51
|
Elahi M, Rakhshan V. MED15, transforming growth factor beta 1 (TGF-β1), FcγRIII (CD16), and HNK-1 (CD57) are prognostic biomarkers of oral squamous cell carcinoma. Sci Rep 2020; 10:8475. [PMID: 32439976 PMCID: PMC7242386 DOI: 10.1038/s41598-020-65145-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Owing to the high incidence and mortality of oral squamous cell carcinoma (OSCC), knowledge of its diagnostic and prognostic factors is of significant value. The biomarkers 'CD16, CD57, transforming growth factor beta 1 (TGF-β1), and MED15' can play crucial roles in tumorigenesis, and hence might contribute to diagnosis, prognosis, and treatment. Since there was no previous study on MED15 in almost all cancers, and since the studies on diagnostic/prognostic values of the other three biomarkers were a few in OSCC (if any) and highly controversial, this study was conducted. Biomarker expressions in all OSCC tissues and their adjacent normal tissues available at the National Tumor Bank (n = 4 biomarkers × [48 cancers + 48 controls]) were estimated thrice using qRT-PCR. Diagnostic values of tumors were assessed using receiver-operator characteristic (ROC) curves. Factors contributing to patients' survival over 10 years were assessed using multiple Cox regressions. ROC curves were used to estimate cut-off points for significant prognostic variables (α = 0.05). Areas under the curve pertaining to diagnostic values of all markers were non-significant (P > 0.15). Survival was associated positively with tumoral upregulation of TGF-β1 and downregulation of CD16, CD57, and MED15. It was also associated positively with younger ages, lower histological grades, milder Jacobson clinical TNM stages (and lower pathological Ns), smaller and thinner tumors, and surgery cases not treated with incisional biopsy (Cox regression, P < 0.05). The cut-off point for clinical stage -as the only variable with a significant area under the curve- was between the stages 2 and 3. Increased TGF-β1 and reduced CD16, CD57, and MED15 expressions in the tumor might independently favor the prognosis. Clinical TNM staging might be one of the most reliable prognostic factors, and stages above 2 can predict a considerably poorer prognosis.
Collapse
Affiliation(s)
- Maryam Elahi
- Department of Oral Pathology, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Rakhshan
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
52
|
Adaptive ERK signalling activation in response to therapy and in silico prognostic evaluation of EGFR-MAPK in HNSCC. Br J Cancer 2020; 123:288-297. [PMID: 32424150 PMCID: PMC7374086 DOI: 10.1038/s41416-020-0892-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/25/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) patients frequently develop treatment resistance to cetuximab, a monoclonal antibody against EGFR, as well as radiotherapy. Here we addressed extracellular signal-regulated kinase 1/2 (ERK1/2) regulation by cetuximab or fractionated irradiation (IR) and conducted in silico prognostic evaluation of the EGFR-MAPK axis in HNSCC. METHODS Expression of ERK1/2 phosphorylation (pERK1/2) was determined in HNSCC cell lines, which were treated with cetuximab or fractionated-IR. Furthermore, the effect of fractionated IR on pERK1/2 was confirmed in an ex vivo HNSCC tissue culture model. Expression and prognostic significance of EGFR-ERK axis was evaluated in a cohort of radiotherapy plus cetuximab-treated HNSCC. Correlations among EGFR-MAPK signalling components and association between transcript and protein expression profiles and patient survival in HNSCC were analysed using publicly available databases. RESULTS ERK1/2 phosphorylation was rebounded by prolonged cetuximab administration and was induced by fractionated IR, which could be suppressed by a MEK inhibitor as a radiosensitiser. In silico assessments suggested that EGFR-MAPK cascade genes and proteins could predict HNSCC patients' survival as a prognostic signature. CONCLUSIONS Activation of ERK1/2 signalling contributes to the cellular defence of HNSCC against cetuximab and fractionated IR treatment. EGFR-MAPK axis has a prognostic significance in HNSCC.
Collapse
|
53
|
Klein IP, Meurer L, Danilevicz CK, Squarize CH, Martins MD, Carrard VC. BMI-1 expression increases in oral leukoplakias and correlates with cell proliferation. J Appl Oral Sci 2020; 28:e20190532. [PMID: 32348447 PMCID: PMC7185978 DOI: 10.1590/1678-7757-2019-0532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
Oral leukoplakia (OL) is a white lesion of an indeterminate risk not related to any excluded (other) known diseases or disorders that carry no increased risk for cancer. Many biological markers have been used in an attempt to predict malignant transformation; however, no reliable markers have been established so far.
Collapse
Affiliation(s)
- Isadora Peres Klein
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Luise Meurer
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Chris Krebs Danilevicz
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Manoela Domingues Martins
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Vinicius Coelho Carrard
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| |
Collapse
|
54
|
The Progressive Mutagenic Effects of Acidic Bile Refluxate in Hypopharyngeal Squamous Cell Carcinogenesis: New Insights. Cancers (Basel) 2020; 12:cancers12051064. [PMID: 32344873 PMCID: PMC7281001 DOI: 10.3390/cancers12051064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Cancers of the laryngopharynx represent the most devastating of the head and neck malignancies and additional risk factors are now epidemiologically linked to this disease. Using an in vivo model (Mus musculus C57Bl/6J), we provide novel evidence that acidic bile (pH 3.0) progressively promotes invasive cancer in the hypopharynx. Malignant lesions are characterized by increasing: i) oxidative DNA-damage, ii) γH2AX expression, iii) NF-κB activation, and iv) p53 expression. Histopathological changes observed in murine hypopharyngeal mucosa exposed to acidic bile were preceded by the overexpression of Tnf, Il6, Bcl2, Egfr, Rela, Stat3, and the deregulation of miR-21, miR-155, miR-192, miR-34a, miR-375, and miR-451a. This is the first study to document that acidic bile is carcinogenic in the upper aerodigestive tract. We showed that oxidative DNA-damage produced by acidic bile in combination with NF-κB-related anti-apoptotic deregulation further supports the underlying two-hit hypothesized mechanism. Just as importantly, we reproduced the role of several biomarkers of progression that served as valuable indicators of early neoplasia in our experimental model. These findings provide a sound basis for proposing translational studies in humans by exposing new opportunities for early detection and prevention.
Collapse
|
55
|
Sasaki CT, Hajek M, Doukas SG, Vageli DP. The role of bile reflux and its related NF-κB activated pathway in progression of hypopharyngeal squamous cell cancer. Oral Oncol 2020; 105:104668. [PMID: 32247988 DOI: 10.1016/j.oraloncology.2020.104668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prognosis for hypopharyngeal cancer is usually poor, and recurrence is common. Identifying new factors or related mechanisms that promote its progression may have clinical implications. Although, recent studies support bile reflux in hypopharyngeal carcinogenesis, it remains to be explored how bile and its related NF-κB activated pathway may further affects its progression in already established hypopharyngeal cancer. METHODS Hypopharyngeal squamous cell carcinoma (HSCC) cell lines, FaDu and UMSCC11A, both negative for HPV, were repetitively exposed to bile acids (400 μM) at variable pH points (4.0, 5.5 and 7.0). Immunofluorescence, western blotting, luciferase assay, and qPCR were used to detect NF-κB activation, bcl-2 overexpression and gene expression. RESULTS Bile at strongly acidic pH (4.0) potentiated the activation of NF-κB and its related mRNA phenotype in HSCC cells. IL-6, TNF-α, and BCL2 were found among the highest overexpressed genes as was previously found in HSCCs excised from patients with documented biliary reflux. An enhanced transcriptional activity of EGFR, RELA, STAT3, and WNT5Α and higher survival rates were observed in HSCC cells exposed to acidic bile compared to those exposed to bile at weakly acidic or neutral pH. CONCLUSION Our novel findings support the observation that bile reflux has the potential for actively influencing the progression of hypopharyngeal cancer, mediated by NF-κB. In patients with hypopharyngeal cancer and known gastroesophageal reflux disease, antacid therapy may exert a role in furthering control of disease recurrence and progression.
Collapse
Affiliation(s)
- Clarence T Sasaki
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Michael Hajek
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
56
|
Sheng SG, Wang YN, Wang SR, Zhao K, Wang YY, Xu XN, Wang QM, Tong L, Chen ZG. [Effects of farnesyltransferase silencing on the migration and invasion of tongue squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:177-184. [PMID: 32314892 DOI: 10.7518/hxkq.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to explore the effects of silencing farnesyltransferase (FTase) on the migration and invasion of tongue squamous cell carcinoma (TSCC) through RNA interference. METHODS TSCC cells (CAL27 and SCC-4) were cultured in vitro and then transfected with siRNA to silence FTase expression. The tested cells were categorized as follows: experimental group (three RNA interference groups), negative control group, and blank control group. mRNA expression of FTase and HRAS in each group was analyzed by quantitative real-time polymerase chain reaction. On the basis of FTase mRNA expression, the optimum interference group (highest silencing efficiency) was selected as the experimental group for further study. The protein expression of FTase, HRAS, p65, p-p65(S536), matrix metalloprotein-9 (MMP-9), hypoxia inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) was analyzed by Western blot. The invasion and migration abilities of TSCC cells were determined by Transwell invasion assay and cell wound healing assay. RESULTS The mRNA and protein expression of FTase in the experimental group decreased compared with that in the negative control and blank control groups (P<0.05). The mRNA and protein expression of HRAS was not significantly different among the groups (P>0.05). In the experimental group, the protein expression of p-p65(S536), MMP-9, HIF-1α, and VEGF decreased (P<0.05), whereas that of p65 had no significant change (P>0.05). The migration and invasion abilities of the experimental group were inhibited significantly (P<0.05). CONCLUSIONS Silencing FTase in vitro could effectively downregulate its expression in TSCC cell lines and reduce the migration and invasion abilities to a certain extent. FTase could be a new gene therapy target of TSCC, and this research provided a new idea for the clinical treatment of TSCC.
