimidine metabolism, may also play crucial roles. SUMMARY Early recognition of CoQ deficiency is essential to institute appropriate and timely treatment, thus avoiding irreversible tissue damage.
Collapse
|
85
|
Wortmann SB, Kluijtmans LA, Engelke UFH, Wevers RA, Morava E. The 3-methylglutaconic acidurias: what's new? J Inherit Metab Dis 2012; 35:13-22. [PMID: 20882351 PMCID: PMC3249181 DOI: 10.1007/s10545-010-9210-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 11/26/2022]
Abstract
The heterogeneous group of 3-methylglutaconic aciduria (3-MGA-uria) syndromes includes several inborn errors of metabolism biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. Five distinct types have been recognized: 3-methylglutaconic aciduria type I is an inborn error of leucine catabolism; the additional four types all affect mitochondrial function through different pathomechanisms. We provide an overview of the expanding clinical spectrum of the 3-MGA-uria types and provide the newest insights into the underlying pathomechanisms. A diagnostic approach to the patient with 3-MGA-uria is presented, and we search for the connection between urinary 3-MGA excretion and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Saskia B. Wortmann
- 833 Nijmegen Centre for Mitochondrial Disorders at the Department of Pediatrics and the Institute of Genetic and Metabolic Disease (IGMD), Radboud University Nijmegen Medical Centre, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Leo A. Kluijtmans
- 830 Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- 830 Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ron A. Wevers
- 830 Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Eva Morava
- 833 Nijmegen Centre for Mitochondrial Disorders at the Department of Pediatrics and the Institute of Genetic and Metabolic Disease (IGMD), Radboud University Nijmegen Medical Centre, P.O Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
86
|
Cotelli MS, Vielmi V, Rimoldi M, Rizzetto M, Castellotti B, Bertasi V, Todeschini A, Gregorelli V, Baronchelli C, Gellera C, Padovani A, Filosto M. Riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency with unknown genetic defect. Neurol Sci 2011; 33:1383-7. [PMID: 22190129 DOI: 10.1007/s10072-011-0900-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessively inherited disorder of fatty acid metabolism due to ETFA, ETFB or ETFDH mutations. Riboflavin treatment ameliorates symptoms and metabolic profile in ETFDH-related MADD patients. We report on a 20-year-old boy with an 8-year history of progressive difficulty in walking, running and climbing stairs. Muscle biopsy showed a lipid myopathy and the acylcarnitine profile analysis was suggestive of MADD. Nevertheless, no evidence of molecular defects in the ETFA, ETFB and ETFDH exons or intron-exon boundaries was found. Treatment with riboflavin for 1 year resulted in a clear improvement in motor functions. Our report shows that some cases of MADD are not linked to ETFA, ETFB and ETFDH exon or intron-exon boundary changes. They could be due to quite rare promoter or deep intronic mutations or, most likely, to some unknown genetic defect. We therefore suggest to extend in these cases molecular studies to cDNA analysis and indicate the need of extensive pedigree studies to identify other possible disease-related loci. Most important, treatment of these cases with riboflavin can also be effective. Therefore, early diagnosis is essential to achieve the best treatment response.
Collapse
Affiliation(s)
- Maria Sofia Cotelli
- Clinical Neurology, Section for Neuromuscular Diseaseas and Neuropathies, University Hospital "Spedali Civili", Pz.le Spedali Civili 1, 25100, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Er TK, Chen CC, Liu YY, Chang HC, Chien YH, Chang JG, Hwang JK, Jong YJ. Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif. BMC STRUCTURAL BIOLOGY 2011; 11:43. [PMID: 22013910 PMCID: PMC3209457 DOI: 10.1186/1472-6807-11-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022]
Abstract
Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.