Collapse
Affiliation(s)
- Shan-Gui Sheng
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Ya-Nan Wang
- Dept. of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital, Qingdao 266000, China
| | - Shao-Ru Wang
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China;Stomatology College, Dalian Medical University, Dalian 116044, China
| | - Kai Zhao
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yun-Ying Wang
- Central Laboratory of Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiao-Na Xu
- Central Laboratory of Qingdao Municipal Hospital, Qingdao 266000, China
| | - Qi-Min Wang
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Lei Tong
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Zheng-Gang Chen
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
57
|
Liao J, Yang Z, Carter-Cooper B, Chang ET, Choi EY, Kallakury B, Liu X, Lapidus RG, Cullen KJ, Dan H. Suppression of migration, invasion, and metastasis of cisplatin-resistant head and neck squamous cell carcinoma through IKKβ inhibition. Clin Exp Metastasis 2020; 37:283-292. [PMID: 32020377 DOI: 10.1007/s10585-020-10021-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/11/2020] [Indexed: 12/13/2022]
Abstract
We explored the role of the transcription factor, NF-κB, and its upstream kinase IKKβ in regulation of migration, invasion, and metastasis of cisplatin-resistant head and neck squamous cell carcinoma (HNSCC). We showed that cisplatin-resistant HNSCC cells have a stronger ability to migrate and invade, as well as display higher IKKβ/NF-κB activity compared to their parental partners. Importantly, we found that knockdown of IKKβ, but not NF-κB, dramatically impaired cell migration and invasion in these cells. Consistent with this, the IKKβ inhibitor, CmpdA, also inhibited cell migration and invasion. Previous studies have already shown that N-Cadherin, an epithelial-mesenchymal transition (EMT) marker, and IL-6, a pro-inflammatory cytokine, play important roles in regulation of HNSCC migration, invasion, and metastasis. We found that cisplatin-resistant HNSCC expressed higher levels of N-Cadherin and IL-6, which were significantly inhibited by CmpdA. More importantly, we showed that CmpdA treatment dramatically abated cisplatin-resistant HNSCC cell metastasis to lungs in a mouse model. Our data demonstrated the crucial role of IKKβ in control of migration, invasion, and metastasis, and implicated that targeting IKKβ may be a potential therapy for cisplatin-resistant metastatic HNSCC.
Collapse
Affiliation(s)
- Jipei Liao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brandon Carter-Cooper
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth T Chang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eun Yong Choi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin J Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
58
|
Naghavi AO, Kim Y, Yang GQ, Ahmed KA, Caudell JJ. Alterations in genetic pathways following radiotherapy for head and neck cancer. Head Neck 2019; 42:312-320. [PMID: 31833149 DOI: 10.1002/hed.26004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is an integral component in the treatment of head and neck cancer (HNC).We hypothesized there would be alterations in gene-expression and pathway activity in HNC samples obtained in recurrent HNC that were previously treated with RT, when compared to RT-naïve disease. METHODS Patient data was abstracted from a prospectively maintained database. Linear-microarray analysis and supervised gene-set enrichment-analysis were employed to compare RT-naive and recurrent disease after prior-RT. RESULTS A total of 157 patients were analyzed, 96 (61%) were RT-naive and 61 (39%) had RT.After radiation, there was upregulation of genes associated with angiogenesis, protein-translation-machinery, cell-cycle regulation, and growth factors, and downregulation associated with Myc activity, and hypoxic response (all P < .001).Previously irradiated HNC was associated with downregulation in 19/42 genes in the Wnt/B-catenin-pathway (P = .045)and 119/199 genes involved in the MYC target pathway (P = .024). CONCLUSION Patients with recurrences salvaged surgically post-RT had significant alterations in gene-expression and in Wnt/B-catenin and MYC-target pathways. These pathways may represent potential targets to prevent development of resistance to RT.
Collapse
Affiliation(s)
- Arash O Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - George Q Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
59
|
Sun J, Lu Y, Yu C, Xu T, Nie G, Miao B, Zhang X. Involvement of the TGF-β1 pathway in caveolin-1-associated regulation of head and neck tumor cell metastasis. Oncol Lett 2019; 19:1298-1304. [PMID: 31966060 PMCID: PMC6956420 DOI: 10.3892/ol.2019.11187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent malignancy with a 5-year survival rate of 54%. Therefore, disease management improvement is required. The present study aimed to assess the role of caveolin-1 (Cav-1) in the metastasis of head and neck tumor cells. Short hairpin RNA was used to silence Cav-1 expression in Tu686 cells. Proliferation, migration, invasion, morphology and the levels of effector proteins were assessed in cells. Upon Cav-1 silencing, E-cadherin levels were decreased, while vimentin levels were significantly increased. Cell migration, quantified by wound healing and Transwell assays, was significantly increased. Meanwhile, Cav-1 and transforming growth factor β1 (TGF-β1) receptor were identified to be co-localized. In addition, Cav-1-knockdown resulted in increased phosphorylation of SMAD family member 2 (P<0.05), a downstream effector of TGF-β signaling. In addition, there was a mutual regulation, with increasing TGF-β1 levels leading to a dose-dependent decrease of Cav-1 expression levels (P<0.05). These findings indicate that Cav-1 inhibits cell metastasis in HNSCC, suggesting the involvement of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jinjie Sun
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongtian Lu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Changyun Yu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Xu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Beiping Miao
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Xin Zhang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
60
|
Denninghoff V, Muino A, Diaz M, Harada L, Lence A, Turon P, Labbrozzi M, Aguas S, Peñaloza P, Avagnina A, Adler I. Mutational status of PIK3ca oncogene in oral cancer-In the new age of PI3K inhibitors. Pathol Res Pract 2019; 216:152777. [PMID: 31831300 DOI: 10.1016/j.prp.2019.152777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
In the new age of PI3K inhibitors, the mutational status of PI3Kca oncogene in the Cavity Squamous Cell Carcinoma (OC-SCC) needs further analysis. It is the sixth most common cancer in the world. The aim of this study was to evaluate PI3Kca oncogene mutations and to correlate them with the clinical-histological characteristics of individuals presenting these tumors. We recruited 74 individuals with OC-SCC diagnosis (period 2000-2014). Histological sections were used. DNA was purified; PIK3ca gene exons 9 and 20 were amplified and sequenced. In 49/74 cases (66 %), the complete sequence of both codons was analyzed by Sanger method. We found that 7/49 (14 %) individuals mutated. In exon 9 we found 1/49 (2 %), and in exon 20 M1043I 8/49 (16 %). We have found the coexistence of more than one mutation in a same individual (E542 K and M1043I). A positive association was observed between the mutational status of the codon 9 (E542 K) and the tongue location. In conclusion, the frequency of PI3Kca gene mutation in OC-SCC was 16 %, which is similar to that reported for other populations. We found a mutation not previously described (M1043I) in this pathology. Should its biological effect be confirmed, it must be added to the list of PIK3ca mutations. Total mutations in the PIK3ca were 32 %, with tongue being the site at the greatest risk (E542K-E545K-M1043I). These findings would facilitate the identification of patients with therapeutic targets in the near future.
Collapse
Affiliation(s)
- V Denninghoff
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina; Pathology Department, Center for Medical Education and Clinical Research (CEMIC), Argentina; National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - A Muino
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - M Diaz
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - L Harada
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - A Lence
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - P Turon
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - M Labbrozzi
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - S Aguas
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - P Peñaloza
- Pathology Department, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - A Avagnina
- Pathology Department, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - I Adler
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| |
Collapse
|
61
|
Bai G, Song J, Yuan Y, Chen Z, Tian Y, Yin X, Niu Y, Liu J. Systematic analysis of differentially methylated expressed genes and site-specific methylation as potential prognostic markers in head and neck cancer. J Cell Physiol 2019; 234:22687-22702. [PMID: 31131446 PMCID: PMC6772109 DOI: 10.1002/jcp.28835] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Head and neck cancer (HNC) remains one of the most malignant tumors with a significantly high mortality. DNA methylation exerts a vital role in the prognosis of HNC. In this study, we try to screen abnormal differential methylation genes (DMGs) and pathways in Head-Neck Squamous Cell Carcinoma via integral bioinformatics analysis. Data of gene expression microarrays and gene methylation microarrays were obtained from the Cancer Genome Atlas database. Aberrant DMGs were identified by the R Limma package. We conducted the Cox regression analysis to select the prognostic aberrant DMGs and site-specific methylation. Five aberrant DMGs were recognized that significantly correlated with overall survival. The prognostic model was constructed based on five DMGs (PAX9, STK33, GPR150, INSM1, and EPHX3). The five DMG models acted as prognostic biomarkers for HNC. The area under the curve based on the five DMGs predicting 5-year survival is 0.665. Moreover, the correlation between the DMGs/site-specific methylation and gene expression was also explored. The findings demonstrated that the five DMGs can be used as independent prognostic biomarkers for predicting the prognosis of patients with HNC. Our study might lay the groundwork for further mechanism exploration in HNC and may help identify diagnostic biomarkers for early stage HNC.
Collapse
Affiliation(s)
- Guohui Bai
- Zunyi Medical UniversityZunyiGuizhouChina
- Special Key Laboratory of Oral Diseases ResearchStomatological Hospital Affiliated to Zunyi Medical UniversityGuizhouChina
| | - Jukun Song
- Department of Oral and Maxillofacial SurgeryGuizhou Provincial People's HospitalGuizhouChina
| | | | - Zhu Chen
- Guiyang Hospital of StomatologyGuizhouChina
| | - Yuan Tian
- Stomatology Colledge Affiliated to Zunyi Medical UniversityZunyiGuizhouChina
| | - Xinhai Yin
- Department of Oral and Maxillofacial SurgeryGuizhou Provincial People's HospitalGuizhouChina
| | - Yuming Niu
- Department of Stomatology and Center for Evidence‐Based Medicine and Clinical Research, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jianguo Liu
- Zunyi Medical UniversityZunyiGuizhouChina
- Special Key Laboratory of Oral Diseases ResearchStomatological Hospital Affiliated to Zunyi Medical UniversityGuizhouChina
| |
Collapse
|
62
|
Sanz Ressel BL, Massone AR, Barbeito CG. Dysregulated Expression of Phosphorylated Epidermal Growth Factor Receptor and Phosphatase and Tensin Homologue in Canine Cutaneous Papillomas and Squamous Cell Carcinomas. J Comp Pathol 2019; 174:26-33. [PMID: 31955800 DOI: 10.1016/j.jcpa.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
The molecular mechanisms contributing to the development of cutaneous papillomas (CPs) and cutaneous squamous cell carcinomas (CSCCs) are still poorly understood, limiting the ability to identify molecular suitable targets for the development of novel therapies. Persistent activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway is a component of epidermal carcinogenesis in dogs. The present study describes the immunohistochemical expression pattern of two key regulatory molecules involved in the PI3K/Akt/mTOR signalling pathway, phosphorylated epidermal growth factor receptor (pEGFR)Tyr1068 and phosphatase and tensin homologue (PTEN), in samples of normal canine epidermis, CP, preneoplastic epidermis and CSCC using tissue microarrays to determine whether the deregulated activity of these molecules is involved in the pathogenesis of these relevant epidermal tumours of dogs. Expression of pEGFR and PTEN was dysregulated in most samples of CP, preneoplastic epidermis and CSCC. Overexpression of pEGFR, together with decreased expression of PTEN, may facilitate the progression of some canine CPs and CSCCs by deregulation of the key cellular functions in which the PI3K/Akt/mTOR signalling pathway is involved. These findings suggest that the PI3K/Akt/mTOR signalling molecules may be potential therapeutic targets for canine patients with CP and CSCC.