Collapse
Affiliation(s)
- Tze-Kiong Er
- Division of Molecular Diagnostics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Sugai F, Baba K, Toyooka K, Liang WC, Nishino I, Yamadera M, Sumi H, Fujimura H, Nishikawa Y. Adult-onset multiple acyl CoA dehydrogenation deficiency associated with an abnormal isoenzyme pattern of serum lactate dehydrogenase. Neuromuscul Disord 2011; 22:159-61. [PMID: 21907580 DOI: 10.1016/j.nmd.2011.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/06/2011] [Accepted: 08/11/2011] [Indexed: 11/26/2022]
Abstract
We report a case of a 37 year-old male with multiple acyl-CoA dehydrogenation deficiency (MADD). The patient had suffered from exercise intolerance in his hip and thigh muscles for one year. Then, restriction of carbohydrates for a diet made his symptoms rapidly deteriorate. Blood test revealed compound heterozygosity for two novel missense mutations in the electron transfer flavoprotein dehydrogenase gene (ETFDH), and an abnormal LDH isoenzyme pattern: LDH-1 (60.0%) and LDH-2 (26.0%) predominated with abnormally elevated LDH-1/LDH-2 ratio (2.3), compared with muscle-derived LDH-5 (4.0%). Oral riboflavin treatment significantly improved his exercise intolerance and the LDH profile: LDH-1 (34.4%), LDH-2 (34.9%), LDH-5 (6.9%) and LDH-1/LDH-2 ratio (1.0). The abnormal LDH isoenzyme pattern may be one feature of adult-onset MADD selectively affecting type I muscle fibers with relatively high LDH-1 content.
Collapse
Affiliation(s)
- Fuminobu Sugai
- Department of Neurology, Otemae Hospital, Chuo-ku, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans. Biofactors 2011; 37:361-5. [PMID: 21990098 PMCID: PMC3258494 DOI: 10.1002/biof.155] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 11/06/2022]
Abstract
CoQ(10) deficiencies are clinically and genetically heterogeneous. This syndrome has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis variably contribute to the pathogenesis of primary CoQ(10) deficiencies.
Collapse
Affiliation(s)
| | - Michio Hirano
- Address for correspondence: Dr. Michio Hirano, MD, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY 10032, USA.
| |
Collapse
|
90
|
Subramanian VS, Rapp L, Marchant JS, Said HM. Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G100-9. [PMID: 21512156 PMCID: PMC3129935 DOI: 10.1152/ajpgi.00120.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B2 (riboflavin, RF) is an essential micronutrient for normal cell function and survival. Recent studies have identified a role for the human riboflavin transporter-2 (hRFT2) in normal intestinal RF absorption. However, little is known about the cell biology of this transporter and specifically about the molecular determinant(s) that dictate its cell surface expression in human intestinal epithelial cells. Here we show that the full-length hRFT2 protein fused to green fluorescent protein (GFP) (GFP-hRFT2) is expressed exclusively at the apical membrane domain of Caco-2 cells. COOH-terminal sequence was essential in dictating cell surface expression with a specific role for conserved cysteine residues (C463 and C467). Mutation of C463 and C467 ablated RF uptake, explained by retention of the constructs within the endoplasmic reticulum. Modeling analysis suggested a potential disulfide bridge between C463 and C386. Consistent with this prediction, mutating the C386 site in the context of the full-length transporter resulted in intracellular retention, whereas mutation of another conserved cysteine (C326A) was without effect on hRFT2 targeting. Intracellular trafficking of hRFT2 was also examined and appeared to involve distinct vesicular structures, the motility of vesicles critically dependent on an intact microtubule network. These results demonstrate a potential role for specific cysteine residues in the cell surface expression of the hRFT2 in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- 1Departments of Medicine and Physiology/Biophysics, University of California Medical School, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Laramie Rapp
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jonathan S. Marchant
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hamid M. Said
- 1Departments of Medicine and Physiology/Biophysics, University of California Medical School, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| |
Collapse
|
91
|
Rahman S, Clarke CF, Hirano M. 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q₁₀ deficiency. Neuromuscul Disord 2011; 22:76-86. [PMID: 21723727 DOI: 10.1016/j.nmd.2011.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Shamima Rahman
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, UK.
| | | | | |
Collapse
|
92
|
Rocha H, Ferreira R, Carvalho J, Vitorino R, Santa C, Lopes L, Gregersen N, Vilarinho L, Amado F. Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency. J Proteomics 2011; 75:221-8. [PMID: 21596162 DOI: 10.1016/j.jprot.2011.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/14/2011] [Accepted: 04/28/2011] [Indexed: 01/29/2023]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a mitochondrial fatty acid oxidation disorder caused by mutations that affect electron transfer flavoprotein (ETF) or ETF:ubiquinone oxidoreductase (ETF-QO) or even due to unidentified disturbances of riboflavin metabolism. Besides all the available data on the molecular basis of FAO disorders, including MADD, the pathophysiological mechanisms underlying clinical phenotype development, namely at the mitochondrial level, are poorly understood. In order to contribute to the elucidation of these mechanisms, we isolated mitochondria from cultured fibroblasts, from a patient with a severe MADD presentation due to ETF-QO deficiency, characterize its mitochondrial proteome and compare it with normal controls. The used approach (2-DE-MS/MS) allowed the positive identification of 287 proteins in both patient and controls, presenting 35 of the significant differences in their relative abundance. Among the differentially expressed are proteins associated to binding/folding functions, mitochondrial antioxidant enzymes as well as proteins associated to apoptotic events. The overexpression of chaperones like Hsp60 or mitochondrial Grp75, antioxidant enzymes and apoptotic proteins reflects the mitochondrial response to a complete absence of ETF-QO. Our study provides a global perspective of the mitochondrial proteome plasticity in a severe case of MADD and highlights the main molecular pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- H Rocha
- I&D unit, Genetics Department, Medical Genetics Center Jacinto Magalhães of National Institute of Health Ricardo Jorge, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Lipid storage myopathy (LSM) is pathologically characterized by prominent lipid accumulation in muscle fibers due to lipid dysmetabolism. Although extensive molecular studies have been performed, there are only four types of genetically diagnosable LSMs: primary carnitine deficiency (PCD), multiple acyl-coenzyme A dehydrogenase deficiency (MADD), neutral lipid storage disease with ichthyosis, and neutral lipid storage disease with myopathy. Making an accurate diagnosis, by specific laboratory tests including genetic analyses, is important for LSM as some of the patients are treatable: individuals with PCD show dramatic improvement with high-dose oral L-carnitine supplementation and increasing evidence indicates that MADD due to ETFDH mutations is riboflavin responsive.
Collapse
|
94
|
Molecular analysis of 51 unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A. J Mol Med (Berl) 2011; 89:569-76. [PMID: 21347544 DOI: 10.1007/s00109-011-0725-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/12/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Multiple acyl-CoA dehydrogenation deficiency (MADD) is an autosomal recessive disease affecting amino acid, fatty acid, and choline metabolisms and is a common genetic defect responsible for lipid storage myopathy. Most forms of MADD are caused by a deficiency of electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH). However, its molecular feature has not been found uniformly in previous reports of Chinese patients. A large cohort of 56 late-onset MADD patients from 51 unrelated pedigrees in southern China was recruited to investigate a clear correlation between clinical phenotype and molecular genetic basis. All exons of ETFA, ETFB, and ETFDH, including the intron-exon boundaries, and 5' and 3' untranslated regions were directly sequenced. ETFDH deficiencies affected 94.1% (48/51) of the pedigrees. ETFDH-c.250G>A is the most common mutation, representing a high allelic frequency of 83.3% (80/96). Carrier frequency of c.250G>A is estimated to be 1.35% (7/520) in the normal population. A significant reduced expression of ETFDH was identified in the muscle of ETFDH-deficient patients. ETFDH deficiency is a major cause of riboflavin-responsive MADD in southern China, and c.250G>A is an important mutation that could be employed as a fast and reliable screening method.
Collapse
|
95
|
Lan MY, Fu MH, Liu YF, Huang CC, Chang YY, Liu JS, Peng CH, Chen SS. High frequency of ETFDH c.250G>A mutation in Taiwanese patients with late-onset lipid storage myopathy. Clin Genet 2011; 78:565-9. [PMID: 20370797 DOI: 10.1111/j.1399-0004.2010.01421.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid storage myopathies (LSMs) are characterized pathologically by the accumulation of lipid droplets in muscle fibers due to impaired cellular lipid metabolism. The purpose of this study was to determine etiologies and genetic mutations associated with LSMs in ethnic Han Taiwanese. The usefulness of the blood acylcarnitine (AC) profile for diagnosing LSMs in adult patients was also investigated. Nine patients were diagnosed with late-onset LSMs following a review of muscle biopsies and medical records and were recruited retrospectively. Genetic studies were performed to detect mutations in the SLC22A5 for primary carnitine deficiency, PNPLA2 for neutral lipid storage disease with myopathy, ABHD5 for neutral lipid storage disease with ichthyosis, ETFDH for multiple acyl-CoA dehydrogenation deficiency (MADD), and CPT2 for carnitine palmitoyltransferase II deficiency. Blood AC levels were measured by tandem mass spectrometry. The mutation c.250G>A in ETFDH was detected in seven (78%) patients, six of whom were homozygous for the variant. Patients with ETFDH mutations had elevated blood levels of ACs ranging from C8 to C16 species, a pattern consistent with MADD. ETFDH c.250G>A mutation is common in Taiwanese patients with late-onset LSMs. The blood AC profile is a sensitive biochemical marker for diagnosing MADD arising from ETFDH mutations in adults.