Collapse
Affiliation(s)
- B L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, CONICET, UNLP, La Plata, Buenos Aires, Argentina.
| | - A R Massone
- Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, CONICET, UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
63
|
Orhan C, Bakır B, Dalay N, Buyru N. ZNF703 is an important player in head and neck cancer. Clin Otolaryngol 2019; 44:1080-1086. [DOI: 10.1111/coa.13450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ceren Orhan
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| | - Burak Bakır
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| | - Nejat Dalay
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| | - Nur Buyru
- Department of Medical Biology Cerrahpasa Medical Faculty Istanbul University Istanbul Turkey
| |
Collapse
|
64
|
Liang Y, Song J, He D, Xia Y, Wu Y, Yin X, Liu J. Systematic analysis of survival-associated alternative splicing signatures uncovers prognostic predictors for head and neck cancer. J Cell Physiol 2019; 234:15836-15846. [PMID: 30740675 PMCID: PMC6618130 DOI: 10.1002/jcp.28241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Previous studies have shown that alternative splicing (AS) plays a key role in carcinogenesis and prognosis of cancer. However, systematic profiles of AS signatures in head and neck cancer (HNC) have not yet been reported. METHODS In this study, AS data, RNA-Seq data, and corresponding clinicopathological information of 489 HNC patients were downloaded from The Cancer Genome Atlas. Univariate and multivariate Cox regression analyses were performed to screen for survival-associated AS events. Functional and pathway enrichment analysis was also performed. The prognostic models and splicing networks were constructed using integrated bioinformatics analysis tools. RESULTS Among the 42,849 alternating splicing events identified in 10,121 genes, 5,165 survival-associated AS events in 2,419 genes were observed in univariate Cox regression analysis. Among the seven types, alternate terminator events were the most powerful prognostic factors. Multivariate Cox analysis was then used to screen for the AS genes with prognostic value. Four candidate genes (TPM1, CLASRP, PRRC1, and DNASE1L1) were found to be independent prognostic factors for HNC patients. A prognostic prediction model was built based on the four genes. The area under the receiver operating characteristic risk score curve for predicting the survival status of HNC patients was 0.704. In addition, splicing interaction network indicated that the splicing factors have significant functions in HNC. CONCLUSION A comprehensive analysis of AS events in HNC was performed. A powerful prognostic predictor for HNC patients was established based on AS events could.
Collapse
Affiliation(s)
- Ying Liang
- Department of Orthodontics, Guiyang Hospital of Stomatology, Medical CollegeGuiyangChina,Guiyang Stomatological Hospital Affiliated to Zunyi Medical UniversityGuizhouChina
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's HospitalGuizhouChina
| | - Dengqi He
- Department of Stomatology, First Hospital of Lanzhou UniversityLanzhouChina
| | - Yu Xia
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's HospitalGuizhouChina
| | - Yadong Wu
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's HospitalGuizhouChina
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's HospitalGuizhouChina
| | - Jianguo Liu
- Special Key Laboratory of Oral Diseases Research, Stomatological Hospital Affiliated to Zunyi Medical UniversityGuizhouChina
| |
Collapse
|
65
|
Böhrnsen F, Holzenburg J, Godek F, Kauffmann P, Moser N, Schliephake H. Influence of tumour necrosis factor alpha on epithelial-mesenchymal transition of oral cancer cells in co-culture with mesenchymal stromal cells. Int J Oral Maxillofac Surg 2019; 49:157-165. [PMID: 31345665 DOI: 10.1016/j.ijom.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Tumour progression in head and neck squamous cell carcinoma (HNSCC) is influenced by the surrounding stroma and inflammatory cytokines such as tumour necrosis factor alpha (TNF-α). The aim of this study was to test the hypothesis that TNF-α modulates the interactions of HNSCC cell line PCI-13 and bone marrow mesenchymal stromal cells (BMSCs) and influences markers of epithelial-mesenchymal transition (EMT). Following induction with TNF-α, mono- and co-cultures of BMSCs and the established HNSCC cell line PCI-13 were analyzed; protein expression of E-cadherin and vimentin and qRT-PCR expression of Snail, Twist, MMP14, vimentin, E-cadherin, and β-catenin were examined, and changes in cellular AKT signalling were analyzed. TNF-α induced a significant decrease in E-cadherin (64.5±6.0%, P=0.002) and vimentin (10.4±3.5%, P=0.04) protein expression in co-cultured PCI-13, while qRT-PCR showed a significant increase in β-catenin (BMSCs P<0.0001; PCI-13 P=0.0005) and Snail (BMSCs P=0.009; PCI-13 P=0.01). TNF-α also resulted in a down-regulation of AKT downstream targets S6 (38.7±20.9%, P=0.01), p70S6 (16.7±12%, P=0.05), RSK1 (23.6±28.8%, P=0.02), and mTOR (27.4±17.5%, P=0.004) in BMSC co-cultures. In summary, while reducing the expression of vimentin and AKT-signalling in PCI-13 and BMSC, respectively, TNF-α introduced an inflammatory-driven tumour-stroma transition, marked by an increased expression of markers of EMT.
Collapse
Affiliation(s)
- F Böhrnsen
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Göttingen, Germany.
| | - J Holzenburg
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Göttingen, Germany
| | - F Godek
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Göttingen, Germany
| | - P Kauffmann
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Göttingen, Germany
| | - N Moser
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Göttingen, Germany
| | - H Schliephake
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
66
|
Sasaki CT, Doukas SG, Costa J, Vageli DP. Biliary reflux as a causal factor in hypopharyngeal carcinoma: New clinical evidence and implications. Cancer 2019; 125:3554-3565. [PMID: 31310330 DOI: 10.1002/cncr.32369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/16/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent preclinical explorations strongly support the tumorigenic potential of bile on laryngopharyngeal mucosa. Herein, the authors describe, in bile-related human hypopharyngeal squamous cell carcinoma (HSCC), NF-κB-related messenger RNA (mRNA) and microRNA (miRNA) oncogenic phenotypes similar to those previously identified in acidic bile-exposed premalignant murine hypopharyngeal mucosa. METHODS In this pilot study, the authors included human HSCC specimens paired with their adjacent normal tissue (ANT) derived from 3 representative patients with documented biliary laryngopharyngeal reflux (bile[+]) compared with 5 control patients without signs of bile reflux disease (bile[-]). Immunohistochemical, quantitative polymerase chain reaction, and miRNA analyses were used to detect the levels of activated NF-κB and expression levels of STAT3, EGFR, BCL2, WNT5A, IL-6, IL-1B, ΔNp63, cREL, TNF-α, TP53, NOTCH1, NOTCH2, NOTCH3, miR-21, miR-155, miR-192, miR-34a, miR-375, miR-451a, miR-489, miR-504, and miR-99a. RESULTS Bile(+) HSCC demonstrated an intense NF-κB activation accompanied by significant overexpression of RELA(p65), EGFR, STAT3, BCL-2, cREL, ΔNp63, WNT5A, IL-6, and IL1B; upregulation of oncomir miR-21; and downregulation of tumor suppressor miR-375 compared with their respective ANTs. Bile(+) HSCC demonstrated significantly higher mRNA levels of all the analyzed genes, particularly RELA(p65), IL-6, EGFR, and TNF-α compared with bile(-) tumors. The miR-21/miR-375 ratio, which previously has been linked to tumor aggressiveness, was found to be >260-fold and >30-fold higher, respectively, in bile(+) HSCCs compared with their ANTs and bile(-) tumors. CONCLUSIONS Although limitations apply to this pilot study due to the small number of patients with HSCC, the novel findings suggest that a history of bile as a component of esophageal reflux disease may represent an independent risk factor for hypopharyngeal carcinogenesis.
Collapse
Affiliation(s)
- Clarence T Sasaki
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Jose Costa
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
67
|
Contribution of p38 MAPK Pathway to Norcantharidin-Induced Programmed Cell Death in Human Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143487. [PMID: 31315217 PMCID: PMC6678691 DOI: 10.3390/ijms20143487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 01/22/2023] Open
Abstract
Norcantharidin (NCTD), a demethylated analog of cantharidin isolated from blister beetles, has been used as a promising anticancer agent; however, the underlying function of NCTD against human oral squamous cell carcinoma (OSCC) has not been fully understood. Here, this study was aimed to investigate the apoptotic effect and molecular targets of NCTD in human OSCC in vitro and in vivo. The anticancer effects of NCTD and its related molecular mechanisms were evaluated by trypan blue exclusion assay, live/dead assay, western blotting, 4-6-Diamidino-2-Phenylindole (DAPI) staining, flow cytometric analysis, Terminal Deoxynucleotidyl Transferase dUTP Nick end Labeling (TUNEL) assay, and immunohistochemistry. NCTD significantly inhibited cell growth and increased the number of dead cells in HSC-3 and HN22 cell lines. It induced the following apoptotic phenomena: (1) the cleavages of poly (ADP-ribose) polymerase and casepase-3; (2) increase in apoptotic morphological changes (nuclear condensation and fragmentation); (3) increase in annexin V-positive cells or sub-G1 population of cells. NCTD significantly activated the p38 mitogen-activated protein kinase (MAPK) pathway but inactivated the signal transducer and activator of transcription (STAT)3 pathway. A p38 MAPK inhibitor (SB203580) partially attenuated NCTD-induced programmed cell death (apoptosis) in both cell lines, whereas ectopic overexpression of STAT3 did not affect it. NCTD strongly suppressed tumor growth in the tumor xenograft bearing HSC-3 cells, and the number of TUNEL-positive cells increased in NCTD-treated tumor tissues. In addition, NCTD did not cause any histopathological changes in the liver nor the kidney. NCTD induced programmed cell death via the activation of p38 MAPK in OSCC. Therefore, these results suggest that NCTD could be a potential anticancer drug candidate for the treatment of OSCC.
Collapse
|
68
|
Temporal characteristics of NF-κB inhibition in blocking bile-induced oncogenic molecular events in hypopharyngeal cells. Oncotarget 2019; 10:3339-3351. [PMID: 31164956 PMCID: PMC6534360 DOI: 10.18632/oncotarget.26917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022] Open
Abstract
Biliary esophageal reflux at acidic pH is considered a risk factor in laryngopharyngeal cancer. We previously showed the key role NF-κB in mediating acidic bile-induced pre-neoplastic events in hypopharyngeal cells, and that co-administration of specific NF-κB inhibitor, BAY 11-7082, together with acidic bile, can effectively prevent its related oncogenic molecular effects. We hypothesize that the addition of BAY 11-7082 (10μM) either before or after application of acidic bile (400μM conjugated bile acids; pH 4.0), is capable of comparably blocking acidic bile-induced oncogenic molecular phenotypes in murine hypopharyngeal primary cells. We performed immunofluorescence, luciferase assay, western blot and qPCR analysis, demonstrating that 15-min of pre- or post-application of BAY 11-7082 effectively inhibits acidic bile-induced NF-κB activation, transcriptional activation of RELA(p65), STAT3, EGFR, IL-6, bcl-2, WNT5A, "upregulation" of "oncomirs" miR-21, miR-155, miR-192 and "downregulation" of "tumor suppressor" miR-34a, miR-375, miR-451a. Our observations support the understanding that acidic bile-induced deregulation of anti-apoptotic or oncogenic factors, bcl-2, STAT3, EGFR, IL-6, WNT5A, miR-21, miR-155, miR-375, is highly NF-κB-dependent, showing that even post-application of inhibitor can suppress their deregulation. In conclusion, application of specific NF-κB inhibitor, has the capability of adequately blocking the early oncogenic molecular events produced by acidic bile whether it is applied pre or post exposure. In addition to therapeutic implications these findings provide a window of observation into the complex kinetics characterizing the mechanistic link between acidic bile and early neoplasia. Although BAY 11-7082 itself may not be suitable for clinical use, the application of other NF-κB inhibitors merits exploration.
Collapse
|
69
|
Inhibition of CBP/β-catenin and porcupine attenuates Wnt signaling and induces apoptosis in head and neck carcinoma cells. Cell Oncol (Dordr) 2019; 42:505-520. [PMID: 31089983 DOI: 10.1007/s13402-019-00440-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Activation of the Wnt pathway contributes to the development of head and neck squamous cell carcinomas (HNSCC) and its inhibition has recently emerged as a promising therapeutic strategy. Here, we aimed at identifying suitable molecular targets for down-regulation of canonical Wnt signaling in HNSCC cells. METHODS Candidate target genes (PORCN, WNT3A, FZD2, FZD5, LRP5, DVL1, CIP2A, SET, KDM1A, KDM4C, KDM6A, CBP, CARM1, KMT2A, TCF7, LEF1, PYGO1, XIAP) were silenced using siRNA and selected targets were subsequently blocked using small molecule inhibitors. The effect of this treatment on the expression of β-catenin-dependent genes was assessed by qRT-PCR. The effect of the inhibitors on cell viability was evaluated using a resazurin assay in HNSCC-derived cell lines. A luciferase reporter assay was used for confirmation of the inhibition of Wnt-dependent gene expression. Cell migration was evaluated using a scratch wound healing assay. Cytometric analysis of propidium iodide stained cells was used for cell cycle distribution evaluation, whereas cytometric analysis of caspase 3/7 activity was used for apoptosis induction evaluation. RESULTS We found that inhibition of Porcupine and CBP/β-catenin interaction by IWP-2 and PRI-724, respectively, most strongly affected β-catenin-dependent gene expression in HNSCC cells. These inhibitors also induced apoptosis and affected HNSCC cell migration. CONCLUSIONS Targeting Porcupine or the CBP/β-catenin interaction seems to be an effective strategy for the inhibition of canonical Wnt signaling in HNSCC cells. Further studies are required to confirm the possible therapeutic effect of IWP-2 and PRI-724 in HNSCC.
Collapse
|
70
|
Rong C, Muller M, Flechtenmacher C, Holzinger D, Dyckhoff G, Bulut OC, Horn D, Plinkert P, Hess J, Affolter A. Differential Activation of ERK Signaling in HPV-Related Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11040584. [PMID: 31027243 PMCID: PMC6520790 DOI: 10.3390/cancers11040584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) forms a distinct tumor entity with better survival clinical outcome. Numerous underlying molecular mechanisms have been postulated for differences in treatment response, but the impact of MEK/ERK signaling, a main driver of carcinogenesis in various cancers including OPSCC and key player mediating therapy resistance remains elusive. In a retrospective experimental cohort study, primary tumor samples from OPSCC patients (n = 124) were available on tissue microarrays (TMAs) and expression levels of phosphorylated ERK1/2 (pERK1/2) were detected by immunohistochemical staining. Correlations of pERK1/2 expression patterns with clinicopathological features and clinical outcome were evaluated by statistical analysis. A low pERK1/2 expression was strongly associated with HPV-related OPSCC, while primary tumors with high pERK1/2 staining showed a distinctly worse survival outcome and were associated with higher cellular differentiation. Co-activation of both ERK1/2 and AKT was a common event and was associated with unfavorable prognosis in our cohort. However, the combinatorial analysis of pAKT (Ser473) and pERK1/2 did not strengthen the predictive power of pERK1/2, suggesting that pERK1/2 plays a more significant function in OPSCC. In summary, our data provide a compelling experimental and statistical evidence that low levels of tumor cell intrinsic ERK1/2 activation contribute at least in part to the favorable outcome of HPV-related OPSCC. On the other hand, presented findings indicate that non-HPV-related OPSCC with elevated ERK phosphorylation are at high risk for treatment failure and might benefit from targeted therapy of MEK/ERK signaling.
Collapse
Affiliation(s)
- Chao Rong
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| | - Marie Muller
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| | - Christa Flechtenmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| | - Dana Holzinger
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| | - Olcay Cem Bulut
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
- Department of Otorhinolaryngology, SLK Kliniken, Am Gesundbrunnen, 74078 Heilbronn, Germany.
| | - Dominik Horn
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| | - Peter Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
71
|
Sola AM, Johnson DE, Grandis JR. Investigational multitargeted kinase inhibitors in development for head and neck neoplasms. Expert Opin Investig Drugs 2019; 28:351-363. [PMID: 30753792 DOI: 10.1080/13543784.2019.1581172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Despite advances in treatment, head and neck squamous cell carcinoma (HNSCC) survival rates remain stagnant. Current treatment is associated with significant toxicities and includes chemotherapy, radiation, surgery, and few targeted treatments. Targeted treatments, epidermal growth factor receptor (EGFR)-targeted agent, cetuximab, and immune checkpoint inhibitors, pembrolizumab and nivolumab, show improved toxicity profiles and modestly improved survival in select patients. An urgent need remains to identify novel targeted treatments for single-agent or combined therapy use. AREAS COVERED Multitargeted kinase inhibitors are small molecule inhibitors with limited toxicity. This review will focus on early-stage investigations of multitargeted tyrosine kinase inhibitors (m-TKIs) (those that target at least two tyrosine kinases) for HNSCC. Preclinical and early trials investigating m-TKIs for various disease settings of HNSCC will be evaluated for efficacy, identification of significant biomarkers and potential for combination therapy. EXPERT OPINION Few single agent m-TKIs have demonstrated efficacy in unselected HNSCC populations. The most promising clinical results have been obtained when m-TKIs are tested in combination with other therapies, including immunotherapy, or in mutation-defined subgroups of patients. The future success of m-TKIs will rely on identification, in preclinical models and clinical trials, of predictive biomarkers of response and mechanisms of innate and acquired resistance.
Collapse
Affiliation(s)
- Ana Marija Sola
- a Department of Otolaryngology - Head and Neck Surgery , University of California , San Francisco , CA , USA
| | - Daniel E Johnson
- a Department of Otolaryngology - Head and Neck Surgery , University of California , San Francisco , CA , USA
| | - Jennifer R Grandis
- a Department of Otolaryngology - Head and Neck Surgery , University of California , San Francisco , CA , USA
| |
Collapse
|
72
|
Saito S, Ohtsu M, Asano M, Ishigami T. Ouabain signaling in oral squamous cell carcinoma cells. J Oral Sci 2019; 61:498-503. [DOI: 10.2334/josnusd.18-0411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Satsuki Saito
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Mariko Ohtsu
- Department of Pathology, Nihon University School of Dentistry
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| |
Collapse
|
73
|
Kelley DZ, Flam EL, Guo T, Danilova LV, Zamuner FT, Bohrson C, Considine M, Windsor EJ, Bishop JA, Zhang C, Koch WM, Sidransky D, Westra WH, Chung CH, Califano JA, Wheelan S, Favorov AV, Florea L, Fertig EJ, Gaykalova DA. Functional characterization of alternatively spliced GSN in head and neck squamous cell carcinoma. Transl Res 2018; 202:109-119. [PMID: 30118659 PMCID: PMC6218276 DOI: 10.1016/j.trsl.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
We have recently performed the characterization of alternative splicing events (ASEs) in head and neck squamous cell carcinoma, which allows dysregulation of protein expression common for cancer cells. Such analysis demonstrated a high ASE prevalence among tumor samples, including tumor-specific alternative splicing in the GSN gene.In vitro studies confirmed that overall expression of either ASE-GSN or wild-type GSN (WT-GSN) isoform inversely correlated with cell proliferation, whereas the high ratio of ASE-GSN to WT-GSN correlated with increased cellular invasion. Additionally, a change in expression of either isoform caused compensatory changes in expression of the other isoform. Our results suggest that the overall expression and the balance between GSN isoforms are mediating factors in proliferation, while increased overall expression of ASE-GSN is specific to cancer tissues. As a result, we propose ASE-GSN can serve not only as a biomarker of disease and disease progression, but also as a neoantigen for head and neck squamous cell carcinoma treatment, for which only a limited number of disease-specific targeted therapies currently exist.