Collapse
Affiliation(s)
- M-Y Lan
- Department of Neurology, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Coenzyme Q(10) (CoQ(10)) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ(10) is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ(10) supplementation. CoQ(10) deficiency has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis contribute to the pathogenesis of primary CoQ(10) deficiencies. In vitro and in vivo studies are necessary to further understand the pathogenesis of the disease and to develop more effective therapies.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
97
|
Abstract
We consider recent developments in disorders affecting three areas of metabolism: glycogen, fatty acids, and the mitochondrial respiratory chain. Among the glycogenoses, new attention has been directed to defects of glycogen synthesis resulting in absence rather than excess of muscle glycogen ("aglycogenosis"). These include defects of glycogen synthetase and defects of glycogenin, the primer of glycogen synthesis. Considerable progress also has been made in our understanding of alterations of glycogen metabolism that result in polyglucosan storage. Among the disorders of lipid metabolism, mutations in the genes encoding two triglyceride lipases acting hand in hand cause severe generalized lipid storage myopathy, one associated with ichthyosis (Chanarin-Dorfman syndrome), the other dominated by juvenile-onset weakness. For the mitochondrial myopathies, we discuss the importance of homoplasmic mitochondrial DNA mutations and review the rapid progress made in our understanding of the coenzyme Q(10) deficiencies, which are often treatable.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, Room 4-424B, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
98
|
Wolfe LA, He M, Vockley J, Payne N, Rhead W, Hoppel C, Spector E, Gernert K, Gibson KM. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle. J Inherit Metab Dis 2010; 33 Suppl 3:S481-7. [PMID: 21088898 PMCID: PMC3970109 DOI: 10.1007/s10545-010-9246-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/05/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.
Collapse
Affiliation(s)
- Lynne A Wolfe
- Division of Medical Genetics, Department of Pediatrics, Children's Hospital of UPMC, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Skuban T, Klopstock T, Schoser B. [Lipid storage myopathies. A clinical and pathobiochemical challenge]. DER NERVENARZT 2010; 81:1460-1466. [PMID: 20401599 DOI: 10.1007/s00115-010-3009-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lipid storage myopathies are a clinically and genetically heterogeneous group of muscle diseases characterized by an accumulation of lipid in skeletal muscle. Currently four different groups of lipid storage myopathies are described: primary carnitine deficiency (PCD), multiple acyl-CoA dehydrogenase deficiency, primary and secondary coenzyme Q10 deficiency and neutral lipid storage diseases. It might be due to their rareness and considerable clinical variability that these disorders are frequently disregarded in neurological differential diagnosis. This article provides a synopsis of several new aspects of pathophysiology, symptoms, diagnostic tools and current therapeutic approaches of lipid storage myopathies.
Collapse
Affiliation(s)
- T Skuban
- Friedrich-Baur-Institut, Neurologische Klinik, Klinikum der Universität München, Ziemssenstraße 1a, 80336, München.
| | | | | |
Collapse
|
100
|
Glutaric aciduria type 2, late onset type in Thai siblings with myopathy. Pediatr Neurol 2010; 43:279-82. [PMID: 20837308 DOI: 10.1016/j.pediatrneurol.2010.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 05/11/2010] [Accepted: 05/19/2010] [Indexed: 11/20/2022]
Abstract
Reported here is a novel presentation of late onset glutaric aciduria type 2 in two Thai siblings. A 9-year-old boy presented with gradual onset of proximal muscle weakness for 6 weeks. The initial diagnosis was postviral myositis, and then polymyositis. Electromyography and nerve conduction velocity testing indicated a myopathic pattern. Muscle biopsy revealed excessive accumulation of fat. Acylcarnitine profiling led to the diagnosis of glutaric aciduria type 2. Immunoblot analysis of electron-transferring-flavoprotein and its dehydrogenase electron-transferring-flavoprotein dehydrogenase led to mutation analysis of the ETFDH gene, which revealed two different pathogenic mutations in both alleles and confirmed the diagnosis of glutaric aciduria type 2 caused by electron-transferring-flavoprotein dehydrogenase deficiency. The boy recovered completely after treatment. Later, his younger sibling became symptomatic; the same diagnosis was confirmed, and treatment was similarly effective. Acylcarnitine profiling was a crucial investigation in making this diagnosis in the presence of normal urine organic acid findings. Late onset glutaric aciduria type 2, a rare cause of muscle weakness in children, should be included in the differential diagnosis of myopathy.
Collapse
|