Collapse
Affiliation(s)
- Dylan Z Kelley
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily L Flam
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ludmila V Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Fernando T Zamuner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Craig Bohrson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric J Windsor
- Department of Biotechnology, Maryland Holistics LLC, Ellicott City, Maryland
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wayne M Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William H Westra
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christine H Chung
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph A Califano
- Head and Neck Cancer Center, Moores Cancer Center, University of California, San Diego, La Jolla, California; Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, La Jolla, California
| | - Sarah Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander V Favorov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Liliana Florea
- McKusick-Nathans Institute of Genetic Medicine, Center for Computational Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Otolaryngology-Head and Neck Surgery (OHNS), University of California, San Francisco, California
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
74
|
Chen L, Feng Z, Yue H, Bazdar D, Mbonye U, Zender C, Harding CV, Bruggeman L, Karn J, Sieg SF, Wang B, Jin G. Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nat Commun 2018; 9:4585. [PMID: 30389917 PMCID: PMC6214989 DOI: 10.1038/s41467-018-07006-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
People living with HIV/AIDS on antiretroviral therapy have increased risk of non-AIDS-defining cancers (NADCs). However, the underlying mechanism for development and progression of certain NADCs remains obscure. Here we show that exosomes released from HIV-infected T cells and those purified from blood of HIV-positive patients stimulate proliferation, migration and invasion of oral/oropharyngeal and lung cancer cells. The HIV transactivation response (TAR) element RNA in HIV-infected T-cell exosomes is responsible for promoting cancer cell proliferation and inducing expression of proto-oncogenes and Toll-like receptor 3 (TLR3)-inducible genes. These effects depend on the loop/bulge region of the molecule. HIV-infected T-cell exosomes rapidly enter recipient cells through epidermal growth factor receptor (EGFR) and stimulate ERK1/2 phosphorylation via the EGFR/TLR3 axis. Thus, our findings indicate that TAR RNA-containing exosomes from HIV-infected T cells promote growth and progression of particular NADCs through activation of the ERK cascade in an EGFR/TLR3-dependent manner. HIV patients have an increased risk of developing non-AIDS-defining cancers but the molecular mechanisms underlying this predisposition are unclear. Here the authors show that exosomes secreted by HIV-infected T cells or isolated from the blood of HIV-positive patients, stimulate oncogenic properties of cancer cells through the activation of ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Lechuang Chen
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA
| | - Zhimin Feng
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA
| | - Hong Yue
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA.,Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Douglas Bazdar
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Uri Mbonye
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chad Zender
- Department of Otolaryngology/ENT Institute, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Clifford V Harding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Pathology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Leslie Bruggeman
- Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA.,Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Jonathan Karn
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Scott F Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Bingcheng Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Medicine, Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA.
| |
Collapse
|
75
|
Hauswald H, Jensen AD, Krauss J, Haselmann R, Lossner K, Hartmann S, Windemuth-Kieselbach C, Münter MW, Debus J. Phase II study of induction chemotherapy with docetaxel, cisplatin, 5-fluorouracil followed by radioimmunotherapy with cetuximab and intensity-modulated radiotherapy in combination with a carbon ion boost for locally advanced tumors of the oro-, hypopharynx and larynx. Clin Transl Radiat Oncol 2018; 13:64-73. [PMID: 30370340 PMCID: PMC6199783 DOI: 10.1016/j.ctro.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Trimodal approach with carbon ions was tolerable and promising. No high-grade radiation adverse events were documented. No adverse events resulted in death of patients. Quality of life recovered for most aspects until the last follow-up visit.
Purpose This phase II trial was designed to evaluate efficacy and safety of a highly intensified therapy in locally advanced squamous cell carcinoma of the oro-, hypopharynx and larynx. Methods In this prospective, mono-centric, open-label, non-randomized phase II trial the single treatment arm consisted of a combined induction chemotherapy with docetaxel, cisplatin, 5-fluorouracil, followed by bioradiation with the monoclonal antibody cetuximab, carbon ion boost (24Gy(RBE) in 8 fractions) and IMRT (50 Gy in 25 fractions). The trial was closed early due to slow accrual. Results Eight patients (median age 52.5 years) were enrolled into the trial. The median follow-up was 13 months and the 12-months locoregional tumor control, progression-free survival and overall survival rates were 100.0% each. Complete remission was achieved in 7 patients. The most commonly late radiation adverse event was xerostomia (85.7% at 12 months). Five serious adverse events with recovery were documented in 4 patients: mucositis grade 3 (n = 2), decreased lymphocyte count grade 4, febrile neutropenia grade 4 and hypersensitivity grade 3 to cetuximab (n = 1 each). Most symptom scales had their worst value at the last treatment day and recovered until the 4th follow-up visit. Conclusion The study treatment was tolerable and promising. Reduced quality of life recovered for most aspects until the last follow-up visit.
Collapse
Affiliation(s)
- H Hauswald
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - A D Jensen
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - J Krauss
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - R Haselmann
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - K Lossner
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - S Hartmann
- Alcedis GmbH, Winchesterstr. 3, 35394 Gießen, Germany
| | | | - M W Münter
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - J Debus
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
76
|
Periyannan V, Veerasamy V. Syringic acid may attenuate the oral mucosal carcinogenesis via improving cell surface glycoconjugation and modifying cytokeratin expression. Toxicol Rep 2018; 5:1098-1106. [PMID: 30425931 PMCID: PMC6222029 DOI: 10.1016/j.toxrep.2018.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
Syringic acid (SRA) is an excellent anti-oxidant and anti-cancer property in various in vitro and in vivo studies. In the present study was modifying effect of SRA on 7,12-dimethylbenz(a)anthracene (DMBA) induced cell surface glycoconjugates (GCs) abnormalities in the plasma and buccal mucosa of golden Syrian hamster buccal pouch carcinogenesis (HBPCs). Topical application of DMBA three times a week for 10 weeks on the buccal pouches of the hamsters resulted in well developed squamous cell carcinoma. GCs status was assessed biochemically, histological and immunoexpression pattern of cytokeratin (CK) in the buccal mucosa of the DMBA treated hamsters. Elevated levels of GCs and CK expression were observed in DMBA alone treated hamsters. Oral pre-administration of SRA (50 mg/kg bw) positively modulates the GCs levels and CK expressions to near normal. The present findings suggested that SRA can protect cell surface GCs and CK expression during DMBA induced HBPCs.
Collapse
Affiliation(s)
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608002, Tamilnadu, India
| |
Collapse
|
77
|
Huang K, Liu D. Suppression of c-MET overcomes erlotinib resistance in tongue cancer cells. Onco Targets Ther 2018; 11:5499-5508. [PMID: 30233210 PMCID: PMC6134955 DOI: 10.2147/ott.s167936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Erlotinib is a commonly used molecular-targeted drug for the treatment of tongue cancer. However, the development of acquired resistance to erlotinib hampers its therapeutic use. Materials and methods To analyze the erlotinib resistance, long-term and short term survival assay were used to compare the resistance between parental and resistant tongue cancer cells. Flow cytometry, Hochest staining and western blot were used to analyze the apoptosis among the cells. Moreover, Transwell and wound healing assay were used to compare the invasion ability of the cells. To deeply explore the drug resistance in vivo, orthotopic tumor studies were applied. Finally, to explain the mechanism of c-met in erlotinib resistance, shRNA against c-met was used to down-regulate the expression of c-met. And SU11274 also used in orthotopic model. Results We established erlotinib-resistant human tongue cancer cell line by chronic exposure of TCA-8113 cells to increasing concentrations of erlotinib and determined the role of c-MET and EGFR in the development of acquired resistance. We found a significant increase in the phosphorylation of c-MET and an obvious decrease of the phosphorylation of EGFR in erlotinib-resistant cells. Our results also revealed that inhibition of c-MET alone with SU11274 exerted an inhibitory effect on the proliferation of erlotinib-resistant cells in the short term; however, it failed to sustain the inhibitory effect in the long term. Simultaneous inhibition of c-MET and EGFR significantly inhibited the proliferation of erlotinib-resistant cells in both a short and long period. Furthermore, we explored the underlying mechanism and found that treatment of erlotinib-resistant cells with SU11274 or shRNA against c-MET induced the phosphorylation of EGFR. Moreover, our results demonstrated that simultaneous inhibition of c-MET and EGFR significantly inhibited the migration and invasion of erlotinib-resistant cells. Conclusion Taken together, our results suggested that c-MET is involved in acquired drug resistance to erlotinib and that cotargeting of EGFR and c-MET could overcome acquired resistance to erlotinib and inhibit the invasion and metastasis of erlotinib-resistant cells.
Collapse
Affiliation(s)
- Keqiang Huang
- Department of Orthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China,
| | - Dongxu Liu
- Department of Orthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China,
| |
Collapse
|
78
|
Kang SH, Keam B, Ahn YO, Park HR, Kim M, Kim TM, Kim DW, Heo DS. Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology 2018; 8:e1515057. [PMID: 30546955 DOI: 10.1080/2162402x.2018.1515057] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) class I downregulation is the primary immune evasion mechanism associated with failure in anti-PD-1/PD-L1 blockade therapies for cancer. Here, we examined the role of MEK signaling pathway inhibition in head and neck squamous cell carcinoma (HNSCC) both in vitro and in vivo. We found that trametinib, a small molecule inhibitor of MEK, significantly enhanced MHC class I and PD-L1 expression in human HNSCC cell lines, and this occurred via STAT3 activation. Trametinib also further upregulated the increase in CXCL9 and CXCL10 expression caused by IFN-γ in HNSCC cells, which is associated with T cell infiltration in tumor tissues. Finally, we evaluated the therapeutic efficacy of trametinib combined with an anti-PD-L1 monoclonal antibody in vivo, using SCCVII mouse syngeneic tumor model for HNSCC. While neither PD-L1 blockade nor trametinib treatment alone affected tumor growth, the combined therapy significantly delayed tumor growth. Our results indicate that in the combined therapy trametinib increases CD8+ T cell infiltration in the tumor site and upregulates antigen presentation, and this may be associated with enhanced PD-L1 blockade efficacy. Furthermore, our results suggest that this combination would therapeutically benefit patients with HNSCC.
Collapse
Affiliation(s)
- Seong-Ho Kang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yong-Oon Ahn
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
79
|
Oei RW, Ye L, Huang J, Kong F, Xu T, Shen C, Wang X, He X, Kong L, Hu C, Ying H. Prognostic value of nutritional markers in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy: a propensity score matching study. Onco Targets Ther 2018; 11:4857-4868. [PMID: 30147337 PMCID: PMC6098427 DOI: 10.2147/ott.s165133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose To investigate the prognostic value of nutritional markers for survival in nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiotherapy (IMRT), with or without chemotherapy. Patients and methods This retrospective study included 412 NPC patients who received IMRT-based treatment. Weight loss (WL) during treatment, hemoglobin level (Hb) and serum albumin level (Alb) before treatment were measured. The prognostic values of these markers for overall survival (OS), locoregional recurrence-free survival (LRFS) and distant metastasis-free survival (DMFS) were analyzed using Kaplan-Meier method and Cox proportional hazards regression analysis. Propensity score matching was performed to reduce the effect of confounders. Results WL, Hb and Alb were significantly correlated with each other and inflammatory markers. Adjusted Cox regression analysis showed that critical weight loss (CWL) (WL≥5%) was an independent prognostic factor for OS (HR: 2.399, 95% CI: 1.267-4.540, P=0.007) and LRFS (HR: 2.041, 95% CI: 1.052-3.960, P=0.035), while low pretreatment Hb was independently associated with poor DMFS (HR: 2.031, 95% CI: 1.144-3.606, P=0.016). However, no significant correlation was found between Alb and survival in our study cohort. The prognostic value of these markers was further confirmed in the propensity-matched analysis. Conclusion CWL, Hb and Alb have a significant impact on survival in NPC patients undergoing IMRT. They can be utilized in combination with conventional staging system to predict the prognosis of NPC patients treated with IMRT.
Collapse
Affiliation(s)
- Ronald Wihal Oei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Lulu Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Juan Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Fangfang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Tingting Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Chunying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Xiaoshen Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Lin Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China,
| |
Collapse
|
80
|
Vageli DP, Doukas SG, Spock T, Sasaki CT. Curcumin prevents the bile reflux-induced NF-κB-related mRNA oncogenic phenotype, in human hypopharyngeal cells. J Cell Mol Med 2018; 22:4209-4220. [PMID: 29911313 PMCID: PMC6111812 DOI: 10.1111/jcmm.13701] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
The presence of bile is not an uncommon finding in acidic oesophageal and extra‐oesophageal refluxate, possibly affecting the hypopharyngeal mucosa and leading to neoplastic events. We recently demonstrated that acidic bile (pH ≤ 4.0) can induce NF‐κB activation and oncogenic mRNA phenotype in normal hypopharyngeal cells and generate premalignant changes in treated hypopharyngeal mucosa. We hypothesize that curcumin, a dietary inhibitor of NF‐κB, may effectively inhibit the acidic bile‐induced cancer‐related mRNA phenotype, in treated human hypopharyngeal primary cells (HHPC), supporting its potential preventive use in vivo. Luciferase assay, immunofluorescence, Western blot, qPCR and PCR microarray analysis were used to explore the effect of curcumin in HHPC exposed to bile (400 μmol/L) at acidic and neutral pH. Curcumin successfully inhibited the acidic bile‐induced NF‐κB signalling pathway (25% of analysed genes), and overexpression of NF‐κB transcriptional factors, c‐REL, RELA(p65), anti‐apoptotic bcl‐2, oncogenic TNF‐α, EGFR, STAT3, WNT5A, ΔNp63 and cancer‐related IL‐6. Curcumin effectively reduced bile‐induced bcl‐2 overexpression at both acidic and neutral pH. Our novel findings suggest that, similar to pharmacologic NF‐κB inhibitor, BAY 11‐7082, curcumin can suppress acidic bile‐induced oncogenic mRNA phenotype in hypopharyngeal cells, encouraging its future in vivo pre‐clinical and clinical explorations in prevention of bile reflux‐related pre‐neoplastic events mediated by NF‐κB.
Collapse
Affiliation(s)
- Dimitra P Vageli
- Department of Surgery, The Yale Larynx Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Sotirios G Doukas
- Department of Surgery, The Yale Larynx Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Todd Spock
- Department of Surgery, The Yale Larynx Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Clarence T Sasaki
- Department of Surgery, The Yale Larynx Laboratory, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
81
|
Ota H, Shionome T, Suguro H, Saito S, Ueki K, Arai Y, Asano M. Nickel chloride administration prevents the growth of oral squamous cell carcinoma. Oncotarget 2018; 9:24109-24121. [PMID: 29844876 PMCID: PMC5963632 DOI: 10.18632/oncotarget.25313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
The effect of NiCl2 on oral squamous cell carcinoma-derived cell line HSC3 was examined. Incubation with 1 mM NiCl2 significantly reduced the expression of MMPs at mRNA and protein levels. The in vivo orthotopic implantation model was established by injecting highly metastatic subcell line HSC3-M3 to nude mouse tongue. After 1 week of injection, mice were fed with or without 1 mM NiCl2-containing water for two to three weeks. Immunohistochamical examination revealed that MMP9 expression was drastically reduced in NiCl2-fed mice. By CT images, cancer mass was observed as a translucent area in control mice. In NiCl2-fed mice, much highly translucent area was observed within the translucent area. Histologically, this area corresponded to the necrotic area in the tumor mass. Real-time PCR analysis revealed the reduced expression of angiogenic factors such as IL-8 and VEGF mRNA in NiCl2-fed mice. To further examine the effect of NiCl2 on metastasis, human β-globin gene expression in regional lymphnodes was compared. The β-globin gene was totaly absent in NiCl2-fed mice. Moreover, various cancer metastasis-related genes were inhibited in NiCl2-fed mice by PCR array analysis. The results indicated that NiCl2 might be a promising new anti-cancer therapeutics for the oral cancer treatment.
Collapse
Affiliation(s)
- Hirotaka Ota
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Shionome
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Hisashi Suguro
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Satsuki Saito
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Kosuke Ueki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
82
|
Principe S, Mejia-Guerrero S, Ignatchenko V, Sinha A, Ignatchenko A, Shi W, Pereira K, Su S, Huang SH, O'Sullivan B, Xu W, Goldstein DP, Weinreb I, Ailles L, Liu FF, Kislinger T. Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma. J Proteome Res 2018; 17:2045-2059. [PMID: 29681158 DOI: 10.1021/acs.jproteome.7b00925] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bidirectional communication between cells and their microenvironment is crucial for both normal tissue homeostasis and tumor growth. During the development of oral tongue squamous cell carcinoma (OTSCC), cancer-associated fibroblasts (CAFs) create a supporting niche by maintaining a bidirectional crosstalk with cancer cells, mediated by classically secreted factors and various nanometer-sized vesicles, termed as extracellular vesicles (EVs). To better understand the role of CAFs within the tumor stroma and elucidate the mechanism by which secreted proteins contribute to OTSCC progression, we isolated and characterized patient-derived CAFs from resected tumors with matched adjacent tissue fibroblasts (AFs). Our strategy employed shotgun proteomics to comprehensively characterize the proteomes of these matched fibroblast populations. Our goals were to identify CAF-secreted factors (EVs and soluble) that can functionally modulate OTSCC cells in vitro and to identify novel CAF-associated biomarkers. Comprehensive proteomic analysis identified 4247 proteins, the most detailed description of a pro-tumorigenic stroma to date. We demonstrated functional effects of CAF secretomes (EVs and conditioned media) on OTSCC cell growth and migration. Comparative proteomics identified novel proteins associated with a CAF-like state. Specifically, MFAP5, a protein component of extracellular microfibrils, was enriched in CAF secretomes. Using in vitro assays, we demonstrated that MFAP5 activated OTSCC cell growth and migration via activation of MAPK and AKT pathways. Using a tissue microarray of richly annotated primary human OTSCCs, we demonstrated an association of MFAP5 expression with patient survival. In summary, our proteomics data of patient-derived stromal fibroblasts provide a useful resource for future mechanistic and biomarker studies.
Collapse
Affiliation(s)
- Simona Principe
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Salvador Mejia-Guerrero
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Ankit Sinha
- Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Alexandr Ignatchenko
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada
| | - Willa Shi
- Department of Radiation Oncology , University of Toronto , Toronto , Ontario M5T 1P5 , Canada
| | - Keira Pereira
- Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Susie Su
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Biostatistics , Princess Margaret Cancer Centre , Toronto , Ontario M5G 1L7 , Canada
| | - Shao Hui Huang
- Department of Radiation Oncology , University of Toronto , Toronto , Ontario M5T 1P5 , Canada
| | - Brian O'Sullivan
- Department of Radiation Oncology , University of Toronto , Toronto , Ontario M5T 1P5 , Canada
| | - Wei Xu
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Biostatistics , Princess Margaret Cancer Centre , Toronto , Ontario M5G 1L7 , Canada
| | - David P Goldstein
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Otolaryngology-Head and Neck Surgery, Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Otolaryngology , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Ilan Weinreb
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Pathology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Radiation Oncology , University of Toronto , Toronto , Ontario M5T 1P5 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre , University Health Network , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| |
Collapse
|
83
|
p38 Expression and Modulation of STAT3 Signaling in Oral Cancer. Pathol Oncol Res 2018; 26:183-192. [DOI: 10.1007/s12253-018-0405-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
|
84
|
Xu YX, Zeng ML, Yu D, Ren J, Li F, Zheng A, Wang YP, Chen C, Tao ZZ. In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma. Oncol Lett 2018; 15:7999-8004. [PMID: 29740495 DOI: 10.3892/ol.2018.8279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the antitumor efficacy of di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) on head and neck squamous cell carcinoma (HNSCC) cells. The proliferation and apoptosis of HNSCC cells treated with the iron chelators DpC and Dp44mT were detected. The mechanism of DpC-induced apoptosis on HNSCC cells was investigated. The human HNSCC cell lines FaDu, Cal-27 and SCC-9 were cultured in vitro and exposed to gradient concentrations of DpC and Dp44mT. A Cell Counting Kit-8 assay was used to detect the viability of FaDu, Cal-27, SCC-9 cells. Double staining with annexin V and propidium iodide was performed for the detection of the proportion of apoptotic FaDu, Cal-27 and SCC-9 cells following treatment. The nuclear damage to Cal-27 cells that were treated with DpC was detected by Hoechst staining. Finally, western blot analysis was used to detect the expression of proteins associated with the DNA damage pathway in Cal-27 cells that were treated with DpC. The CCK-8 assay showed that treatment with DpC and Dp44mT was able to markedly inhibit the viability of FaDu, Cal-27 and SCC-9 cells in a concentration-dependent manner. In comparison to Dp44mT, treatment with DpC exhibited a more effective inhibitory effect on the viability of HNSCC cells. The proportion of apoptotic cells detected by flow cytometry increased in a dose-dependent manner in all cell lines following DpC and Dp44mT treatment, with the proportion of apoptotic HNSCC cells induced by DpC treatment being significantly higher compared with Dp44mT (P<0.05). The results of Hoechst staining revealed that the nuclei of Cal-27 cells exhibited morphological changes in response to DpC treatment, including karyopyknosis and nuclear fragmentation. The expression of DNA damage-associated proteins, including phosphorylated (p)-serine-protein kinase ATM, p-serine/threonine-protein kinase Chk1 (p-Chk-1), p-serine/threonine-protein kinase ATR (p-ATR), p-Chk-2, poly (ADP-ribose) polymerase, p-histone H2AX, breast cancer type 1 susceptibility protein, p-tumor protein P53, increased with increasing concentration of DpC in Cal-27 cells. Treatment with DpC and Dp44mT markedly inhibited cell viability and increased the apoptotic rates in human HNSCC cells in a concentration-dependent manner. DpC exhibited a stronger antitumor effect compared with Dp44mT, potentially inducing the apoptosis of HNSCC cells via the upregulation of DNA damage repair-associated proteins.
Collapse
Affiliation(s)
- Ye-Xing Xu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man-Li Zeng
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Di Yu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Ren
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Anyuan Zheng
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong-Ping Wang
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
85
|
Nohata N, Abba MC, Gutkind JS. Unraveling the oral cancer lncRNAome: Identification of novel lncRNAs associated with malignant progression and HPV infection. Oral Oncol 2018; 59:58-66. [PMID: 27424183 DOI: 10.1016/j.oraloncology.2016.05.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The role of long non-coding RNA (lncRNA) expression in human head and neck squamous cell carcinoma (HNSCC) is still poorly understood. In this study, we aimed at establishing the onco-lncRNAome profiling of HNSCC and to identify lncRNAs correlating with prognosis and patient survival. MATERIALS AND METHODS The Atlas of Noncoding RNAs in Cancer (TANRIC) database was employed to retrieve the lncRNA expression information generated from The Cancer Genome Atlas (TCGA) HNSCC RNA-sequencing data. RNA-sequencing data from HNSCC cell lines were also considered for this study. Bioinformatics approaches, such as differential gene expression analysis, survival analysis, principal component analysis, and Co-LncRNA enrichment analysis were performed. RESULTS Using TCGA HNSCC RNA-sequencing data from 426 HNSCC and 42 adjacent normal tissues, we found 728 lncRNA transcripts significantly and differentially expressed in HNSCC. Among the 728 lncRNAs, 55 lncRNAs were significantly associated with poor prognosis, such as overall survival and/or disease-free survival. Next, we found 140 lncRNA transcripts significantly and differentially expressed between Human Papilloma Virus (HPV) positive tumors and HPV negative tumors. Thirty lncRNA transcripts were differentially expressed between TP53 mutated and TP53 wild type tumors. Co-LncRNA analysis suggested that protein-coding genes that are co-expressed with these deregulated lncRNAs might be involved in cancer associated molecular events. With consideration of differential expression of lncRNAs in a HNSCC cell lines panel (n=22), we found several lncRNAs that may represent potential targets for diagnosis, therapy and prevention of HNSCC. CONCLUSION LncRNAs profiling could provide novel insights into the potential mechanisms of HNSCC oncogenesis.
Collapse
Affiliation(s)
- Nijiro Nohata
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Martin C Abba
- CINIBA, CONICET, School of Medical Sciences, National University of La Plata, La Plata, Argentina
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States; Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
86
|
Doukas SG, Vageli DP, Sasaki CT. NF-κB inhibition reverses acidic bile-induced miR-21, miR-155, miR-192, miR-34a, miR-375 and miR-451a deregulations in human hypopharyngeal cells. J Cell Mol Med 2018. [PMID: 29516639 PMCID: PMC5908126 DOI: 10.1111/jcmm.13591] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously demonstrated that acidic bile activates NF-κB, deregulating the expression of oncogenic miRNA markers, in pre-malignant murine laryngopharyngeal mucosa. Here, we hypothesize that the in vitro exposure of human hypopharyngeal cells to acidic bile deregulates cancer-related miRNA markers that can be reversed by BAY 11-7082, a pharmacologic NF-κB inhibitor. We repetitively exposed normal human hypopharyngeal primary cells and human hypopharyngeal keratinocytes to bile fluid (400 μmol/L), at pH 4.0 and 7.0, with/without BAY 11-7082 (20 μmol/L). We centred our study on the transcriptional activation of oncogenic miR-21, miR-155, miR-192, miR-34a, miR-375, miR-451a and NF-κB-related genes, previously linked to acidic bile-induced pre-neoplastic events. Our novel findings in vitro are consistent with our hypothesis demonstrating that BAY 11-7082 significantly reverses the acidic bile-induced oncogenic miRNA phenotype, in normal hypopharyngeal cells. BAY 11-7082 strongly inhibits the acidic bile-induced up-regulation of miR-192 and down-regulation of miR-451a and significantly decreases the miR-21/375 ratios, previously related to poor prognosis in hypopharyngeal cancer. This is the first in vitro report that NF-κB inhibition reverses acidic bile-induced miR-21, miR-155, miR-192, miR-34a, miR-375 and miR-451a deregulations in normal human hypopharyngeal cells, suggesting that acidic bile-induced events are directly or indirectly dependent on NF-κB signalling.
Collapse
Affiliation(s)
- Sotirios G Doukas
- The Yale Larynx laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Dimitra P Vageli
- The Yale Larynx laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Clarence T Sasaki
- The Yale Larynx laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
87
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong ANT. Correction to: In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS JOURNAL 2018; 20:27. [PMID: 29411155 DOI: 10.1208/s12248-018-0190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The citation of the author name "Ah-Ng Tony Kong" in PubMed is not the author's preference. Instead of "Kong AT", the author prefers "Kong AN".
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Tony Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
88
|
Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, Tan BCM. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Am J Cancer Res 2018; 8:486-504. [PMID: 29290822 PMCID: PMC5743562 DOI: 10.7150/thno.22059] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
During neoplastic development, a multitude of changes in genome-encoded information are progressively selected to confer growth and survival advantages to tumor cells. microRNAs-mRNAs regulatory networks, given their role as a critical layer of robust gene expression control, are frequently altered in neoplasm. However, whether and how these gene perturbations impact metabolic homeostasis remains largely unresolved. Methods: Through targeted miRNA expression screening, we uncovered an oral squamous cell carcinoma (OSCC)-associated miRNAome, among which miR-31-5p was identified based on extent of up-regulation, functional impact on OSCC cell migration and invasion, and direct regulation of the rate-limiting enzyme in peroxisomal β-oxidation, ACOX1. Results: We further found that both miR-31-5p and ACOX1 underpin, in an antagonistic manner, the overall cellular lipidome profiles as well as the migratory and invasive abilities of OSCC cells. Interestingly, the extracellular levels of prostaglandin E2 (PGE2), a key substrate of ACOX1, were controlled by the miR-31-5p-ACOX1 axis, and were shown to positively influence the extent of cell motility in correlation with metastatic status. The promigratory effect of this metabolite was mediated by an elevation in EP1-ERK-MMP9 signaling. Of note, functional significance of this regulatory pathway was further corroborated by its clinicopathologically-correlated expression in OSCC patient specimens. Conclusions: Collectively, our findings outlined a model whereby misregulated miR-31-5p-ACOX1 axis in tumor alters lipid metabolomes, consequently eliciting an intracellular signaling change to enhance cell motility. Our clinical analysis also unveiled PGE2 as a viable salivary biomarker for prognosticating oral cancer progression, further underscoring the importance of lipid metabolism in tumorigenesis.
Collapse
|
89
|
Zeng M, Li F, Wang L, Chen C, Huang X, Wu X, She W, Zhou L, Tao Z. Downregulated cytoplasmic polyadenylation element-binding protein-4 is associated with the carcinogenesis of head and neck squamous cell carcinoma. Oncol Lett 2017; 15:3226-3232. [PMID: 29435062 DOI: 10.3892/ol.2017.7661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic polyadenylation element-binding protein-4 (CPEB4) is involved in several biological processes that are associated with cancer progression. However, it remains unknown whether CPEB4 expression levels are associated with head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to explore the potential function of CPEB4 in HNSCC. The expression of CPEB4 was analyzed in HNSCC from six Gene Expression Omnibus (GEO) datasets. Immunohistochemical staining was conducted to examine CPEB4 protein levels in an HNSCC tissue microarray (TMA). According to the GEO dataset analyses, CPEB4 gene expression was downregulated in HNSCC compared with normal samples (P<0.05). Notably, a statistical difference was observed between different tumor grades (P<0.05). Furthermore, the methylation of the CPEB4 gene in HNSCC was significantly increased compared with that observed in normal samples (P<0.01). The outcome from the TMA demonstrated that CPEB4 protein expression in human HNSCC tumors was significantly decreased compared with normal samples (P<0.05). In addition, the expression of CPEB4 protein was negatively associated with histological grades of HNSCC (P<0.05). The results from the present study suggested that CPEB4 may function as a tumor suppressor gene in HNSCC, which identifies the potential value of CPEB4 in predicting prognosis of HNSCC. Hypermethylation of the CPEB4 gene may be responsible for the downregulation of CPEB4 expression in HNSCC and result in tumorigenesis.
Collapse
Affiliation(s)
- Manli Zeng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaolin Huang
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Xingyu Wu
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Wensheng She
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Lin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
90
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong AN. In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS J 2017; 20:19. [PMID: 29264822 PMCID: PMC6021020 DOI: 10.1208/s12248-017-0177-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
91
|
Inhibition of NF- κB prevents the acidic bile-induced oncogenic mRNA phenotype, in human hypopharyngeal cells. Oncotarget 2017; 9:5876-5891. [PMID: 29464041 PMCID: PMC5814181 DOI: 10.18632/oncotarget.23143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
Bile-containing gastro-duodenal reflux has been clinically considered an independent risk factor in hypopharyngeal carcinogenesis. We recently showed that the chronic effect of acidic bile, at pH 4.0, selectively induces NF-κB activation and accelerates the transcriptional levels of genes, linked to head and neck cancer, in normal hypopharyngeal epithelial cells. Here, we hypothesize that NF-κB inhibition is capable of preventing the acidic bile-induced and cancer-related mRNA phenotype, in treated normal human hypopharyngeal cells. In this setting we used BAY 11-7082, a specific and well documented pharmacologic inhibitor of NF-κB, and we observed that BAY 11-7082 effectively inhibits the acidic bile-induced gene expression profiling of the NF-κB signaling pathway (down-regulation of 72 out of 84 analyzed genes). NF-κB inhibition significantly prevents the acidic bile-induced transcriptional activation of NF-κB transcriptional factors, RELA (p65) and c-REL, as well as genes related to and commonly found in established HNSCC cell lines. These include anti-apoptotic bcl-2, oncogenic STAT3, EGFR, ∆Np63, TNF-α and WNT5A, as well as cytokines IL-1β and IL-6. Our findings are consistent with our hypothesis demonstrating that NF-κB inhibition effectively prevents the acidic bile-induced cancer-related mRNA phenotype in normal human hypopharyngeal epithelial cells supporting an understanding that NF-κB may be a critical link between acidic bile and early preneoplastic events in this setting.
Collapse
|
92
|
DasGupta T, Nweze EI, Yue H, Wang L, Jin J, Ghosh SK, Kawsar HI, Zender C, Androphy EJ, Weinberg A, McCormick TS, Jin G. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53. Oncotarget 2017; 7:27430-44. [PMID: 27034006 PMCID: PMC5053661 DOI: 10.18632/oncotarget.8443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/17/2016] [Indexed: 01/24/2023] Open
Abstract
Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer.
Collapse
Affiliation(s)
- Twishasri DasGupta
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| | - Emeka I Nweze
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA.,Present Address: University of Nigeria, Nsukka, Nigera
| | - Hong Yue
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| | - Liming Wang
- Center for Molecular Cancer Diagnosis Inc., Twinsburg, OH, USA
| | - Jessica Jin
- Human Developmental and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Santosh K Ghosh
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| | - Hameem I Kawsar
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA.,Present Address: St. Luke's Hospital, Chesterfield, MO, USA
| | - Chad Zender
- Department of Otolaryngology-Head & Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| | - Thomas S McCormick
- Department of Dermatology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| |
Collapse
|
93
|
Zhang Y, Gong FL, Lu ZN, Wang HY, Cheng YN, Liu ZP, Yu LG, Zhang HH, Guo XL. DHPAC, a novel synthetic microtubule destabilizing agent, possess high anti-tumor activity in vincristine-resistant oral epidermoid carcinoma in vitro and in vivo. Int J Biochem Cell Biol 2017; 93:1-11. [PMID: 29074436 DOI: 10.1016/j.biocel.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is one of major obstacles to effective chemotherapeutic treatment of cancer. This study showed that DHPAC, 2-(6-ethoxy-3-(3-ethoxyphenylamino) -1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy) acetamide, a novel compound that binds to the same site on microtubules as colchicine, has high anti-tumour activity in vincristine-resistant oral epidermoid carcinoma (KB/V) cells. It found that the presence of DHPAC strongly inhibited KB/V cell growth in vivo and in mice xenograft. The inhibitory effect of DHPAC is much stronger than that by colchicine in these KB/V cells (IC50: 64.4nM and 458.0nM respectively). Treatment of the cells with DHPAC induced cell apoptosis by reducing mitochondrial membrane potential and altered the expression of several apoptosis-related proteins such as Bcl-2, Bax, Caspase-9, Cytochrome c and PARP. DHPAC treatment also caused cell rest in G2/M phase by regulating of the expression of a number of cell cycle-related proteins (e.g. Cyclin B1, Cdc2, Cdc25b, Cdc25c, RSK2). Furthermore, DHPAC presence inhibits PTEN phosphorylation and PTEN/Akt/NF-κB signalling. Thus, DHPAC has potent anti-cancer activity in MDR tumuors and may be a potential therapeutic agent for the treatment of vincristine-resistant human oral epidermoid carcinoma.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Fu-Lian Gong
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Zhen-Ning Lu
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Hong-Yuan Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yan-Na Cheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Hui-Hui Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
94
|
Immunohistochemical Study of TGF-β1 in Oral Leukoplakia and Oral Squamous Cell Carcinoma: Correlations Between Clinicopathologic Factors and Overall Survival. Appl Immunohistochem Mol Morphol 2017; 25:651-659. [DOI: 10.1097/pai.0000000000000355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Kakei Y, Teraoka S, Akashi M, Hasegawa T, Komori T. Changes in cell junctions induced by inhibition of epidermal growth factor receptor in oral squamous cell carcinoma cells. Exp Ther Med 2017; 14:953-960. [PMID: 28810546 PMCID: PMC5525654 DOI: 10.3892/etm.2017.4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022] Open
Abstract
The benefits of epidermal growth factor receptor (EGFR) targeting in the treatment of head and neck cancer, have been documented. However, a minority of patients with head and neck cancer are unresponsive to EGFR targeting therapies. The present study evaluated the effects and limitations of an EGFR inhibitor on oral squamous cell carcinoma cells, particularly on cell-cell junctions mediated by epithelial (E)-cadherin. HSC-3 oral squamous cell carcinoma cells were treated with the EGFR inhibitor, AG1478 (0, 0.5, 2, 10 and 50 µM), and the effects of EGFR inhibition in HSC-3 cells were evaluated by wound healing assays, E-cadherin immunostaining and measurement of transepithelial electrical resistance in vitro. It was observed that treatment of oral squamous cell carcinoma cells with AG1478 suppressed cell motility, altered cell morphology and increased the number of cell-cell junctions compared with untreated control cells. Knockdown of EGFR induced a similar phenotype to that observed by the inhibition of EGFR. Furthermore, in oral squamous cell carcinoma cells treated with high-dose EGFR inhibitor (50 µM), the small number of cells that survived formed cell-cell junctions that were positive for E-cadherin expression. In cells treated with low concentrations of EGFR inhibitor (2 µM), recovery of epithelial properties was observed. The retention of E-cadherin expression in cells that survived high-dose EGFR inhibitor treatment may be a survival mechanism of cancer cells.
Collapse
Affiliation(s)
- Yasumasa Kakei
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Shun Teraoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| |
Collapse
|
96
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|
97
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
98
|
Zhang W, Yan Y, Gu M, Wang X, Zhu H, Zhang S, Wang W. High expression levels of Wnt5a and Ror2 in laryngeal squamous cell carcinoma are associated with poor prognosis. Oncol Lett 2017; 14:2232-2238. [PMID: 28781662 PMCID: PMC5530173 DOI: 10.3892/ol.2017.6386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
The present study investigated the prognostic significance of Wnt family member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression in laryngeal squamous cell carcinoma (LSCC). The protein expression levels of Wnt5a and Ror2 were analyzed in specimens from 137 patients with LSCC, using immunohistochemical staining of tissue microarrays and pairs of LSCC and adjacent tissue samples, and examined the associations between the two markers and various clinicopathological parameters. The Wnt5a and Ror2 expression levels were significantly higher in LSCC tissues than in normal tissue samples (Wnt5a, P=0.015; Ror2, P=0.039), and were significantly associated with high tumor stage (P<0.001), lymph node metastasis (Wnt5a, P=0.029; Ror2, P=0.018), and with each other (P=0.002). Patients with LSCC with high Wnt5a or Ror2 expression had poorer prognosis compared with those with low Wnt5a (P=0.022) or Ror2 (P=0.038) expression. Thus, Wnt5a and Ror2 may affect LSCC development, and are potential biomarkers in LSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongbing Yan
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miao Gu
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huijun Zhu
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shu Zhang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
99
|
Ma SR, Deng WW, Liu JF, Mao L, Yu GT, Bu LL, Kulkarni AB, Zhang WF, Sun ZJ. Blockade of adenosine A2A receptor enhances CD8 + T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol Cancer 2017; 16:99. [PMID: 28592285 PMCID: PMC5461710 DOI: 10.1186/s12943-017-0665-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer immunotherapy offers a promising approach in cancer treatment. The adenosine A2A receptor (A2AR) could protect cancerous tissues from immune clearance via inhibiting T cells response. To date, the role of A2AR in head and neck squamous cell carcinoma (HNSCC) has not been investigated. Here, we sought to explore the expression and immunotherapeutic value of A2AR blockade in HNSCC. METHODS The expression of A2AR was evaluated by immunostaining in 43 normal mucosae, 48 dysplasia and 165 primary HNSCC tissues. The immunotherapeutic value of A2AR blockade was assessed in vivo in genetically defined immunocompetent HNSCC mouse model. RESULTS Immunostaining of HNSCC tissue samples revealed that increased expression of A2AR on tumor infiltrating immune cells correlated with advanced pathological grade, larger tumor size and positive lymph node status. Elevated A2AR expression was also detected in recurrent HNSCC and HNSCC tissues with induction chemotherapy. The expression of A2AR was found to be significantly correlated with HIF-1α, CD73, CD8 and Foxp3. Furthermore, the increased population of CD4+Foxp3+ regulatory T cells (Tregs), which partially expressed A2AR, was observed in an immunocompetent mouse model that spontaneously develops HNSCC. Pharmacological blockade of A2AR by SCH58261 delayed the tumor growth in the HNSCC mouse model. Meanwhile, A2AR blockade significantly reduced the population of CD4+ Foxp3+ Tregs and enhanced the anti-tumor response of CD8+ T cells. CONCLUSIONS These results offer a preclinical proof for the administration of A2AR inhibitor on prophylactic experimental therapy of HNSCC and suggest that A2AR blockade can be a potential novel strategy for HNSCC immunotherapy.
Collapse
Affiliation(s)
- Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, Hubei Province, People's Republic of China, 430079. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
100
|
Dysregulation of angiogenesis-specific signalling in adult testis results in xenograft degeneration. Sci Rep 2017; 7:2605. [PMID: 28572601 PMCID: PMC5454001 DOI: 10.1038/s41598-017-02604-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Ectopic xenografting of testis is a feasible option for preservation of male fertility and angiogenesis plays a pivotal role in xenograft survival and functionality. When compared to immature testis, the adult testis is unable to establish functional xenografts due to potentially lower efficiency to induce angiogenesis. The precise molecular mechanism, however, remains elusive. In the present study, we compared adult and immature testis xenografts for survival, maturation and germ cell differentiation. Further, we evaluated differential expression of angiogenesis signalling-specific proteins in adult and immature testis and their xenografts. Results showed that adult testis xenografts degenerated whereas immature testis xenografts survived and established spermatogenesis with the production of haploid germ cells. Protein expression analysis demonstrated that immature testis xenografts were able to establish angiogenesis either through eNOS activation via VEGF and PI3K/AKT or through EGFR-mediated STAT3 pathway. The role of ERK/MAPK pathway in xenograft angiogenesis was ruled out. The absence or reduced expression of angiogenesis-specific proteins in adult testis and its xenografts possibly resulted in poor angiogenesis and in their subsequent degeneration. This study provides insight into angiogenesis mechanism that can be utilized to augment testis xenografting efficiency.
Collapse
|